首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
An in vitro antioxidant assay has been developed to better reflect the in vivo conditions of antioxidants interacting with membrane and lipid surfaces. The lipid peroxidation inhibition capacity (LPIC) method measures the ability of both lipophilic and hydrophilic antioxidants to protect a lipophilic fluorescent probe 4, 4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid, incorporated in the membrane, from 2,2'-azobis(2-amidinopropane)hydrochloride generated radicals in the surrounding aqueous solution. Antioxidant activities of test compounds were measured either after they were mixed with preformed liposomes (LPIC(Mixed)) or after they were incorporated into liposomes (LPIC(Inco)) as they were made. The results were analysed to determine how the method of mixing and the structures of the antioxidants influenced their protection of the membrane from free radical attack. The LPIC(Mixed) values were larger than the LPIC(Inco) values for a range of 12 structurally diverse antioxidant compounds. However, there was no linear correlation between the lipophilicities, as measured by their partition coefficient, log P and either LPIC(Inco) or LPIC(Mixed) values. A strong correlation was found between LPIC(Inco) and LPIC(Mixed) values.  相似文献   

2.
One of the essential properties of mammalian, including sperm, plasma membranes is a stable transversal lipid asymmetry with the aminophospholipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), typically in the inner, cytoplasmic leaflet. The maintenance of this nonrandom lipid distribution is important for the homeostasis of the cell. To clarify the relevance of lipid asymmetry to sperm function, we have studied the localization of PS in boar sperm cell membranes. By using labeled annexin V as a marker for PS and propidium iodide (PI) as a stain for nonviable cells in conjunction with different methods (flow cytometry, fluorescence and electron microscopy), we have assessed the surface exposure of PS in viable cells during sperm genesis, that is, before and during capacitation as well as after acrosome reaction. An approach was set up to address also the presence of PS in the outer acrosome membrane. The results show that PS is localized in the cytoplasmic leaflet of the plasma membrane as well as on the outer acrosome membrane. Our results further indicate the cytoplasmic localization of PS in the postacrosomal region. During capacitation and acrosome reaction of spermatozoa, PS does not become exposed on the outer surface of the viable cells. Only in a subpopulation of PI-positive sperm cells does PS became accessible upon capacitation. The stable cytoplasmic localization of PS in the plasma membrane, as well as in the outer acrosome membrane, is assumed to be essential for a proper genesis of sperm cells during capacitation and acrosome reaction.  相似文献   

3.
This study used flow cytometry (FC), epifluorescent microscopy (EM), and conventional culture media (PC) to evaluate the potential for high‐pressure throttling (HPT) to produce injury in E. coli. E. coli cells suspended at a concentration of approximately 8 log (CFU/mL) in Butterfield's phosphate buffer and UHT skimmed milk, were treated with HPT at pressures ranging from 35 to 283 MPa. Cells were stained with SYTO 9 and propidium iodide (Live/Dead Baclight kit) to assess their membrane integrity. MacConkey and Tryptone Soy agars and a modification of the thin agar layer method were used to determine injured and non‐injured cells. PC results indicated a reduction in E. coli counts as pressure increased but no significant injured population was detected in either matrix. However, FC and EM observations indicated that the membrane integrity of a portion of the bacterial population was affected by HPT, producing different degrees of cell injury that could be sublethal. The percentage of this heterogeneous population increased with applied pressure. These results reassert the importance of understanding the potential of new processing treatments to produce sublethally‐injured bacteria, and developing appropriate detection techniques.  相似文献   

4.
We have measured single-cell gene expression over time using a microfluidics-based flow cell which physically traps individual yeast using microm-sized structures (yeast jails). Our goal was to determine variability of gene expression within a cell over time, as well as variability between individual cells. In our flow cell system, yeast jails are fabricated out of PDMS and gene expression is visualized using fluorescently-tagged proteins of interest. Previously, single-cell yeast work has been done using micromanipulation on agar, or FACS. In the present device agar is eliminated, resulting in a superior optical system. The flow of media through the flow cell washes daughter cells away, eliminating the need for micromanipulation. Unlike FACS, the described device can track individual yeast over a time course of many hours. The flow cells are compatible with the needs of quantitative fluorescence microscopy, and allow simultaneous measurements to be done on a large number of individual yeast. We used these flow cells to determine the expression of HSP104-GFPand RAS2-YFP, genes known to affect yeast life span. The results demonstrate inter-cell variation in expression of both genes that could not have been detected without this single-cell analysis.  相似文献   

5.
The membrane characteristics and storage stability of liposomes prepared by different phospholipids were investigated, including soybean phosphatidylcholine (SPC), egg yolk phosphatidylcholine (EPC) and hydrogenated soy phosphatidylcholine (HSPC). The mean vesicle size of HSPC liposomes was 437.8 nm, while the size of SPC and EPC liposomes were 112.3 and 121.3 nm, respectively. The AFM and TEM images demonstrated that SPC and EPC liposomes exhibited a more uniform distribution and greater membrane fluidity. The liposomes demonstrated different crystallization behavior and phase transition temperatures by XRD and DSC, respectively. Due to high saturated fatty acids content of HSPC, these liposomes displayed a tighter membrane packing as evident by FTIR and Raman spectra. The membrane hydrophobicity and micropolarity decreased with storage time. During storage, HSPC liposomes maintained a more compact membrane structure. HSPC liposomes were the most stable during storage as evident by significantly lower levels of lipid hydrolysis and oxidation.  相似文献   

