首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starch noodles were prepared using potato starch from 8 genotypes, mung bean starch, mung bean-potato starch blends, and sweet potato starch. The cooking quality of noodles from selected potato starches compared well with commercial starch noodles. Of the unblended potato starches, Mainechip exhibited cooking quality similar to commercial starch noodles with respect to cooking loss, cooked weight, and ?rmness. Appearance and texture of starch noodles from three genotypes (E55-35, Mainechip, and Shasta) were evaluated by a trained sensory panel. Noodles made from unblended potato starches had higher glossiness and transparency than those from other starches. Noodles from both un-blended and blended Mainechip starch had the highest press and elasticity.  相似文献   

2.
Corn starch and starches separated from different potato cultivars were acetylated to evaluate the effect of plant source on the physicochemical, morphological, thermal, rheological, textural and retrogradation properties of the starches. Corn starch showed a lower degree of acetylation than potato starches under similar experimental conditions. The degree of acetylation for different potato starches also differed significantly. Morphological examination revealed that the granules of acetylated Kufri Chandermukhi and Kufri Sindhuri starches tended to appear as fused and less smooth than native starch granules. Acetylation of corn and potato starches decreased the transition temperatures and enthalpy of gelatinization and increased swelling power and light transmittance. However, the change in these was greater in the potato starches with higher percentage of small sized granules. Acetylated starches showed higher peak G', G'' and lower tan δ than their counterpart native starches during heating. Among the starches from different cultivars, the change in the rheological parameters after acetylation differed to a significant extent. The retrogradation was observed to be negligible in the acetylated cooked starch pastes. Results implied that the change in functional properties of starches with acetylation depends on source and granule morphology of native starch.  相似文献   

3.
White salted noodles were prepared from reconstituted flours of various amylose content to determine the effects of amylose content on noodle dough properties and texture of noodles cooked for optimum cooking time. With decrease of amylose content from 26.5 to 3. 0%, optimum water absorption of noodle dough increased from 39 to 49% and cooking time of noodles decreased from 16 to 7 min. Hardness of cooked noodles prepared from reconstituted flour consistently decreased with increase in proportion of waxy starch. Noodles less than 12.4% amylose content exhibited higher springiness and cohesiveness than noodles greater than 17.1% amylose content. Cohesiveness and springiness of noodles prepared with partial waxy starches, of which amylose content ranged from 16. 6 to 22. 7%, were comparable to those of noodles prepared from <12. 4% amylose content. Amylose content of starch was significantly correlated with hardness, springiness, and cohesiveness of cooked noodles prepared from reconstituted flours.  相似文献   

4.
To investigate the effects of starch characteristics on the quality of noodle making, white salted noodles (WSN) made from reconstituted flours, in which the wheat starch was substituted by different cereal starches, including waxy and non-waxy rice starches, waxy wheat starch and waxy corn starch, were prepared. The rheological properties of raw WSN were mainly influenced by the size of starch granules, where the small starch granules, such as for rice starches, exhibited high amounts of water absorption during dough preparation and a dense packing of starch granules inside a thin gluten-strand network. The rheological properties of cooked WSN were mainly dominated by the amylose content and fine structure of the amylopectin, which resulted in the differences in water absorption and cooking time required for cooked WSN.  相似文献   

5.
The physicochemical, pasting, and gel textural properties of potato and rice starches and their blends were studied in relation to their noodle making performance. Amylose content, swelling power and solubility values of potato starch were significantly (P ≤ 0.05) higher than for rice starch. Pasting properties showed higher peak, final and setback viscosity for potato starch as compared to rice starch. Texture profile analysis revealed that potato starch gel had higher hardness, cohesiveness and chewiness as compared to rice starch gel. Potato starch noodles showed higher cooked weight and cooking loss and were scored higher by sensory panellists especially with respect to transparency and slipperiness. On the other hand, rice starch noodles were more firm with lower cooking loss. Addition of potato starch to rice starch significantly (P ≤ 0.05) affected the noodle characteristics. Among the starch blends studied, blending of potato and rice starch in the ratio of 1:1 resulted in good quality noodles in terms of their lower cooking time, higher cooked weight, transparency and slipperiness. The results revealed the possibility of blending of potato starch with rice starch in equal proportions to produce noodles of acceptable quality.  相似文献   

