首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
以乳清蛋白为原料,采用胃蛋白酶和胰蛋白酶双酶先后水解乳清蛋白,通过单因素试验和正交试验优化胃蛋白酶和胰蛋白酶水解乳清蛋白制备血管紧张素转换酶(ACE)抑制肽的工艺,将水解物以3 kDa超滤膜过滤,研究表明,胃蛋白酶水解乳清蛋白最佳酶解工艺条件为水解温度37℃、底物质量浓度6 g/100 mL、酶与底物比3 728 U/g,此时乳清蛋白ACE抑制率为86%;胰蛋白酶水解乳清蛋白最佳酶解条件为温度55℃、底物质量浓度6 g/100 mL、酶与底物比3 480 U/g,此时ACE抑制率为72%。利用超滤离心管获得分子量小于3 kDa的乳清蛋白ACE抑制率96%。  相似文献   

2.
以螺旋藻为原料,采用反复冻融和超声波解冻结合法提取藻胆蛋白,利用等电点分离藻胆蛋白,采用SDS-PAGE电泳确定分离蛋白的种类。采用胃蛋白酶和胰蛋白酶双酶先后水解藻胆蛋白。通过单因素实验和正交实验优化胃蛋白酶和胰蛋白酶水解藻胆蛋白制备血管紧张素转换酶(ACE)抑制肽的工艺,研究表明:胃蛋白酶水解藻胆蛋白最佳酶解工艺条件是水解温度为37℃,底物质量浓度为6%(w/v),酶与底物比为5220 U/g,此时ACE抑制率为82.07%。胰蛋白酶水解藻胆蛋白最佳酶解条件是温度为42℃,底物质量浓度为6%(w/v),酶与底物比为5220 U/g,此时ACE抑制率为80.35%。利用超滤离心管获得分子量小于3 kDa的藻胆蛋白ACE抑制率94.30%。  相似文献   

3.
猪血红蛋白酶解制备ACE抑制肽的研究   总被引:2,自引:2,他引:0  
本实验选用碱性蛋白酶、胰蛋白酶、胃蛋白酶、风味蛋白酶、中性蛋白酶和木瓜蛋白酶等六种商业蛋白酶在各自最适反应条件下分别水解猪血红蛋白12h,研究其水解产物对血管紧张素转换酶抑制率和蛋白水解度的影响。结果显示:采用胃蛋白酶酶解获得的产物ACE抑制率最高。胃蛋白酶的酶解条件为底物5%(质量分数),酶与底物浓度比E:S=3%,温度37℃,pH2.0,水解4h后其ACE抑制率为81.10%,水解度为6.64%。  相似文献   

4.
小龙虾头中血管紧张素转化酶抑制肽提取工艺优化研究   总被引:1,自引:0,他引:1  
采用胃蛋白酶水解小龙虾头制备血管紧张素转化酶(ACE)抑制肽,通过体外检测法测定ACE抑制率。采用二次旋转优化组合试验对制备工艺进行优化,结果表明:pH2.4,温度40.85℃,底物浓度10.05%,酶-底物质量比6.97,水解4.5 h时ACE抑制率可达到80.9%。  相似文献   

5.
郑炯  邓惠玲  阚建全 《食品科学》2012,33(23):209-214
以猪血红蛋白为原料,采用胃蛋白酶水解猪血红蛋白制备ACE抑制肽。以体外ACE抑制率和水解度为指标,通过单因素试验对酶解温度、酶解pH值、底物质量浓度、加酶量、酶解时间等酶解工艺参数进行研究,并用响应面法优化酶解工艺,建立二次多项数学模型。结果表明,胃蛋白酶水解猪血红蛋白制备ACE抑制肽的最佳工艺参数为酶解温度37.60℃、酶解pH 1.98、底物质量浓度4.98g/100mL、加酶量3.04%、酶解时间4h,酶解产物的最大ACE抑制率为70.09%。  相似文献   

6.
乳清蛋白酶解制备ACE抑制肽的研究   总被引:5,自引:1,他引:5  
采用碱性蛋白酶、中性蛋白酶、胃蛋白酶、胰蛋白酶和木瓜蛋白酶水解乳清蛋白制备ACE抑制肽,通过体外检测法测定其ACE抑制率。结果表明,碱性蛋白酶水解物的ACE抑制率最大。采用三因素二次通用旋转设计对碱性蛋白酶水解乳清蛋白的水解条件进行优化。研究了底物浓度、温度和酶与底物的质量比对ACE抑制率的影响,建立了回归方程,分析了各因素对ACE抑制率的影响.确定了最优的水解条件。  相似文献   

