首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
HEAT TRANSFER DURING FLUIDIZED BED PUFFING of RICE GRAINS   总被引:1,自引:0,他引:1  
A pneumatic rice puffing machine was developed for increasing the production capacity of puffed rice for which a knowledge of the heat transfer process during puffing was required. the physical properties of the rice grains and other fluidization parameters, necessary for this study was experimentally determined. the surface heat transfer coefficient in case of hot air fluidized bed puffing was found to be 155.39 W/m2K. the calculated grain surface temperature for puffing was about 170°C and this did not vary significantly for experimental puffing air temperatures ranging from 200°C to 270°C. the air temperature ranging from 240°C to 270°C with corresponding exposure time of 9.7 s to 7s was found to be optimum for higher expansion ratio (8.5 to 10) and better color of the product. the temperature differentials between surface and center temperatures and between surface and average temperatures of the grains at the time of puffing were found to vary linearly with various puffing air temperatures and their ratios remained almost constant at 2.056.  相似文献   

2.
The aim of this study was to evaluate the effect of microwave precooking on mass transfer during deep-fat frying of ostrich meat plates. The influence of microwave power level, frying temperature, and time on mass transfer was determined. Among all treatments, the plates being precooked at 5.23 W/g of microwave power and then deep-fat fried at 135 °C had the minimum fat content. The effective moisture diffusivity ranged between 1.47 × 10−8 and 4.17 × 10−8 m2/s. Fat transfer rate constant was in the range of 0.024 and 19.708 s−1. The activation energy obtained from Arrhenius plot for the effective moisture diffusivity ranged between 38.84 and 51.07 kJ/mol.  相似文献   

3.
The effect of storage time and temperature on degradation of bioactive compounds such as ascorbic acid, anthocyanins, total phenols, colour and total antioxidant capacity of strawberry jam were investigated. The results indicated that lightness (L) value decreased significantly (p < 0.05) over 28 days of storage at 4 and 15 °C, with lower values measured at higher temperatures. Anthocyanins, ascorbic acid and colour degradation followed first-order kinetics where the rate constant increased with an increase in the temperature. The reaction rate constant (k) increased from 0.95 × 10−2 day−1 to 1.71 × 10−2 day−1 at 4 and 15 °C for anthocyanins. Similarly, k increased from 2.08 × 10−2 day−1 to 4.54 × 10−2 day−1 at 4 and 15 °C for ascorbic acid. In general, total antioxidant activity for strawberry jam samples stored for 28 days at 4 and 15 °C exhibited lower values as compared to control (day 0). The results showed greater stability of nutritional parameters at 4 °C compared to 15 °C.  相似文献   

4.
Samples of Abbot, Alison, Bruno, Monty, and Hayward cultivars of kiwifruit (Actinidia deliciosa) were obtained from the Iran Research Center of Citrus (Tonekabon, located in north of Iran) and their physicochemical properties were studied during cold storage (at T = 1 ± 1 °C, RH = 80 ± 5%) at 0-, 9-, and 18-week intervals. The mean chemical composition of the fruits were as follows: ash = 0.66–0.96%, moisture = 75.2–84.7%, starch = 0.3–7.0%, and ascorbic acid = 54.8–261.0; K = 125.0–372.0 mg 100 g−1 fresh weight, Mg = 18.0–32.0 mg 100 g−1 fresh weight, Na = 1.4–3.1 mg 100 g−1 fresh weight, Fe = 0.17–0.52 mg 100 g−1 fresh weight, Cu = 0.04–0.24 mg 100 g−1 fresh weight, Zn = 0.16–0.49 mg 100 g−1 fresh weight, Mn = 0.04–0.10 mg 100 g−1 fresh weight, and P = 25.2–49.3 mg 100 g−1 fresh weight; glucose = 0.7–2.39%, fructose = 1.20–3.13%, and sucrose = 0.0–5.8%. At the same time, the values of the parameters °Brix = 6.5–14.8% and acidity = 1.8–2.5% of the studied cultivars (mutual effects of cultivar and storage time) were investigated. The increase in peroxidase (POX = 0.0–6.65 U ml−1) and the decrease in pectinesterase (PE; poor activity to 0) activities were also determined. The statistical analysis showed that the Bruno cultivar had the highest content of ascorbic acid (115.0–261.0 mg 100 g−1 fresh weight), which is an important compound in fruits during storage, while Hayward had the best overall quality particularly with regards to its resistance to softening. This study confirms that long-term cold storage at 1 ± 1 °C and 80 ± 5% RH is suitable for maintaining the highest quality of Iranian grown cultivars of kiwifruit.  相似文献   

