首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of dairy science》2021,104(11):12105-12116
Inadequate luteolysis in fertility programs is a problem for lactating dairy cows treated with a single dose of PGF. The proportion of cows with complete luteolysis can be increased by administering 2 doses of PGF 24 h apart. This study hypothesized that a double dose of cloprostenol sodium (1.0 mg) could take the place of 2 doses 24 h apart due to its enhanced half-life. Cows were allocated to receive 1 of 3 treatments: negative controls: 0.5 mg of cloprostenol sodium (single; n = 337); positive controls: two 0.5-mg doses of cloprostenol sodium 24 h apart (two/24; n = 313); and treated: 1.0 mg of cloprostenol sodium (double; n = 298) at the final PGF of Double-Ovsynch. Cows received artificial insemination (AI) 16 h after final GnRH of Double-Ovsynch. Pregnancy diagnosis was determined at 24, 34, 62, and 184 d post-AI. Pregnancy loss was categorized in the following periods: between 24 to 34, 34 to 62, and 62 to 184 d post-AI. Ultrasonography (B-mode and color Doppler) was used to assess luteal function pre- and posttreatment with various doses of cloprostenol sodium. Luteal volume and luteal blood flow (LBF) from d 7 and 14 corpora lutea were determined before treatment (d −1), and 2 and 4 d after treatment. No evidence was observed of an effect of treatment on pregnancy rates per AI at 24, 34, or 62 d post-AI. No effect was observed of treatment on pregnancy losses occurring between d 24 and 34, 34, and 62, and between 62 and 184 d post-AI. However, third-plus parity cows treated with the single treatment had greater pregnancy loss compared with two/24 and double between d 24 and 34 post-AI. Third-plus parity cows that received the double treatment had lower LBF 2 and 4 d after treatment compared with cows treated with single. Amount of LBF present 4 d after treatment was not a predictor of pregnancy or pregnancy loss. A double dose (1.0 mg) of cloprostenol sodium may be a feasible alternative for fertility programs based on nondifferent outcomes to the two/24 treatment, lower pregnancy losses, and reduced LBF disappearance following treatment in third-plus parity cows in comparison with the single treatment.  相似文献   

2.
《Journal of dairy science》2019,102(8):7570-7575
Early pregnancy diagnosis is critical to reproductive success on dairy farms. Reproductive success depends on cows becoming pregnant before 130 d in milk and then maintaining that pregnancy. The earlier non-pregnant cows are identified, the sooner they can be reinseminated, thus reducing days to pregnancy. Assays for pregnancy-specific protein B (PSPB) and pregnancy-associated glycoproteins can be used to diagnose pregnancy >28 d post-artificial insemination (AI) in lactating cows. The objective of this study was to determine whether percentage change in serum levels of PSPB within cow from d 17 to 24 can be used to identify non-pregnant cows using a commercially available assay. This study was performed on a large commercial dairy. Blood samples were taken at d 17 and 24 post-AI. The d 17 sample served as a baseline based on previous data. Cows with a 10% increase in serum PSPB levels from d 17 to 24 were considered pregnant. Lactating dairy cows (n = 206; 39% primiparous and 61% multiparous) were synchronized using G6G-Ovsynch. The PSPB diagnosis was compared with the herd veterinarian's diagnosis via ultrasound on d 34. The sensitivity for a 10% cutoff as a non-pregnant diagnosis was 100%, and the specificity was 93.58%. The positive predictive value was 93.27%, and the negative predictive value was 100%. Low PSPB levels at d 24 were predictive of early pregnancy loss by 60 d post-AI. To our knowledge no other method can diagnose non-pregnancy with 100% accuracy and predict pregnancy loss earlier than 24 d post-AI. Using comparative PSPB samples at d 17 and 24 post-AI provides an accurate non-pregnancy diagnosis earlier than any other pregnancy diagnosing method.  相似文献   

3.
《Journal of dairy science》2023,106(5):3734-3747
Increasing progesterone (P4) during early conceptus development may be crucial for establishment of pregnancy in dairy cattle. The objective of this study was to determine if human chorionic gonadotropin (hCG) at various times after ovulation will increase serum P4 during elongation and increase the chances for, and reduce variability to, initial increase in pregnancy-specific protein B (PSPB) following artificial insemination (AI). Time to PSPB increase was defined as the first day of increase in concentrations of PSPB between d 18 and 28 after ovulation in cows with ≥12.5% increases for 3 consecutive days compared with baseline. Lactating cows (n = 368) synchronized to Double-Ovsynch (first service) or Ovsynch (second or greater service) received one of 4 treatments: no hCG (control), or 3,000 IU of hCG on d 2 (D2), 2 and 5 (D2+5), or 5 (D5) after ovulation. All cows were examined via ultrasound on d 5 and 10 postovulation to determine percentage of cows with hCG-induced accessory CL (aCL) and to quantify and measure all luteal structures. Samples for serum P4 were collected on d 0, 5, 19, and 20 postovulation. The P4 was increased in D2, D2+5, and D5 groups compared with control. The D2+5 and D5 treatments increased aCL and P4 compared with D2 and control. The D2 treatment increased P4 on d 5 after ovulation compared with control. Serum PSPB samples were collected daily from all cows on d 18 through 28 after ovulation for determination of d of PSPB increase. Pregnancy diagnoses were performed via ultrasound examination on d 35, 63, and 100 after ovulation and AI. The D5 treatment reduced percentage of cows with, and increased the time to, PSPB increase. Primiparous cows with ipsilateral aCL had reduced pregnancy loss before d 100 postovulation compared with cows with contralateral aCL. Cows that had PSPB increase >21 d postovulation had 4× greater chances of pregnancy loss compared with cows that had PSPB increase on d 20 or 21. The highest quartile of P4 on d 5, but not on d 19 and 20, was associated with reduced time to PSPB increase. Time to PSPB increase appears to be an important measurement to understand reasons for pregnancy loss in lactating dairy cows. Increasing P4 utilizing hCG after ovulation did not enhance early pregnancy or reduce pregnancy losses in lactating dairy cows.  相似文献   