7.
酶解花生蛋白制备血管紧张素转化酶抑制肽   总被引:1,自引:1,他引:0  
采用碱性蛋白酶、胃蛋白酶、胰蛋白酶、复合风味酶(固/液)、木瓜蛋白酶水解花生蛋白制备血管紧张素转化酶(ACE)抑制肽,通过体外检测法测定其ACE抑制率。结果表明,碱性蛋白酶水解物的ACE抑制率最大。根据Box—Behnken的中心组合实验设计原理对碱性蛋白酶酶解工艺进行优化,结果表明:当温度为53.7℃,底物浓度为7.72%,酶与底物质量比4.18%,pH=8.0,水解时间为120min时,其ACE抑制率可达72.78%。  相似文献   

8.
宋亮  沈慧星  肖杨  罗永康 《食品科技》2007,32(10):133-137
采用酸性蛋白酶、中性蛋白酶、碱性蛋白酶、木瓜蛋白酶、胃蛋白酶和胰蛋白酶水解珍珠河蚌肉,通过体外检测方法测定其ACE抑制率。结果表明,胃蛋白酶水解产物的ACE抑制率最大。采用四因素二次通用旋转设计对胃蛋白酶水解河蚌肉的水解条件进行优化,研究了酶与底物的质量比(E∶S)、温度、pH值和时间对水解产物ACE抑制率的影响,建立了回归方程,分析了各因素对ACE抑制率的影响,确定了最优的水解条件。  相似文献   

9.
酶解猪血浆蛋白粉制备ACE抑制肽的工艺优化   总被引:2,自引:0,他引:2  
选用胃蛋白酶、胰蛋白酶、碱性蛋白酶和中性蛋白酶水解猪血浆蛋白粉,通过单因素和正交试验考察其水解产物对ACE的抑制活性,并优选酶解工艺条件。结果显示:胃蛋白酶适宜水解血浆蛋白粉,制备ACE抑制肽;影响胃蛋白酶水解的4个因素主次顺序为底物质量浓度>酶解时间>pH值>酶与底物质量比(m酶:m底物),其中底物质量浓度和酶解时间的影响显著(P<0.05),pH值和m酶:m底物的影响不显著(P>0.05);适宜胃蛋白酶水解的条件为pH2.3、水解时间1.5h、底物质量浓度1g/100mL、m酶:m底物1:6。  相似文献   

10.
目的 优化龙须菜蛋白的提取工艺,并制备降血压组分。方法 从胃蛋白酶、中性蛋白酶、碱性蛋白酶和胰蛋白酶中筛选能获得最佳蛋白提取率的蛋白酶,采用单因素试验考查pH、底物浓度、酶解温度、酶底比、酶解时间对蛋白提取率和ACE抑制率的影响,采用响应面法确定最佳工艺条件,采用超滤膜分离技术龙须菜蛋白酶解液中制备血管紧张素转换酶(angiotensin converting enzyme, ACE)抑制肽,并考察其ACE抑制率。结果 最佳酶解工艺条件为:pH 8.4、底物浓度18%、温度55℃、酶底比2.0%、碱性蛋白酶酶解3 h,酶解液的蛋白提取率为(19.54±0.56)%、ACE抑制率为(91.12±0.17)%;将酶解液分别通过10、5、1 kDa超滤膜,利用ACE抑制率来验证降血压活性, 1 kDa超滤膜的酶解液ACE活性最高,达到(71.37±0.22)%。结论 龙须菜可作为分离纯化制备龙须菜降血压肽的优质资源。  相似文献   