5.
Determining the shelf life has become a factor of major importance in the development of foods designed to meet consumer demands in terms of quality and safety. The goal of the present study was to investigate the shelf life of vacuum-packed dried tomatoes, stored at both room and refrigeration temperature (4 °C) for a period of 180 days. The following determinations were performed during the storage period studied: microbiological analysis, instrumental color, lycopene, and ascorbic acid. Sorption isotherms were determined at both temperatures (room temperature and 4 °C). The microbiological quality of vacuum-packed dried tomatoes remained unchanged during 180 days for the refrigerated samples and 90 days for the samples stored at room temperature. The rate constant (k) of lycopene degradation of the refrigerated samples and the samples stored at room temperature was 3.209 × 10−5 and 12.994 × 10−5/day, respectively. The rate constant (k) of ascorbic acid degradation was 3.339 × 10−4/day for cold storage and 76.655 × 10−4/day for storage at room temperature. The tomatoes stored at room temperature were subjected to analysis over 90 days of storage, period after which both the appearance and sensory characteristics of the product fell below the levels of consumer acceptability. As for the tomatoes stored at refrigeration temperature, the original sensory characteristics were maintained throughout the entire storage period of 180 days.  相似文献   

6.
In this work, zinc oxide nanoparticles-loaded calcium alginate films were investigated for their moisture uptake behavior at different temperatures. The equilibrium uptake data was interpreted quantitatively by GAB isotherm models. The monolayer moisture contents were 0.301 ± 0.003, 0.0214 ± 0.092, and 0.171 ± 0.102 at 20, 30, and 37°C, respectively. The water vapor transmission rate was found to be 0.816 ± 0.143, 1.42 ± 0.045, and 1.632 ± 0.064 g s−1 m−2 respectively. For the moisture content range of 0.2 to 0.6, the net ∆H and ∆S values were found to be 22.73 to 11.14 KJ/mol and 0.064 to 0.034 KJ/mol/K, respectively. The moisture uptake of films increased with water activity but showed negative temperature dependence. The enthalpy of sorption (∆H) and differential entropy (∆S) were determined at different moisture content values, ranging from 0.2 to 0.6 g/g db. The two parameters showed a higher degree of correlation. The equilibrium moisture content data was used to evaluate harmonic mean temperature T hm. Finally, the biocidal action of films was tested against model bacteria Escherichia coli.  相似文献   

7.
Extracellular protease production by Bacillus cereus isolated from the intestine of fish Mugil cephalus has been investigated in shake-flask experiment using different preparations of tuna-processing waste such as raw fish meat, defatted fish meat, alkali hydrolysate, and acid hydrolysate as nitrogen source. Among the tuna preparations tested, defatted fish meat supported the maximum protease production (134.57 ± 0.47 U ml−1), and 3% concentration of the same was found to be optimum for maximizing the protease production (178.50 ± 0.28 U ml−1). Effect of carbon sources on protease production in the optimized concentration of defatted tuna fish meat revealed that galactose aided the higher protease production (259.83 ± 0.04 U ml–1) than the other tested carbon sources and a concentration of 1.5% galactose registered as optimum to enhance the protease production (289.40 ± 0.16 U ml−1). The halotolerancy of B. cereus for protease production indicated that 3% of sodium chloride was optimum to yield maximum protease (301.63 ± 0.20 U ml−1). Among the surfactants tested, protease production was high in Triton X 100-added medium (298.63 ± 0.12 U ml−1) when compared to other surfactants, and its optimum concentration recorded was 0.8% (320.57 ± 0.17 U ml−1) for more protease production. Partial characterization of crude enzyme revealed that pH 7.0 (278.90 ± 0.08 U ml−1) and 60°C temperature (332.37 ± 0.18 U ml−1) were optimum for better protease activity by B. cereus.  相似文献   