4.
The objective of this study was to examine the association between increased physical activity at the moment of timed artificial insemination (AI), detected by an automated activity monitor (AAM), and fertility outcomes. This paper also investigated factors affecting estrous expression in general. A total of 1,411 AI events from 1,040 lactating Holstein cows were recorded, averaging 1.3 ± 0.6 (±standard deviation) events per cow. Activity (measured as steps/h) was monitored continuously by a leg-mounted AAM located on the rear leg of the cow. Ovulation was synchronized by a timed AI protocol based on estradiol and progesterone. Ovarian ultrasonography was performed in all cows on d ?11 (AI = d 0) and in a subset of cows on d 0 (n = 588) and d 7 (n = 819) to determine the presence of a corpus luteum and follicles. The body condition score (1 to 5 scale) was assessed on d 0 and a blood sample was collected for progesterone measurement on d 7. Using the AAM, an estrus event was determined when the relative increase (RI) in physical activity of the cow exceeded 100% of the baseline activity. The physical activity was classified as strong RI (≥300% RI), moderate RI (100–300% RI), or no estrus (<100% RI). Milk production was measured daily and averaged between d ?11 and 0. Pregnancy was diagnosed at 32 and 60 d post-AI and pregnancy losses were calculated. The mean RI at estrus was 328.3 ± 132.1%. Cows with strong RI had greater pregnancy per AI than those with moderate RI and those that did not express estrus (35.1 vs. 27.3 vs. 6.2%). When including only cows that successfully ovulated after timed AI, those that displayed strong intensity RI still had greater pregnancy per AI than those with moderate intensity RI or those that did not express estrus (45.1 vs. 34.8 vs. 6.2%). Cows expressing strong RI at timed AI had greater ovulation rates compared with moderate RI and cows that did not express estrus (94.9 vs. 88.2 vs. 49.5%). Furthermore, pregnancy losses were reduced in cows with strong RI compared with cows expressing moderate RI (13.9 vs. 21.7%). Cows with a strong RI at estrus were more likely to have a corpus luteum at the beginning of the protocol and had greater concentration of progesterone 7 d post-AI. Multiparous cows expressed lower RI compared with primiparous cows. Cows with lower body condition score tended to have decreased RI at estrus. No correlation between estrous expression and pre-ovulatory follicle diameter was observed. Also, no correlation was observed between milk production at AI and RI. In conclusion, strong intensity RI of estrus events at timed AI was associated with improved ovulation rates and pregnancy per AI, and reduced pregnancy losses. These results provide further evidence that measurements of estrous expression can be used to predict fertility at the time of AI and possibly be used as a tool to assist decision making strategies of reproduction programs.  相似文献   

5.
Ovarian follicle development continues in a wave-like manner during the bovine oestrous cycle giving rise to variation in the duration of ovulatory follicle development. The objectives of the present study were to determine whether a relationship exists between the duration of ovulatory follicle development and pregnancy rates following artificial insemination (AI) in dairy cows undergoing spontaneous oestrous cycles, and to identify factors influencing follicle turnover and pregnancy rate and the relationship between these two variables. Follicle development was monitored by daily transrectal ultrasonography from 10 days after oestrus until the subsequent oestrus in 158 lactating dairy cows. The cows were artificially inseminated following the second observed oestrus and pregnancy was diagnosed 35 days later. The predominant pattern of follicle development was two follicle waves (74.7%) with three follicle waves in 22.1% of oestrous cycles and four or more follicle waves in 3.2% of oestrous cycles. The interval from ovulatory follicle emergence to oestrus (EOI) was 3 days longer (P < 0.0001) in cows with two follicle waves than in those with three waves. Ovulatory follicles from two-wave oestrous cycles grew more slowly but were approximately 2 mm larger (P < 0.0001) on the day of oestrus. Twin ovulations were observed in 14.2% of oestrous cycles and occurred more frequently (P < 0.001) in three-wave oestrous cycles; consequently EOI was shorter in cows with twin ovulations. Overall, 57.0% of the cows were diagnosed pregnant 35 days after AI. Linear logistic regression analysis revealed an inverse relationship between EOI and the proportion of cows diagnosed pregnant, among all cows (n = 158; P < 0.01) and amongst those with single ovulations (n = 145; P < 0.05). Mean EOI was approximately 1 day shorter (P < 0.01) in cows that became pregnant than in non-pregnant cows; however, pregnancy rates did not differ significantly among cows with different patterns of follicle development. These findings confirm and extend previous observations in pharmacologically manipulated cattle and show, for the first time, that in dairy cows undergoing spontaneous oestrous cycles, natural variation in the duration of post-emergence ovulatory follicle development has a significant effect on pregnancy rate, presumably reflecting variation in oocyte developmental competence.  相似文献   