11.
本试验以脱脂后的酸枣仁渣通过碱溶酸沉法提取得到的酸枣仁蛋白为研究对象,以血管紧张素转化酶(ACE)抑制率和水解度为指标,筛选复合酶种类,采用响应面分析法,以中性蛋白酶/碱性蛋白酶比例、pH、底物浓度、酶解温度、酶解时间为试验因素,优化酸枣仁ACE抑制肽最佳酶解工艺参数。结果表明:筛选出中性蛋白酶和碱性蛋白酶作为复合酶,最适酶添加量确定为6000 U/g,5个因素对ACE抑制率和水解度的影响由大到小的顺序为:酶解温度、酶解时间、pH、中性蛋白酶/碱性蛋白酶比例、底物浓度。通过拟合方程分析,得到酸枣仁ACE抑制肽酶解的最佳工艺条件为:中性蛋白酶/碱性蛋白酶比例为2.1:1、酶解温度为54 ℃,底物浓度为3.1%,pH为7.5,酶解时间为62 min。在此条件下,复合酶解酸枣仁蛋白酶解液的实际ACE抑制率和水解度分别为(79.46%±0.49%)和(31.45%±0.85%),与理论值接近。制备得到酸枣仁ACE抑制肽与阳性对照组卡托普利对比,酸枣仁ACE抑制肽的ACE抑制率大小为(79.46%±0.49%),与卡托普利的ACE抑制率偏差为(19.28%±0.12%),证明酸枣仁ACE抑制肽具有显著降压效果。本研究证明了酸枣仁蛋白通过酶解有效得到ACE抑制肽并优化其酶解工艺,旨在为酸枣仁渣废物再利用提供参考方向和理论依据。  相似文献   

12.
采用木瓜蛋白酶水解鸭骨制取血管紧张素转化酶(ACE)抑制肽,通过四元二次通用旋转设计优化水解工艺,建立数学模型,分析水解度与ACE抑制率的相关性,并通过不同规格的超滤离心管对酶解产物进行分离.结果表明,木瓜蛋白酶在底物浓度11.5g/100mL,酶底比8000U/g,水解温度60℃,水解时间5.5h,pH值为5.5的条件下,酶解产物的ACE抑制率最高,达到85.71%,水解度为20.81%,且水解度与ACE抑制率显著相关,曲线拟合方程为Y=- 157.572+21.215X-0.491X2.超滤后分子量为2ku~3ku的肽段ACE抑制率最高,达到91.67%,半抑制浓度(IC50)为0.927mg/mL,ACE抑制肽回收率为1.99%.  相似文献   

13.
采用响应曲面法优化胰蛋白酶(PTN6.0S)酶解酪蛋白酸钠的工艺条件,制备高活性的血管紧张素转换酶(ACE)抑制肽。利用准确度更高的RP-HPLC法测定酶解产物的ACE抑制率,通过单因素和响应面试验设计,分别考察p H值、温度、时间、底物质量浓度、酶与底物比等因素对A C E抑制肽活性的影响。结果显示:响应曲面法优化酶解条件得到数学模型为:抑制率/%=-11.21347+4.32902A-1.45953B+3.42928C-0.20303D+0.050303AB+0.047422AD+0.14955BC+0.12486BD-0.054526A2-0.079754B2-0.53587C2-0.28096D2,确定最佳工艺条件为pH7.0、温度52.31℃、时间19.44h、底物质量浓度5.91g/100mL、酶与底物比8.37‰,此时ACE抑制率达97.11%。  相似文献   

14.
采用碱性蛋白酶酶解罗非鱼鱼鳞,研究热处理温度、时间、底物浓度对鱼鳞蛋白酶解前、后的蛋白回收率、水解度、ACE抑制率的影响,确定最佳热处理工艺,探讨热处理鱼鳞蛋白酶解前、后相对分子质量分布的影响。结果表明:热处理可显著提高鱼鳞蛋白酶解特性,最佳热处理条件为:处理温度121℃,处理时间15 min,底物质量分数2%。在此条件下罗非鱼鱼鳞水解液蛋白回收率为65.93%,水解度10.54%,比未处理组分别提高了78.29%和89.23%。此时ACE抑制率为73.80%,比未处理组提高66.78%。鱼鳞蛋白酶解产物相对分子质量主要分布在5 ku以下,其中1 ku以下的小分子胶原肽占39.46%。  相似文献   