8.
Clothianidin, a new generation of pesticide, was determined in spiked tap water, apple juice, and soil by square-wave adsorptive stripping voltammetry. The method of determination is based on the hydrogen evolution reaction catalyzed by clothianidin at the hanging mercury drop electrode. The optimal signal was detected at −1.4 V versus Ag/AgCl in citrate buffer at pH 2.2. Various parameters such as pH, buffer concentration, frequency, amplitude, step potential, accumulation time, and potential were investigated to enhance the sensitivity of the determination. The optimal results were recorded at an accumulation potential of −0.35 V, accumulation time of 7 s, amplitude of 100 mV, frequency of 200 Hz, and step potential of 7 mV. The mechanism of catalytic hydrogen evolution was considered under experimental and theoretical conditions. This electroanalytical procedure enabled to determine clothianidin in the concentration range 9 × 10−9–4 × 10−6 mol L−1 in supporting electrolyte and tap water, 1 × 10−7–4 × 10−6 mol L−1 in diluted apple juice, and 2 × 10−7–1 × 10−6 mol L−1 in soil. The detection and quantification limits in supporting electrolyte and diluted apple juice were found to be 2.6 × 10−9, 8.6 × 10−9 and 3 × 10−8, and 1 × 10−7 mol L−1, respectively. A standard addition method was successfully used to determine clothianidin in spiked tap water, spiked apple juice, and spiked soil.  相似文献   

9.
The thin-layer drying characteristics of pomegranate arils were investigated at the temperature of 55, 65 and 75°C, and the thin-layer drying models were used to fit the drying data. The increase in drying air temperature resulted in a decrease in drying time. Five different thin-layer drying models were used to predict the drying characteristics. The Midilli et al. model showed a better fit to experimental drying data as compared to other models. Effective moisture diffusivities were calculated based on the diffusion equation for a spherical shape using Fick’s second law, and varied from 9.373 × 10−11 to 3.429 × 10−10 m2/s over the temperature range. Moisture diffusivity values increased as air temperature was increased. The dependence of moisture diffusivity on temperature was described by an Arrhenius-type equation. The activation energies of control and pre-treated samples were determined to be 49.7 and 40.1 kJ/mol, respectively.  相似文献   

10.
Effect of air temperature on drying kinetics, vitamin C, antioxidant capacity, total phenolic content (TPC), colour due to non-enzymatic browning (NEB) and firmness during drying of blueberries was studied. Drying curves were satisfactorily simulated with the Weibull model at 50, 60, 70, 80 and 90°C. The scale parameter (β) decreased as air temperature increased and an activation energy value of 57.85 kJ mol−1 was found. Important losses of vitamin C were reported during drying for all the working temperatures (p < 0.05). Although TPC decreased as air-drying temperature increased (p < 0.05) in comparison to its initial value, the dehydration at high temperatures (e.g., 90°C) presented high values for these antioxidant components. Discoloration due to NEB reaction was observed at all the working temperatures showing a maximum value at 90°C (p < 0.05). The radical scavenging activity showed higher antioxidant activity at high temperatures (80 and 90°C) than at low temperatures (50, 60 and 70°C) (p < 0.05). A tissue firmness reduction was observed with increasing temperature (p < 0.05).  相似文献   