6.
Two experiments evaluated the influence of follicular wave at artificial insemination (AI) on fertility of dairy cows. In experiment 1, data from 5,607 lactating cows enrolled in estrous and ovulation synchronization programs for AI were evaluated. Cows’ blood was analyzed for progesterone 7 to 14 d apart, with the second sample collected on the day of the first GnRH (GnRH1) of the synchronization protocol. Cows were classified as cyclic if progesterone was ≥1 ng/mL in at least 1 of the 2 samples and as anovular if both samples were <1 ng/mL. Cyclic cows were categorized as low (CLOW; < 1 ng/mL) or high (CHIGH; ≥ 1 ng/mL) progesterone on the day of GnRH1, which would result in ovulation of the dominant follicle of the first (FW) and second (SW) follicular waves, respectively, at AI. Pregnancy per AI (P/AI) was determined 30 and 53 d after AI. In experiment 2, 220 cyclic Holstein cows received 2 injections of PGF administered 14 d apart. The Ovsynch protocol (d 0 GnRH, d 7 PGF, d 9 GnRH, d 9.5 timed AI) was initiated either 3 or 10 d after the second PGF of the presynchronization to result in insemination to the FW or SW dominant follicles. Blood was analyzed for progesterone and ovaries were scanned to determine ovulatory responses and follicle diameter. Pregnancy was determined on d 32 and 67 after timed AI. In experiment 1, P/AI on d 30 was greater for CHIGH cows than for CLOW and anovular cows (43.0, 31.3, and 29.7%, respectively), but because of pregnancy loss, P/AI on d 53 was lowest for anovular cows. Proportions of cows with short reinsemination intervals differed among groups and were 7.1, 15.7, and 11.9% for CHIGH, CLOW, and anovular cows, respectively. Pregnancy loss was greater for anovular cows than for CLOW cows (15.0 vs. 10.0%) and was intermediate for CHIGH cows (13.5%). In experiment 2, 9.8 and 97.2% of the FW and SW cows, respectively, had progesterone ≥1 ng/mL at GnRH1. Concentrations of progesterone at the GnRH1 and PGF injections of the Ovsynch protocol were greater for SW cows than FW cows. Pregnancy per AI was greater for SW cows than for FW cows (41.7 vs. 30.4%) despite less ovulation to GnRH1 in SW cows than in FW cows (78.7 vs. 88.4%). Collectively, these data indicate that follicular wave of the ovulatory follicle and not cyclic status caused the greatest reduction in P/AI in dairy cows. Whether the culprit is the follicle itself or the hormonal milieu characteristic of the first follicular wave and the early stage of the estrous cycle remains to be elucidated. Synchronization programs that induced ovulation of the FW follicle at AI reduced P/AI in lactating dairy cows, and ovulation of the FW follicle, or development of the ovulatory follicle under low progesterone concentrations, or both, might be mechanisms for reduced fertility in anovular cows.  相似文献   

7.
Objectives were to determine the effect of progesterone (P4) concentration on fertility of lactating dairy cows induced to ovulate follicles of the first follicular wave. Lactating dairy cows (n=989) at 38±3d postpartum were balanced by parity and body condition score and randomly assigned to 3 treatments: first follicular wave (FFW), first follicular wave with exogenous P4 (FFWP), or second follicular wave (SFW). All cows had their estrous cycle presynchronized with 2 injections of prostaglandin (PG) F(2α) given 14 d apart. Cows in the FFW and FFWP treatments started the ovulation synchronization protocol 3 d after the last PGF(2α) of the presynchronization protocol, whereas SFW cows received a GnRH injection (100 μg of gonadorelin diacetate; Cystorelin, Merial Ltd., Duluth, GA) 3 d after the last PGF(2α) of the presynchronization protocol and started the synchronization protocol 7 d later. The synchronization protocol consisted of GnRH on d -10, PGF(2α) on d -3, and GnRH concurrent with timed artificial insemination (AI) on d 0. Cows in the FFWP treatment received 2 controlled internal drug release inserts containing 1.38 g of P4 from d -8 to -3. Progesterone concentration was determined on d -10, -8, -6, -3, and 0 from all cows and at 7, 14, and 21 d after AI from a subsample of cows (n=170). Cows (n=715) had their ovaries scanned by ultrasound on d -10, -3, and 7 d. Pregnancy was diagnosed at 38 and 66 d after AI. Concentration of P4 from study d -8 to -3 was lowest for FFW cows (1.4±0.1 ng/mL) and similar between SFW (3.7±0.2 ng/mL) and FFWP (3.7±0.1 ng/mL) cows. Diameter of the dominant follicle on study d -3 was greater for FFW cows (16.5±0.3 mm) than for SFW cows (15.4±0.3 mm), but diameter of the dominant follicle of FFWP cows was not different (15.9±0.3 mm) compared with that of SFW and FFW cows. The incidence of multiple ovulation was largest for FFW cows (SFW=19.5, FFW=33.6, FFWP=19.0%), but pregnancy per AI (P/AI) at 66 d was smallest for FFW cows (SFW=38.9, FFW=22.3, FFWP=32.0%). Anovular cows in the SFW (19.4 vs. 42.8%) and FFWP (22.1 vs. 37.2%) treatments had reduced P/AI compared with cyclic cows, despite having similar or greater P4 concentration from study d -8 to -3, respectively. Estrus and ovulation synchronization protocols for lactating dairy cows must result in growth of ovulatory follicle under P4 concentration >2 ng/mL to ensure high P/AI.  相似文献   

8.
Our objective was to evaluate the effect of manipulating progesterone (P4) concentrations before timed artificial insemination (TAI) on reproductive and endocrine outcomes in high-producing Holstein cows. Multiparous lactating Holstein cows (n = 80) were synchronized for first TAI using a Double-Ovsynch protocol and were randomly assigned to receive 25 mg of PGF 1 d after the first GnRH treatment of the Breeding-Ovsynch protocol that included a once-used P4 insert (low-P4 group) or to receive 2 new P4 inserts during the Breeding-Ovsynch protocol (high-P4 group). Blood samples were collected thrice weekly from ?10 to 32 d relative to TAI for all cows and from 32 to 67 d after TAI for pregnant cows and were analyzed for P4 and pregnancy-specific protein B (PSPB) concentrations. Expression of IFNτ-stimulated gene 15 (ISG15) was assessed in blood leukocytes 18 and 20 d after TAI. As expected, P4 concentrations were greater for high-P4 cows than for low-P4 cows from 3 to 8 d before TAI. Incidence of double ovulation was 3-fold greater for low-P4 cows than for high-P4 cows (33 vs. 10%), which resulted in more twin pregnancies 32 d after TAI for low-P4 cows than for high-P4 cows (29 vs. 0%). Low-P4 cows had larger preovulatory follicles at the last GnRH treatment of the Double-Ovsynch protocol and greater P4 concentrations than high-P4 cows after TAI. Relative expression of ISG15 mRNA 18 and 20 d after TAI was greater for low-P4 cows than for high-P4 cows and for pregnant cows than for nonpregnant cows. Overall, PSPB concentrations tended to be greater for low-P4 cows than for high-P4 cows, and pregnant cows had greater P4 concentrations than nonpregnant cows. In summary, cows with low P4 before TAI had increased preovulatory follicle diameter, PSPB concentrations, relative expression of ISG15 mRNA 18 and 20 d after TAI, double ovulations, and twinning compared with cows with high P4 before TAI. Increasing P4 before TAI may effectively decrease double ovulation and twinning in high-producing multiparous Holstein cows.  相似文献   