15.
以牡蛎为原料,采用酶解联合Plastein反应修饰的方法,获得高活性血管紧张素转换酶(angiotensin converting enzyme,ACE)抑制肽。以ACE抑制率和水解度为指标,对比胃蛋白酶、木瓜蛋白酶、碱性蛋白酶、中性蛋白酶、胰蛋白酶这5种蛋白酶对牡蛎肉的酶解效果,筛选出木瓜蛋白酶最佳。通过单因素试验和正交试验对酶解工艺进行优化,得到最佳酶解工艺为料液比1∶8(g/m L)、加酶量2.0%、温度65℃、时间1.0 h、pH6.0,此条件下酶解产物的ACE抑制率可达到63.30%,在此基础上采用Plastein反应对酶解产物进行修饰,以游离氨基酸减少量和ACE抑制率为指标,考察反应过程中酶种类、底物质量分数、加酶量、时间和温度对修饰结果产生的影响。通过该反应的修饰,得到选用中性蛋白酶、底物质量分数40%、加酶量1.0%、温度30℃、时间2.5h、pH7.0时,ACE抑制率最高可达82.31%,比修饰前提高了19%。  相似文献   

16.
酶解玉米蛋白粉(蛋白含量为70%)制备血管紧张素转换酶(angiotensin converting enzyme,ACE)抑制肽,通过酶的筛选实验确定了AS.1398中性蛋白酶作为最佳水解酶,在此基础上,进行pH、温度、底物浓度、加酶量[E]∶[S]的单因素实验,并且确定4种因素的参数值进行L9(34)正交实验,采用体外检测ACE抑制率和肽得率为指标来确定最佳工艺条件。研究结果表明,选用AS.1398中性蛋白酶作为水解酶,水解时间在2h时,pH7.0,温度50℃,底物浓度5%,加酶量[E]∶[S]为1.5∶100,得到的最大ACE抑制率为85.65%,肽得率为58.64%。  相似文献   

17.
Dong J  Xu X  Liang Y  Head R  Bennett L 《Food & function》2011,2(6):310-319
The focus of this study was to investigate Angiotensin Converting Enzyme (ACE) inhibiting activity across 34 teas (Camellia sinensis) produced by 5 different processing methods including green (GT), oolong (OT), white (WT), black (BT) and dark (DT) teas. In vitro ACE inhibitory activity was affected by the tea processing method with IC(50) values for ACE inhibition: green < oolong < white < black < dark teas. Substrate-dependence of the reaction kinetics was studied for GT and BT polyphenolic size fractions either < or > 3 kDa and also Green Tea Polyphenolic Isolate (GTPI), and revealed that enzyme velocity curves fitted allosteric, not Michaelis-Menten, relationships. Inhibition was weakly dependent on substrate concentration for GT fraction >3 kDa and independent of substrate concentration for all other GT and BT size fractions and GTPI. Furthermore, evidence for direct inactivation of ACE by GTPI was demonstrated. Overall, the results suggest that tea polyphenolics exert a mixed mode of in vitro inhibition of ACE, mostly of a kinetically uncompetitive type. The results are discussed in the context of in vivo and epidemiological evidence for regulation of blood pressure by tea consumption.  相似文献   

18.
BACKGROUND: Angiotensin I‐converting enzyme (ACE) plays an important physiological role in regulating blood pressure. The elevation of blood pressure could be suppressed by inhibiting ACE. ACE inhibitory peptides derived from food proteins could exert antihypertensive effects without side effects. Acetes chinensis is a marine shrimp suitable for the production of ACE inhibitory peptides. The principal objective of this study was to screen for the significant variables, and further to optimize the levels of the selected variables, for the enzymatic production of ACE inhibitory peptides from Acetes chinensis. RESULTS: Plackett–Burman design and response surface methodology were employed to optimize the peptic hydrolysis parameters of Acetes chinensis to obtain a hydrolysate with potent ACE inhibitory activity. The peptic hydrolysis variables were subject to a Plackett–Burman design for screening the main factors. The selected significant parameters such as pH, hydrolysis temperature and enzyme/substrate (E/S) ratio were further optimized using a central composite design. The optimized conditions were: pH 2.5, hydrolysis temperature 45 °C, E/S ratio 17 800 U kg?1 shrimp and substrate concentration 200 g L?1. The results showed that 3–5 h hydrolysis could result in a hydrolysate with ACE inhibition IC50 of 1.17 mg mL?1 and a high DH of 25–27%. CONCLUSION: Plackett–Burman design and RSM performed well in the optimization of peptic hydrolysis parameters of Acetes chinensis to produce hydrolysate with ACE inhibitory activity. A hydrolysate with potent ACE inhibitory activity and high degree of hydrolysis was obtained, so that the yield of ACE inhibitory peptides in it was high. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号