11.
Lactic acid and cell production from whey permeate by Lactobacillus rhamnosus with different nutrient supplements were investigated in this study. Yeast extract was identified as the most effective nutrient affecting lactic acid production. Increase in inoculum size from 0.05% to 1% (v/v) resulted in a substantial increase in lactic acid productivity from 0.66 to 0.83 g L−1 h−1 (P < 0.001). The optimal temperature for lactic acid production was 37 °C, while the highest cell production was obtained at 42 °C. When whey permeate and yeast extract concentrations were 6.8% (w/v) and 3 g L−1, respectively, lactic acid productivity reached 0.85 g L−1 h−1 after 48-h cultivation, which is 3.40 times of those without nutrient supplements.  相似文献   

12.
The rheological properties of tomato concentrates produced by hot and cold break have been extensively studied by many authors. Only a few studies, however, focus specifically with the rheology of reconstituted concentrates from tomato powders. In this study, the rheological properties of reconstituted tomato concentrate from lyophilized freeze-dried tomato juice were evaluated using rotational viscometer at temperatures 20 °C, 30 °C, 40 °C, 50 °C, and 60 °C and at concentrations of 9.7%, 12.9%, 20.5%, and 26.8% total soluble solids. Using power law model, both flow behavior index (n) and consistency coefficient (k) were determined. The calculated values of flow behavior index (n) were less than unity (0.03–0.28) at all temperatures and concentrations indicating the shear-thinning characteristic of the concentrate. The effect of temperature and concentration on the consistency coefficient (k) was studied. Positive correlation between k in the range of 1.57 and 38.33 Pa s n and inverse absolute temperature (1/T) has been shown by Arrhenius model. Additionally, linear correlation between consistency coefficient (k) and concentration (C) was determined. The activation energies were found in the range of 3.63 and 7.36 kJ/mol K depending on concentration. The results of this study might be useful to improve the design of processing operations dealing with tomato powder reconstitution.  相似文献   

13.
The aim of this research was to study the behaviour of the drying kinetics of pepino fruit (Solanum muricatum Ait.) at five temperatures (50, 60, 70, 80 and 90 °C). In addition, desorption isotherms were determined at 20, 40 and 60 °C over a water activity range from 0.10 to 0.90. The Guggenheim, Anderson and de Boer model was suitable to depict the desorption data. A monolayer moisture content from 0.10 to 0.14 g water g−1 d.m. was reported. The equations of Newton, Henderson–Pabis, Modified Page, Wang–Singh, Modified Henderson–Pabis, Logarithmic as well as standardised Weibull were tested for modelling drying kinetics. Besides, Fick’s second law model was used to calculate the water diffusion coefficient which increased with temperature from 2.55 to 7.29 × 10−10 m2 s−1, with estimated activation energy of 27.11 kJ mol−1. The goodness of fit of the models was evaluated using sum squared error and chi-square statistical tests. The comparison of the experimental moisture values with respect to the calculated values showed that the standardised Weibull model presented the best goodness of fit, showing that this equation is very accurate for simulating drying kinetics for further optimisation of drying times.  相似文献   

14.
Zinc protoporphyrin IX (ZnPP), the major red pigment in hams dry-cured without nitrates/nitrites, is an efficient photosensitizer, which upon absorption of visible light forms short-lived excited singlet state (1ZnPP*) and by intersystem crossing yields the very reactive triplet-excited state (3ZnPP*). Using nano-second laser flash photolysis and transient absorption spectroscopy NADH, ascorbic acid, hemin and dehydroascorbic acid were each found to be efficient quenchers of 3ZnPP*. The deactivation followed, in homogeneous dimethyl sulfoxide (DMSO) or DMSO:water (1:1) solutions, second-order kinetics. The rate constant for ascorbic acid and NADH for reductive quenching of 3ZnPP* was at 25 °C found to be 7.5 ± 0.1 × 104 L mol−1 s−1 and 6.3 ± 0.1 × 105 L mol−1 s−1, respectively. The polyphenols catechin and quercetin had no effect on 3ZnPP*. The quenching rate constant for oxidative deactivation of 3ZnPP* by dehydroascorbic acid and hemin was at 25 °C: 1.6 ± 0.1 × 105 L mol−1 s−1 and 1.47 ± 0.1 × 109 L mol−1 s−1, respectively. Oxidized glutathione did not act as an oxidative quencher for 3ZnPP*. After photoexcitation of ZnPP to 1ZnPP*, fluorescence was only found to be quenched by the presence of hemin in a diffusion-controlled reaction. The efficient deactivation of 3ZnPP* and 1ZnPP* by the metalloporphyrin (hemin) naturally present in meat may accordingly inherently protect meat proteins and lipids against ZnPP photosensitized oxidation.  相似文献   