9.
《Journal of dairy science》2022,105(8):7023-7035
Double ovulation and twin pregnancy are undesirable traits in dairy cattle. Based on previous physiological observations, we tested the hypothesis that increased LH action [low-dose human chorionic gonadotropin (hCG)] before the expected time of diameter deviation would change circulating FSH concentrations, maximum size of the second largest (F2) and third largest (F3) follicles, and frequency of multiple ovulations in lactating dairy cows with minimal progesterone (P4) concentrations. In replicate 1, multiparous, nonbred lactating Holstein dairy cows (n = 18) had ovulation synchronized. On d 5 after ovulation, all cows had their corpus luteum regressed and were submitted to follicle (≥3 mm) aspiration 24 h later to induce emergence of a new follicular wave. Cows were then randomized to NoP4 (untreated) and NoP4+hCG (100 IU of hCG every 24 h for 4 d after follicle aspiration). Ultrasound evaluations and blood sample collections were performed every 12 h for 7 d after follicle aspiration. All cows were then treated with 200 μg of GnRH to induce ovulation. In replicate 2, cows (n = 16) were resubmitted to similar procedures (i.e., corpus luteum regression, follicle aspiration, randomization, ultrasound evaluations every 12 h, GnRH 7 d after aspiration). However, cows in replicate 2 received an intravaginal P4 device that had been previously used (~18 d). Only cows with single (n = 15) and double (n = 16) ovulations were used in the analysis. No significant differences were detected for frequency of double ovulation, follicle sizes, and FSH concentrations across replicates (NoP4 vs. LowP4 and NoP4+hCG vs. LowP4+hCG), so data were combined. Double ovulation was 40% for control cows with no hCG (CONT) and 62.5% with hCG (hCG). Double ovulation increased as the maximum size of F2 increased: <9.5 mm and 9.5–11.5 mm (7.7%) and ≥11.5 mm (94.1%). The hCG group had more cows with F2 > 11.5 (69%) than with 9.5 ≥ F2 ≤ 11.5 (25%) and F2 < 9.5 (6%). In agreement, F2 and F3 maximum size were larger in the hCG group, but FSH concentrations were lower after F1 > 8.5 mm compared with CONT. In contrast, FSH concentrations were greater before deviation (F1 closest value to 8.5 mm) in cows with double ovulations than in those with single ovulations, regardless of hCG treatment. In addition, time from aspiration to deviation was shorter in cows with double rather than single ovulation and in cows treated with hCG as a result of faster F1, F2, and F3 growth rates before diameter deviation. In conclusion, greater FSH and follicle growth before deviation seems to be a primary driver of greater frequency of double ovulation in lactating cows with low circulating P4. Moreover, the increase in follicle growth before deviation and in the maximum size of F2 during hCG treatment suggests that increased LH may also have a role in stimulating double ovulation.  相似文献   

10.
Synchronization of ovulation (Ovsynch) using GnRH and PGF2 alpha allows control of follicle growth, corpus luteum regression, and ovulation, but resulting pregnancy rates vary. This study examined whether presynchronization to allow initiation of Ovsynch during diestrus would improve pregnancy rates at timed artificial insemination (AI). Lactating dairy cows (n = 427), 69 to 75 d postpartum, were randomly assigned to two groups by parity. Control cows received Ovsynch (GnRH, d 0; PGF2 alpha, d 7; GnRH, d 9; timed AI 16 h after second GnRH). Treated cows received presynchronization injections of PGF2 alpha and GnRH, 10 and 7 d, respectively, before starting Ovsynch. Pregnancy diagnoses were performed 36 d after AI. Progesterone (P4) concentrations from a subset of cows (n = 84) were determined in serum samples collected on d 0, 3, and 7 of Ovsynch. Presynchronization increased the percentages of cows with > or = 1 ng/ml serum P4 compared with control cows at first injection of GnRH (d 0; 93 vs. 56%) and on d 3 (90.7 vs. 51.2%) during Ovsynch. On day of PGF2 alpha, d 7 during Ovsynch, percentages of cows with > or = 1 ng/ml serum P4 were similar (95.3%, treated vs. 82.9%, control) but more treated cows had > or = 2 ng/ml serum P4 (95.3 vs. 63.4%). However, pregnancy to timed AI was similar between treated (41.5%) and control cows (38.3%). Cows with above-average milk production had greater pregnancy rate (45.8 vs. 33.8%) compared with lower producing cows. Although presynchrony increased the proportion of cows with luteal function at onset of Ovsynch, pregnancy rate to timed AI was not improved. Cows with above-average milk production had greater fertility at timed AI than herdmates with lower milk production.  相似文献   