6.
Several commercial starch noodles made from legume, tuber, geshu (kudzu and sweet potato) and fernery starches were used to study the characteristics of starch in starch noodles and their effect on eating quality of starch noodles. Scanning electron microscopy observation found that the special inner structure of starch noodles was composed of some broken starch granules and some gel-like substances. Tuber and legume starches had the highest and lowest solubility, swelling power, swelling factor, setback, breakdown, peak viscosity, and final viscosity, respectively. Legume and tuber starches had the highest and lowest gelatinization temperature, respectively. Tuber and geshu starches had the highest amylose leaching rate, while legume starches owned the lowest value (p < 0.05). Tuber starches had the highest conclusion temperature of gelatinization (151.12~158.86°C). Fernery starches had the lowest value of retrogradation enthalpy (967.33 J/g dry starch). Legume starch noodles had the lowest broken rate (0.00~1.67%), swelling ratio (332.64~343.57%), and cooking loss (2.40~2.74%), and the highest hardness (87.47~93.29 g/mm2), shear deformation (0.49~0.52), and elasticity (0.58~0.62), However, tuber and fernery starch noodles did the opposite, tuber and legume starch noodles had the highest and lowest cohesiveness, respectively. All the above cooking and starch properties test results of starch noodles demonstrated that, compared with others, legume starch noodles are relatively well in eating quality. The correlation analysis showed that the cooking and physical quality of starch noodles could be perfected significantly by improving the swelling and pasting properties for starch of starch noodles, while thermal properties had no obvious influence on them.  相似文献   

7.
Native corn and potato starches were mixed in different proportions. Blends presented similar values to potato starch at onset temperature and at ending temperature to corn starch. CS20PS80 blend had the highest values for hardness between blends due to the formation of a three-dimensional network with corn starch granules that act as composite material. Some blends exhibited higher recovery viscosity than native starches, possibly due to interactions. Gelatinization temperature, swelling power, phosphorous content, granule size, and x-ray pattern played an important role in the resulting properties, however, the amylose content did not show influence due to both starches having a similar content.  相似文献   

8.
The properties of potato starch and their effect on the quality of Chinese‐style alkaline instant noodles made from wheat flour and potato starch blends were investigated. Starches were extracted from nine potato cultivars, and the phosphorus content of these starches was analyzed together with the median granule size and pasting and gelatinization properties. Instant noodles were manufactured using mixtures of wheat flour and these potato starches. A Rheoner instrument was used to evaluate three textural parameters, namely, the breaking force (BF), breaking energy (BE), and ratio of the breaking force to the breaking deformation (BF/BD), of instant noodles cooked by immersing into boiling water for 3 and 7 min. The phosphorus content, peak viscosity, and breakdown were significantly and positively correlated with the BF of the noodles cooked for 3 min and did not significantly correlate with that of those cooked for 7 min. Other quality parameters of potato starch did not affect the BF significantly. Other textural parameters of instant noodle quality, such as the BE and BF/BD, did not significantly correlate with any of the quality parameters of potato starch. The findings obtained with the use of wheat flour and potato starch blends suggest that phosphate, which is thought to enhance starch viscosity of potato starch, is important for making instant noodles with favorable texture in hardness.  相似文献   

9.
将小麦淀粉、马铃薯淀粉、红薯淀粉、豌豆淀粉及玉米淀粉添加到面粉中制作面条,从鲜湿面色泽、质构及感官三方面,研究淀粉种类对面条的影响规律。结果表明:不同淀粉均能改善鲜湿面的色泽,玉米淀粉效果最佳;质构影响方面,除红薯淀粉外,其他淀粉的添加使得面条的硬度下降,黏附性、回复性、粘聚性升高,坚实度和拉断力随添加量的增加呈先升后降的趋势;感官评价方面,玉米淀粉、小麦淀粉、马铃薯淀粉显著增大了面条的色泽得分,豌豆淀粉和红薯淀粉显著影响了韧性和粘性得分。  相似文献   