6.
Lipids have been considered as the predominant components for bioaccumulation of organic chemicals. However, differences in accumulation properties between different types of lipid (e.g., storage and membrane lipids) have rarely been considered. Moreover, in view of toxic effects on organisms, chemical accumulation specifically in biological membranes is of particular importance. In this review article, partition coefficients of 240 neutral organic compounds between liposomes (phospholipid membrane vesicles) and water (K(lipw)), reported in the literature or measured additionally for this work, were evaluated. Values of log K(lipw) and log K(ow) (octanol-water partition coefficients) differ by 0.4 on average. Polyparameter linear free energy relationships (PP-LFERs) can describe the log K(lipw) data even better (standard deviations = 0.28-0.31) than the log K(ow) model. Recent experimental data for highly hydrophobic compounds fit well to the PP-LFERs and do not indicate the existence of a previously postulated "hydrophobicity cutoff". Predictive approaches based only on the molecular structure (KOWWIN, SPARC, COSMOthermX, COSMOmic) were also evaluated for K(lipw) prediction. The PP-LFERs revealed that partition coefficients into membrane lipids can be two log units higher than those into storage lipids for H-bond donor compounds, suggesting that distinguishing between the two lipids is necessary to account for the bioaccumulation of these compounds, and that tissues rich in membrane lipids (e.g., kidneys, liver) instead of fat tissue can be the primary phase for accumulation.  相似文献   

7.
Subtilisin FS33 RGDS-载酶纳米脂质体的制备与效果评价   总被引:2,自引:0,他引:2  
研究评价了Subtilisin FS33 RGDS-载酶纳米脂质体的制备及其效果。按照正交设计试验确定硫酸铵梯度法制备载酶脂质体的工艺条件为:胆脂比1∶2,硫酸铵浓度为0.15 mol/L,孵化温度为45℃,酶脂比1∶1。制得的载酶脂质体粒径在50~150 nm左右,属于纳米级单室脂质体。在制备RGDS-载酶脂质体的工艺过程中,制备开始时就加入氨基酰化修饰的RGDS衍生物,其成品脂质体中RGDS含量可达到93μg/mL,并有利于分布于脂质体表面。RGDS-纳米脂质体中酶对于高温、极端pH、模拟胃肠道环境等条件的稳定性都有明显提高;酯酶存在时,脂质体中FS33释放速度明显加快,并可使血凝块完全溶解,表现出较好的溶栓效果。  相似文献   

8.
丁保淼 《食品科技》2012,(4):253-256
为提高甘氨酸螯合铁的稳定性,采用薄膜-超声法制备了甘氨酸螯合铁脂质体。以包封率为指标,考察了胆固醇、芯材、吐温80的量和水相体积对脂质体的影响,得到了最佳的工艺条件为:胆固醇:芯材:吐温80:大豆卵磷脂=0.2:0.1:0.5:1(wt.:wt.:wt.:wt.),水相体积10mL;最大包封率为63.92%。体外释放结果显示,经过5h,脂质体在模拟胃液和模拟肠液中的释放率分别为24.05%和15.35%;因而,脂质体对芯材甘氨酸螯合铁有较好的保护及缓释效果。  相似文献   

9.
The protective effects of some foods, in particular fruits and vegetables, against cardiovascular disease and cancer are believed to be due to the presence of antioxidant substances such as hydroxyaromatic compounds. The aim of this work was to study (i) the interaction of three biophenols derived from benzoic acid (p-hydroxybenzoic acid, vanillic acid, syringic acid and benzoic acid) with model biomembranes and (ii) their transfer through an aqueous medium to be absorbed into a lipid bilayer, investigating the effect they exert on the thermotropic behaviour of model membranes represented by dimyristoylphosphatidylcholine multilamellar vesicles using differential scanning calorimetry. The compounds, when dispersed in liposomes during their preparation, at pH = 4, were found to modify the gel to liquid crystal phase transition of the lipid vesicles, causing a temperature shift towards lower values. The temperature shift was a function of the concentration of acids in the lipid aqueous dispersions and their lipophilic character. The kinetic experiments of compounds transfer through the aqueous medium and the absorption by the bilayer were performed contacting the antioxidant compounds (at a fixed concentration) and the model membrane at increasing incubation times. These experiments reveal that the transfer of the examined compounds through the aqueous medium and their uptake by bilayer are influenced by the presence of substituents located on the ring, which should consequently modify their lipophilicity.  相似文献   

10.
丁保淼 《食品科技》2012,(8):251-254
为提高柠檬烯稳定性,增加其水溶性,采用乙醇注入法制备了柠檬烯脂质体。以包封率为指标,考察了影响脂质体制备的一些重要的工艺参数,优化了制备柠檬烯脂质体的工艺条件,得到了最佳的工艺条件为:芯材:胆固醇:吐温80:大豆卵磷脂=0.2:0.1:1:10(质量比),醇水体积比1:10,最大包封率为86.6%。体外释放结果显示,经过25h,脂质体在模拟胃液和模拟肠液中的释放率分别为12%和18%;因而,脂质体改善了柠檬烯的水溶性,增加了其稳定性,对柠檬烯有较好的保护及缓释效果,这有利于提高其生物利用率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号