11.
《Journal of dairy science》2022,105(1):831-841
The objectives of this study were to determine the effects of GnRH at the time of artificial insemination (AI) on ovulation, progesterone 7 d post-AI, and pregnancy in cows detected in estrus using traditional methods (tail chalk removal and mount acceptance visualization) or an automated activity-monitoring (AAM) system. We hypothesized that administration of GnRH at the time of AI would increase ovulation rate, plasma progesterone post-AI, and pregnancy per AI (P/AI) in cows detected in estrus. In experiment 1, Holstein cows (n = 398) were blocked by parity and randomly assigned to receive an injection of GnRH at the time of estrus detection/AI (GnRH, n = 197) or to remain untreated (control, n = 201) on 4 farms. The GnRH was administered as 100 µg of gonadorelin acetate. Ovarian structures and plasma progesterone were assessed in a subset of cows (GnRH, n = 52; control, n = 55) in experiment 1 at the time of AI and 7 d later. In experiment 2, a group of 409 cows in an AAM farm were enrolled as described for experiment 1 (GnRH, n = 207; control, n = 202). Data were categorized for parity (primiparous vs. multiparous), season (cool vs. warm), number of services (first vs. > first), DIM (>150 DIM vs. ≤150 DIM), and for AAM cows in experiment 2 for activity level (high: 90–100 index vs. low: 35–89 index). Pregnancy diagnosis was performed between 32 and 45 d post-AI (P1) and 60 to 115 d post-AI (P2). In experiment 1, there was no difference in plasma progesterone at day of estrus detection (control = 0.09 ng/mL vs. GnRH = 0.16 ng/mL), 7 d later (control = 2.03 ng/mL vs. GnRH = 2.18 ng/mL), and ovulation rate (GnRH = 83.2% vs. control = 77.9%) between treatments. There were no effects of GnRH in experiment 1 for P/AI at P1 (control = 43.3% vs. GnRH = 38.6%), P2 (control = 38.4% vs. GnRH = 34.5%), and for pregnancy loss (control = 9.8% vs. GnRH = 8.2%). In experiment 2, there were no effects of GnRH for P/AI at P1 (control = 39.6% vs. GnRH = 40.1%), P2 (control = 35.0% vs. GnRH = 37.4%), and for pregnancy loss (control = 9.5% vs. GnRH = 6.2%). There was a tendency for a parity effect on P/AI for P1, but not P2 or for pregnancy loss. High-activity cows had greater P/AI in P1 (low activity = 27.9% vs. high activity = 44.1%), P2 (low activity = 21.8% vs. high activity = 41.2%), and lower pregnancy loss (low activity = 20.7% vs. high activity = 5.1%), but there were no interactions between treatment and activity level. The current study did not support the use of GnRH at estrus detection to improve ovulatory response, progesterone 1 wk post-AI, and P/AI. More research is needed to investigate the relationship between GnRH at the time of AI and activity level in herds using AAM systems.  相似文献   

12.
《Journal of dairy science》2023,106(2):1414-1428
This study was designed to evaluate whether the utilization of a second PGF treatment at the end of an estradiol/progesterone (E2/P4)-based protocol with or without GnRH at the beginning of the protocol would improve pregnancy rates of lactating Holstein cows assigned to timed embryo transfer. A total of 501 lactating Holstein cows in 5 farms were enrolled in the experiment. Within farm, cows were blocked by parity and, within block, were assigned randomly to (1) insertion of an intravaginal P4 device (controlled internal drug-releasing device; CIDR) and estradiol benzoate on d ?11, PGF on d ?4, CIDR withdrawal and an injection of estradiol cypionate on d ?2, and timed embryo transfer on d 7 (1-PGF; n = 164); (2) the same treatments as 1-PGF, but with PGF administered on d ?4 and ?2 (2-PGF; n = 171); and (3) 2-PGF with the addition of a GnRH treatment on d ?11 (GnRH+2-PGF; n = 166). Ovaries were scanned by transrectal ultrasonography on d ?11, ?4, and 7, and blood samples were collected on d ?11, ?4, 0, and 7 for P4 determination. Treatment comparisons were performed using contrasts. The proportion of cows with a new corpus luteum on d ?4 was greater in GnRH+2-PGF cows. Cows in 1-PGF had a greater P4 concentration on d 0 but lesser P4 on d 7 compared with cows in the other groups. Cows assigned to receive 2-PGF (2-PGF and GnRH+2-PGF) had greater estrus expression, and a greater proportion of cows ovulated to estradiol cypionate. No further contrast effects were observed for follicle diameter, double ovulation rate, pregnancy per embryo transfer (P/ET) on d 32 and 60, or pregnancy loss. As P4 concentration on d ?4 increased, P/ET on d 60 tended to increase. Cows with P4 ≥3.66 ng/mL on d ?4 had greater P/ET on d 32 and 60 than those with P4 below that threshold. Regardless of treatment, cows with P4 concentration ≥3.66 ng/mL also had a greater pregnancy per synchronized protocol (P/SP) on d 60. Also, a P4 concentration on d ?4 (low or high) × follicle diameter (continuous) interaction tendency was observed when evaluating P/ET. Although P/ET did not differ among cows with different follicles sizes with reduced P4 concentration on d ?4 (<3.66 ng/mL), it increased in cows with larger follicles exposed to increased P4 concentration (≥3.66 ng/mL). When P4 on d 0 was evaluated, P/ET on d 32 and 60 was greater for cows with low (≤0.09 ng/mL) versus high (>0.21 ng/mL) P4; as P4 concentration on d 0 increased, P/ET linearly decreased. In summary, cows with increased P4 concentrations during growth of the ovulatory follicular wave had improved P/ET. Administering a second PGF dose reduced P4 concentration on d 0 and increased ovulatory response to the protocol, but no benefits were observed on P/ET or P/SP.  相似文献   