10.
研究3种常用淀粉对马铃薯米粉品质的影响,为马铃薯米粉加工提供参考依据。分别将0%、5%、10%、15%、20%和25%的玉米、小麦和马铃薯淀粉添加到马铃薯全粉占比30%的米粉中,测定米粉蒸煮、色差、质构和拉伸性能指标的变化。结果:添加不同淀粉使得米粉的含水量显著减小(p<0.05);玉米、小麦以及5%~20%马铃薯淀粉可使米粉透射比显著增大(p<0.05);10%玉米淀粉能使碘蓝值显著增大(p<0.05);添加10%玉米、5%小麦以及5%~20%马铃薯淀粉,能使吐浆值显著减小(p<0.05);但3种淀粉对断条率影响均不显著。添加10%玉米、10%小麦和5%马铃薯淀粉能使米粉亮度L*显著减小(p<0.05),色度值a*和b*亦发生不同改变。5%~15%玉米淀粉可有效改善米粉硬度、峰值负载,但添加量达到20%时峰值负载形变量显著减小(p<0.05);小麦淀粉可改善弹性,添加10%~15%可有效改善硬度,15%和20%可改善峰值负载和咀嚼性;马铃薯淀粉可提高米粉硬度,但添加量达20%时米粉变得黏连。在实际生产中建议玉米和小麦淀粉添加量分别为5%和10%。  相似文献   

11.
凉粉草胶与不同淀粉混合体系糊化和质构性质的研究   总被引:1,自引:0,他引:1  
冯涛  顾正彪  金征宇 《食品科学》2007,28(11):154-158
凉粉草胶(MBG)与淀粉作用可以形成凝胶。为比较不同淀粉与MBG混合体系糊化和凝胶性质的差异,选取玉米等八种常见淀粉,利用Brabender糊化仪、质构仪、对MBG与不同淀粉混合体系的糊化和质构性质进行了研究。结果发现,MBG对谷类淀粉(大米、小麦、玉米)和豆类淀粉(绿豆、豌豆)的糊化性质的影响都比较显著,对薯类淀粉(木薯、马铃薯、甘薯)的不显著,但MBG与薯类淀粉混合体系的黏度远高于MBG与豆类和谷类淀粉的;MBG与大米淀粉形成的凝胶硬度最大,与马铃薯淀粉形成的凝胶硬度次之,与豌豆淀粉形成的凝胶硬度最小。淀粉与MBG之间相互作用的强弱可以从Brabender糊化曲线上的特征点值E-D来比较。  相似文献   

12.
Chemical compositions, physical properties, and suitability for starch noodle making of different granule size fractions from potato and sweet potato starches were studied. The ash content, amylose content, phosphorus content, gel firmness, and freeze‐thaw stability of small‐size granule fractions(< 20 μm) were significantly different from those of the large‐size granule fractions. The processibility and the qualities evaluated by objective and subjective methods of both dried and cooked starch noodles made from small‐size granule fractions were significantly better than those made from their initial starch preparations and much better than those made from the large‐size granule fractions.  相似文献   

13.
Starch noodles, produced from purified starch of various plant sources, are a major category of Asian noodles. This review summarizes the current knowledge on: (1) Definition, naming, history and categories of starch noodles. (2) The morphological, physico-chemical, thermal, rheological characteristics and molecular structure of materials including mung bean starch, pea starch, sweet potato starch, potato starch and corn starch. (3) Processing technology of starch noodles including dropping, extruding and cutting. (4) Structure of starch noodles: it is composed of hydrolysis-resistant crystalline zone, network-like framework and filler mass. (5) Nutrition of starch noodles: it could be evaluated by the digestibility of starch, hydrolysis properties of gelatinized and retrograded starches, hydrolysis property of starch noodles. (6) Quality evaluating of starch noodles: it includes sensory, cooking and texture property. Correlation between the physical properties of starch, processing variables and the sensory, cooking and texture property of starch noodles are summarized. (7) Quality improving for non-mung bean starch noodles: (a) using other materials such as red bean starch, pigeonpea starch, potato starch, sweet potato starch, corn starch, to substitute totally or partly mung bean starch; (b) adding chemically modified starch; (c) adding physically modified starch; (d) biologically treating starch; (e) using additives such as chitosan, polysaccharide gums.  相似文献   