15.
This study was carried out to characterize a crude extract from pineapple peel after precipitation by three methods with the aim of obtaining an enzymatic extract from agro-industrial waste. The characterization of these extracts involved the determination of both protein content and specific protease activities. The effects of pH and temperature on specific protease activity and on the stability of the extracts were also evaluated. The optimal values of specific activity for the crude extract (CE) were pH 6.0 (5.76 U mg−1 protein) and 7.0 (5.71 U mg−1 protein) and a temperature of 70 °C (16 U mg−1 protein). The average values for the relative specific activity were 17.4% (pH 3.0 to 9.0) and 42.7% (at 30, 50, and 70 °C). The ethanolic extract had the highest specific activity (10.7 U mg−1 protein) in comparison to the best results obtained for the isoelectric precipitation (7.7 U mg−1 protein) and the ammonium sulfate precipitation (4.7 U mg−1 protein). Moreover, the ethanolic extract was more stable than the CE, retaining 60.9% and 53.7% of the initial specific activity during the evaluation of the stability at different pH and temperature values, respectively. The optimal values of pH and temperature were almost the same for the crude and the ethanolic extracts. In addition, the ethanolic extract was more stable than the CE in the experimental conditions tested in this work.  相似文献   

16.
Supercooling is still today one of the most challenging physical phenomena to be modelled in food bioprocess engineering. In this study, we evaluate the capacity of a finite-element-cellular automata (FEM-CA) approach to model the propagation of nucleation inside supercooled strawberries with five different morphologies (higher and lower volumes of vascular tissue, pulp, and central air void) frozen inside an air blast freezer under different operational conditions: initial temperature (0 to +20 °C), air temperature (−45 to −20 °C), and velocity (1 to 10 m s − 1). Results show that nucleation is highly affected by the initial temperature and heat transfer rate during phase change. The stochastic nature of nucleation only allowed us to consider it a random variable inside the model temperature restriction interval, it not yet being possible to know what triggers nucleation. However, this study allowed us to conclude that: (1) the structure of liquid water in the supercooled region plays a very significant role during the supercooling effect, (2) nucleation temperatures increase in the supercooled region due to the release of latent heat, and (3) strawberry morphology and operational variables have a profound effect on the supercooling capacity. In our opinion, supercooling is still an open subject, and only a deeper understanding of the structuring of water and dynamics of nucleation at the molecular level may lead to significant advances in the quality of frozen foods and cryopreservation.  相似文献   

17.
Polymer science approach has shown to be useful to understand the structural complexity of food systems. This work looks at the effect of glycerol (5%, 10%, and 20% (dry weight basis)) on the glass transition temperature (Tg) of a starchy matrix determined by DSC and its prediction using Ten-Brinke–Karasz equation. Waxy maize starch (WMS) and rice starch (RS) systems were prepared by thermomechanical extrusion. A decrease in Tg, from ∼170 to ∼25 °C, was detected for both starches (0% glycerol) when the moisture increased from 5% to 25% (wet weight basis (wb)). When glycerol was added, a further decrease in Tg was obtained. Tg was reduced from 120 to 60 °C and 45 °C for 10% and 20% glycerol, respectively, at a moisture content of 10% (wb). A direct comparison between starches with similar composition showed equal Tg (P > 0.05). The modeling for the control samples (0% glycerol) gave a ΔCp ∼ 0.4 Jg−1 K−1 for WMS and RS and ∼1.9 Jg−1 K−1 for water. These values can be explained by the well-known Tg dependence on degree of polymerization and molecular weight. When the glycerol concentration was increased, an increase was observed, ΔCp ∼ 0.6 Jg−1 K−1, for both starches and ∼2.8 Jg−1 K−1 for water. This behavior would indicate an overestimation in the plasticizing effect of glycerol due to the possible occurrence of polyol-rich fractions in the extruded samples.  相似文献   