13.
《Journal of dairy science》2022,105(7):6353-6363
The objectives of this study were to determine the effects of nerve growth factor-β (NGF), purified from bulls' seminal plasma and administered at the time of artificial insemination (AI), on progesterone post-AI, interferon-stimulated genes (ISG), and pregnancy per AI (P/AI) for lactating Holstein dairy cows enrolled in a timed-AI protocol. We hypothesized that administration of NGF at the time of AI would increase plasma progesterone post-AI, upregulate relative abundance of ISG, and improve P/AI in lactating dairy cows. Holstein cows (n = 557) from a single commercial dairy farm were blocked by parity and randomly assigned to receive an intramuscular injection containing 296 µg of bovine purified NGF at the time of AI, diluted in 2 mL of phosphate-buffered saline (NGF: n = 275), or receive only the 2 mL of phosphate-buffered saline (control: n = 282). Plasma progesterone and corpus luteum size were assessed in a subset of cows (NGF: n = 32; control: n = 36) at d 7, 14, and 19 post-AI. Relative mRNA abundance of ISG (ISG15, MX1, MX2, and RTP4) was assessed in peripheral blood leukocytes on d 19 post-AI. Pregnancy diagnosis was performed at 37 and 65 d post-AI. There was an interaction effect between treatment and parity for plasma progesterone; however, plasma progesterone and ISG did not differ between treatments. There were no effects of NGF for P/AI at 37 d post-AI (NGF = 40.0% vs. control = 41.6%), 65 d post-AI (NGF = 36.0% vs. control = 38.1%), and for pregnancy loss (NGF = 8.4% vs. control = 7.7%). The current study revealed that effects to NGF in lactating Holstein cows were minor and contingent with parity for progesterone, and no improvement in ISG relative abundance and P/AI were observed.  相似文献   

14.
The objectives of this study were to assess the responses to treatments (clinical cure and cow survival 14 d posttherapy) of cows with clinical endometritis (CE) that received intrauterine infusion of a hypertonic solution of 50% dextrose (DEX) or subcutaneous ceftiofur crystalline free acid (CCFA) and subsequent pregnancy per artificial insemination (P/AI) in cows with CE compared with cows without CE. Cows (n=760) from 2 dairy herds were screened for CE using vaginoscopy and measurement of cervix diameters [exam 1; 26±3 d in milk (DIM)]. Cows with vaginal discharge scores of 2 or 3 (scale 0-3) were stratified by parity and randomly allocated into 1 of 3 treatment groups: (1) intrauterine infusion (~200 mL) of 50% DEX solution (n=79); (2) 6.6 mg/kg single-dose of subcutaneous administration of CCFA (n=75); or (3) untreated control animals (CON, n=83). Fourteen days posttherapy (at 40±3 DIM), cows with CE were re-examined (exam 2; 40±3 DIM) to assess the response to treatments. All cows were presynchronized with 2 injections of PGF(2α) given 14 d apart (starting at 26±3 DIM) followed by Ovsynch (OV; GnRH-7 d-PGF-56 h-GnRH 16 h-timed-AI) 12 to 14 d later. Cows displaying signs of standing estrus any time during the protocol were inseminated, whereas the remaining cows were subjected to timed AI 16 h after the second GnRH of OV. Pregnancy diagnosis was performed via transrectal ultrasonography at 39±3d post-AI followed by pregnancy reconfirmation 30 d after the first pregnancy diagnosis. Uterine swabs revealed that Arcanobacterium pyogenes and Escherichia coli were the most predominant bacteria isolated at the time of treatments. Mortality within 14 d posttherapy was not different among treatment groups. Cows with CE had greater cervical diameter at exam 1 and decreased P/AI compared with cows without CE. Treatment with CCFA or DEX increased the proportion of cows with clear vaginal discharge (score 0; clinical cure) 14 d posttherapy compared with CON cows. Pregnancy per AI from DEX (29.8±4%) cows tended to differ from that of CON (21.1±4%) or CCFA cows (19.7±4%), but it resulted in similar P/AI as those cows without CE (39.1±2%). The use of intrauterine DEX alone or as an adjunct of antibiotic therapy for the treatment of CE needs further investigation.  相似文献   

15.
Our hypothesis was that increasing the length of an estradiol and progesterone (P4) timed artificial insemination (TAI) protocol would improve pregnancy per artificial insemination (P/AI). Lactating Holstein cows (n = 759) yielding 31 ± 0.30 kg of milk/d with a detectable corpus luteum (CL) at d −11 were randomly assigned to receive TAI (d 0) following 1 of 2 treatments: (8d) d −10 = controlled internal drug release (CIDR) and 2.0 mg of estradiol benzoate, d −3 = PGF(25 mg of dinoprost tromethamine), d −2 = CIDR removal and 1.0 mg of estradiol cypionate, d 0 = TAI; or (9d) d −11 = CIDR and estradiol benzoate, d −4 = PGF, d −2 CIDR removal and estradiol cypionate, d 0 TAI. Cows were considered to have their estrous cycle synchronized in response to the protocol by the absence of a CL at artificial insemination (d 0) and presence of a CL on d 7. Pregnancy diagnoses were performed on d 32 and 60. The ovulatory follicle diameter at TAI (d 0) did not differ between treatments (14.7 ± 0.39 vs. 15.0 ± 0.40 mm for 8 and 9 d, respectively). The 9d cows tended to have greater P4 concentrations on d 7 in synchronized cows (3.14 ± 0.18 ng/mL) than the 8d cows (3.05 ± 0.18 ng/mL). Although the P/AI at d 32 [45 (175/385) vs. 43.9% (166/374) for 8d and 9d, respectively] and 60 [38.1 (150/385) vs. 40.4% (154/374) for 8d and 9d, respectively] was not different, the 9d cows had lower pregnancy losses [7.6% (12/166)] than 8d cows [14.7% (25/175)]. The cows in the 9d program were more likely to be detected in estrus [72.0% (269/374)] compared with 8d cows [62% (240/385)]. Expression of estrus improved synchronization [97.4 (489/501) vs. 81% (202/248)], P4 concentrations at d 7 (3.22 ± 0.16 vs. 2.77 ± 0.17 ng/mL), P/AI at d 32 [51.2 (252/489) vs. 39.4% (81/202)], P/AI at d 60 [46.3 (230/489) vs. 31.1% (66/202)], and decreased pregnancy loss [9.3 (22/252) vs. 19.8% (15/81)] compared with cows that did not show estrus, respectively. Cows not detected in estrus with small (<11 mm) or large follicles (>17 mm) had greater pregnancy loss; however, in cows detected in estrus, no effect of follicle diameter on pregnancy loss was observed. In conclusion, increasing the length of the protocol for TAI increased the percentage of cows detected in estrus and decreased pregnancy loss.  相似文献   

16.
The objectives of this study were to evaluate the effects of method of presynchronization and source of supplemental Se on uterine health and reproductive performance of lactating dairy cows. Holstein cows (n = 512) were assigned randomly to 2 methods of presynchronization, Presynch (2 PGF2a given 14 d apart) or CIDR-PS (controlled internal drug releasing inserted for 7 d with an injection of PGF2a at removal) and 2 sources of Se, sodium selenite (SS) or selenized yeast (SY) supplemented at 0.3 mg/kg from 25 d before calving to 80 d in milk (DIM) arranged in a 2 × 2 factorial. Cows were inseminated following the Ovsynch protocol (d 0 GnRH, d 7 PGF2a, d 9 GnRH, timed artificial insemination (AI) 12 h after the final GnRH) starting at 12 and 3 d after Presynch and CIDR-PS, respectively. Cows were diagnosed for pregnancy at 28, 42, and 56 d after AI. Source of Se did not influence uterine health and resumption of cyclicity, but fewer CIDR-PS than Presynch cows were cyclic at the beginning of the Ovsynch, although differences in the proportion cyclic may have been caused by the timing when corpus luteum evaluations were performed in the different pre-synchronization treatments. Ovulatory responses were not influenced by source of Se. However, the CIDR-PS increased ovulation to the first GnRH, double ovulation to the final GnRH, and size of ovulatory follicle at PGF2a and final GnRH of the Ovsynch, but did not influence ovulation at the final GnRH of the Ovsynch. Concentrations of estradiol during the Ovsynch increased with follicle diameter and were greater for cows receiving CIDR-PS than Presynch, but they were not influenced by source of Se. Pregnancy per AI on d 28 (32.7%), 42 (28.5%), and 56 (25.9%) after AI, and pregnancy loss (20.5%) from 28 to 56 d were not influenced by source of Se or method of presynchronization. Although cows receiving CIDR-PS had an increased incidence of ovulation to the first GnRH (73.2 vs. 57.8%) and double ovulation to the final GnRH of the Ovsynch (18.7 vs. 9.0%), both of which enhanced pregnancy, the CIDR-PS protocol did not improve pregnancy per AI or reduce pregnancy loss compared with presynchronization with PGF2a alone.  相似文献   

17.
《Journal of dairy science》2023,106(7):5115-5126
This study aimed to determine the effect of 2 simple breeding strategies combining artificial insemination (AI) after detection of estrus (AIED) and timed AI (TAI) on first-service fertility in lactating Holstein cows. Weekly, lactating Holstein cows (n = l,049) between 40 and 46 d in milk (DIM) were randomly assigned to initiate 1 of 2 breeding strategies for first service: Presynch-14 and PG+G. Presynch-14 is a presynchronization strategy with 2 PGF treatments 14 d apart with the last PGF 14 d before the initiation of the Ovsynch protocol. Cows treated with PG+G receive a simpler presynchronization program that uses PGF and GnRH simultaneously 7 d before Ovsynch. In both treatments, cows detected in standing estrus by tail chalk at any time ≥55 DIM were inseminated, and treatment was discontinued (n = 525). Cows completing treatment received TAI from 78 to 84 DIM (n = 526). In a subgroup of cows that received TAI, blood was collected (n = 163) to assess circulating concentrations of progesterone, and ultrasonographic evaluations of ovaries were performed on the day of first GnRH of Ovsynch (n = 162) and PGF of Ovsynch (n = 122). The proportion of cows that received TAI was greater for PG+G compared with Presynch-14 (63.5 vs. 31.9%), which increased DIM at first service for cows treated with PG+G compared with Presynch-14 (75.5 ± 0.4 vs. 68.7 ± 0.4). For cows receiving TAI, the ovulatory response to first GnRH of Ovsynch (73.8 vs. 48.8%) and the proportion of cows with functional corpora lutea (92.6 vs. 73.1%) were greater for PG+G than Presynch-14. Cows treated with PG+G had greater overall pregnancy per AI (P/AI) 42 ± 7 d after AI (40.2 vs. 33.6%) and calving per AI (32.1 vs. 25.2%) than Presynch-14. For cows receiving AIED, treatment did not affect P/AI 42 ± 7 d after AI. However, for cows receiving TAI, PG+G increased P/AI compared with Presynch-14 (44.6 vs. 35.2%). Overall, cows receiving TAI had greater P/AI 42 ± 7 d after AI (42.5 vs. 31.5%) and calving per AI (34.1 vs. 23.7%) and decreased pregnancy loss (16.8 vs. 25.2%) than cows receiving AIED. In summary, PG+G increased the proportion of cows receiving TAI and the DIM at first service, P/AI, and calving per AI compared with Presynch-14 when both TAI programs were combined with AIED.  相似文献   