18.
African breadfruit (ABF) seeds are underutilized plant resources, which have been reported to have high potential for novel food and industrial uses. The kinetics of moisture removal during air drying of the whole (WS) and dehulled (DS) seeds was studied at temperatures of 40–70 °C. Five empirical models were tested for predicting the experimental data. Drying of ABF seeds followed an exponential decay pattern, while drying predominantly took place during the falling rate periods. All the drying models predicted the experimental data above 90% accuracy while the Henderson–Pabis model gave the best fit (0.95 < r 2 < 0.99) at most of the experimental conditions. Effective moisture diffusivity, D eff, ranged from 3.65 to 7.15 × 10−9 m2/s and 3.95 to 6.10 × 10−9 m2/s for WS and DS, respectively. D eff showed significant dependence on the moisture content (p < 0.01). Rehydration capacity of DS was not significantly affected by drying temperature while that of WS increased with drying temperature.  相似文献   

19.
The drying of pomegranate seeds was investigated at 40 °C, 50 °C and 60 °C with air velocity of 2 m/s. Prior to drying, seeds were osmodehydrated in 55 °Brix sucrose solution for 20 min at 50 °C. The drying kinetics and the effects of osmotic dehydration (OD) and air-drying temperature on antioxidant capacity, total phenolics, colour and texture were determined. Analysis of variance revealed that OD and air-drying temperature have a significant influence on the quality of seeds. Both anthocyanin and total phenolic contents decreased when air-drying temperature increased. The radical diphenylpicril-hydrazyl activity showed the lowest antioxidant activity at 60 °C. Both chromatic parameters (L*, C* and h°) and browning index were affected by drying temperatures, which contributed to the discolouring of seeds. The final product has 22%, 20% and 16% of moisture; 0.630, 0.478 and 0.414 of a w; 151, 141 and 134 mg gallic acid equivalent/100 g fresh matter (FM) of total phenolics; 40, 24, 20 mg/100 g FM of anthocyanins and 46%, 39% and 31% of antioxidant activity, for drying temperatures of 40 °C, 50 °C and 60 °C, respectively. In view of these results, the temperature of 40 °C is recommended as it has the lowest impact on the quality parameters of the seeds. Differential scanning calorimetry data provided complementary information on the mobility changes of water during drying. Glass transition temperature (Tg′) depends on moisture content and as consequence, on drying conditions. In fact, Tg′ of seeds dried at 60 °C (Tg′ = −21 °C) was higher than those dried at 50 °C (Tg′ = −28 °C) or 40 °C (Tg′ = −31 °C) and osmodehydrated seeds (Tg′ = −34 °C). During OD and drying process, the texture of seeds changed. The thickness of seeds shrank by 55% at 60 °C.  相似文献   

20.
This work describes a procedure for the simultaneous determination of vanadium and lead in some food and water samples using adsorptive stripping voltammetric method. The method is based on the adsorptive accumulation of cupferron complexes of these elements onto hanging mercury drop electrode, followed by reduction of adsorbed species by voltammetric scan using differential pulse modulation. Optimal analytical conditions were found to be cupferron concentration of 8.00 × 10−5 M, pH of 4.8 (phosphate buffer), an accumulation potential at −100 mV, and a scan rate of 80 mV s−1. With an accumulation time of 50 s, the peak currents proportional to the concentration of lead and vanadium over the 0.05–80.00 and 0.10–105.00 ng mL−1 ranges with detection limit of 0.02 and 0.01 ng mL−1, respectively. The procedure was applied to simultaneous determination of vanadium and lead in some food and water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号