18.
The Ovsynch protocol was designed to synchronize ovulation, thereby allowing timed artificial insemination (TAI) of all cows without detection of estrus. However, the effectiveness of Ovsynch in different breeds of dairy cows has not been previously compared. The aim of this study was to compare the response to Ovsynch in cycling lactating Holstein-Friesian (HF) and Swedish Red (SR) dairy cows. A total of 495 cyclic cows (n = 347 HF, n = 148 SR) were housed together and treated with Ovsynch (GnRH - 7 d - PGF - 56 h - GnRH - 16 to 18 h - TAI). Ovulatory responses, synchronization rate, maximal follicle size at the time of AI, and percentage of pregnant cows per AI (P/AI at 31 and 62 d after AI) were compared between breeds. Ultrasonography was performed during Ovsynch at first GnRH, PGF, at time of AI, and 7 d after AI. Ovulatory response and synchronization rate were similar in HF versus SR cows (60.2 vs. 62.2%; 88.4 vs. 88.5%, respectively). Cows that ovulated to the first GnRH of Ovsynch had smaller follicle size at AI (15.9 ± 0.1 vs. 16.4 ± 0.2 mm). Maximal follicle size at AI was greater for HF (16.4 ± 2.2 mm) than SR (15.5 ± 2.3 mm) cows. The P/AI was greater for SR than HF cows at the 62-d pregnancy diagnosis (56.1 vs. 46.1%). In addition, pregnancy loss between 31 and 62 d of pregnancy was greater in HF (10.1%) than SR (3.5%) cows. Fertility was less in HF cows during the hot season (57.7 in cold vs. 38.1% in the hot season), whereas such a decrease was not observed in SR (60.0 in cold vs. 53.5% in the hot season) cows. Thus, although the GnRH treatments of Ovsynch were equally effective in SR and HF cows, pregnancy outcomes (P/AI at d 62 and pregnancy survival) were greater in SR than HF cows, and P/AI in SR cows was not compromised during the hot season as was found for HF cows.  相似文献   

19.
《Journal of dairy science》2022,105(8):6973-6984
Many studies have been conducted to estimate pregnancy losses between 19 and 34 d after artificial insemination (AI) in dairy cows managed under confinement-based systems, but few studies have examined embryo mortality during this interval in dairy cows managed under gazing systems. The objectives of this prospective cohort study were (1) to assess the diagnostic value of the corpus luteum (CL) blood perfusion (BP) evaluation by Doppler ultrasound (US) to detect nonpregnant cows at 19 to 20 d post-AI, and (2) to assess the rate of potential embryo mortality between 19 to 34 d post-AI. The CL-BP of all cows included in the study (n = 131) was examined on farm by power and color mode of Doppler US and later using an image processing software by a second evaluator. The endometrium thickness and echotexture were evaluated by B-mode US at the same visit to assess if the nonpregnancy diagnosis could be improved at 19 to 20 d post-AI by this additional diagnostic tool. Blood samples were obtained at 19 to 20 d post-AI for progesterone (P4) measurement by chemiluminescence and to determine the mRNA expression of ISG by real-time PCR. Pregnancy diagnosis based on embryo visualization was performed at 33 to 34 d post-AI by US B-mode. In parallel interpretation, ISG15 and MX2 mRNA expression in leukocytes [sensitivity (Se), 100%] were regarded as suitable biomarkers for early pregnancy and were selected for molecular characterization of pregnancy at 19 to 20 d post-AI. At 19 to 20 d post-AI, 61.1% of the cows had positive CL-BP by Doppler US (Se, 98.0%), 62.7% had ISG mRNA expression in leukocytes over the cutoff point (Se, 95.7%), and 50.8% were positive, based on the combination of ISG mRNA expression, CL-BP by Doppler US, and P4 concentration (Se, 100%), and were considered as possible pregnant. At 33 to 34 d, the pregnancy rate was 37.4% diagnosed by the B-mode US. Based on the expression of the selected biomarkers in cows with active CL, we found that 28.1% of the cows could have potentially lost their pregnancy between 19 and 34 d post-AI. The Doppler US color mode showed similar accuracy and a higher negative predictive value than the genes selected as biomarkers. The additional B-mode ultrasound evaluation of the uterine stratum vasculare and the endometrium thickness improved the diagnostic accuracy. Therefore, assessing the CL-BP by Doppler US allowed early detection of nonpregnant cows at 19 to 20 d post-AI. The combination of early CL-BP by Doppler US (d 19 to 20) with early embryo detection by B-mode US (d 33–34) could be used to facilitate earlier rebreeding of dairy cows.  相似文献   

20.
A total of 799 Holstein cows from 3 herds were randomly assigned at 37 +/- 3 d in milk (DIM) to timed artificial insemination (AI) or insemination at detected estrus. Cows were presynchronized with injections of PGF(2alpha) at 37 and 51 DIM. At 65 DIM, cows received an injection of GnRH, followed 7 d later by PGF(2alpha). Cows in the estrus-detected group were inseminated after being observed in estrus during the 7 d after the last PGF(2alpha). Cows in the timed AI group received an injection of 1 mg of estradiol cypionate (ECP) 24 h after the last PGF(2alpha). If detected in estrus or=1 ng/mL; L = <1 ng/mL), resulting in 8 combinations (LLL, LHL, LLH, LHH, HHH, HHL, HLH, and HLL). Conception rates and pregnancy rates were higher for cows in the timed AI group than in the estrus-detected group at 30, 44, and 58 d (e.g., at 58 d, pregnancy rates were 42.2% for multiparous cows or 34.4% for primiparous cows in the group receiving ECP and timed AI compared with only 20.8 or 18.8% for respective parity subgroups for the treatment group inseminated only at detected estrus). Pregnancy losses were 11.5% from 30 to 58 d and did not differ between treatments. Cyclic cows within both treatments had higher estrous responses, conception rates, and pregnancy rates. Cows that responded to presynchronization and to luteolysis (HHL) had the highest conception and pregnancy rates, followed by cows classified as LHL. Use of 1 mg of ECP to induce ovulation as part of a synchrony regimen improved reproduction at first postpartum insemination in dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号