14.
To investigate the effects of seven starches made from different crop sources on noodle quality, Chinese dried noodles made from various reconstituted flours were prepared and analysed. Potato starch had better solubility and swelling power than the other starches, leading to higher water absorption, cooking loss and breakage ratio of the potato starch noodles. The correlation results unravelled that the cooking breakage ratio of noodles presented positive correlations with solubility, swelling power, peak viscosity (PV), trough viscosity (TV) and final viscosity (FV) values of starches. Besides, the adhesiveness of noodles showed a positive correlation with conclusion temperature (Tc) and setback viscosity (SV) values of starches. Moreover, the peak temperature (Tp) value of starches was negatively correlated with cooking loss; the granule size of starches had a positive correlation with noodles water absorption; and the peak time (PkT) value of starches represented positive relationships with noodles chewiness, shearing force and breaking strength.  相似文献   

15.
Starches from normal rice (21.72% amylose), waxy rice (1.64% amylose), normal corn (25.19% amylose), waxy corn (2.06% amylose), normal potato (28.97% amylose) and waxy potato (3.92% amylose) were heat-treated at 100 °C for 16 h at a moisture content of 25%. The effect of heat-moisture treatment (HMT) on morphology, structure, and physicochemical properties of those starches was investigated. The HMT did not change the size, shape, and surface characteristics of corn and potato starch granules, while surface change/partial gelatinization was found on the granules of rice starches. The X-ray diffraction pattern of normal and waxy potato starches was shifted from B- to C-type by HMT. The crystallinity of the starch samples, except waxy potato starch decreased on HMT. The viscosity profiles changed significantly with HMT. The treated starches, except the waxy potato starch, had higher pasting temperature and lower viscosity. The differences in viscosity values before and after HMT were more pronounced in normal starches than in waxy starches, whereas changes in the pasting temperature showed the reverse (waxy > normal). Shifts of the gelatinization temperature to higher values and gelatinization enthalpy to lower values as well as biphasic endotherms were found in treated starches. HMT increased enzyme digestibility of treated starches (except waxy corn starch); i.e., rapidly and slowly digestible starches increased, but resistant starch decreased. Although there was no absolute consistency on the data obtained from the three pairs of waxy and normal starches, in most cases the effects of HMT on normal starches were more pronounced than the corresponding waxy starches.  相似文献   

16.
The effect of processing temperature on structural changes in wheat, corn, and high amylose corn starch granules was investigated and related to the mechanical properties of gels and microcellular foam (MCF). Scanning electron micrographs (SEM) showed that wheat starch granules form ghosts with thicker walls than dent corn granules. The granule wall was permeable to water and appeared to be at least partially permeable to the solubilized contents of the granule. The ghost walls became visibly porous after heating at 95ºC for 60 min and were completely solubilized by heating to 120ºC. High‐amylose corn starch (HACS) granules were completely dissolved by heating to 140ºC. Gels made with wheat starch had higher gel strength and dynamic modulus compared to dent corn starch gels. The density, compressive strength and modulus of MCF were lower in samples cooked for 60 min. The density of dent corn MCF was higher than that of wheat starch which may have accounted for higher compressive strength and modulus in the corn sample. MCF made from HACS had higher surface area and lower density, compressive strength, and modulus than the other starches tested. There were no significant differences in pore volume or surface area due to extended cooking times.  相似文献   

17.
The viscoelastic and textural properties of freshly prepared and freeze-thawed sago starch–sugar gels were studied in comparison with other native starches from corn, wheat, tapioca, and potato. The gelatinisation and retrogradation properties of starches were studied using a DSC while the pasting properties of starch–sugar mixtures during the cooking period were studied using a starch pasting cell. The freeze-thaw stability of gels was evaluated by gravimetric measurements of the water of syneresis. The different starches gave properties which varied following to their botanical sources. High-amylose cereal starches (wheat and corn) produced harder gels, while low-amylose root starch (tapioca) produced softer gels. Sago and potato gels showed close similarities in their viscoelastic and textural characteristics. Although the freeze-thaw cycle greatly increased the viscoelasticity and hardness of these two gels, reheating at high temperature significantly reduced these negative effects and resulted in partial recovery of the gel structures. Sago starch produced gels with very low syneresis and high cohesiveness, implying its potential use as a gelling agent in the frozen food industries.  相似文献   

18.
Chitin and collagen powders were added as fillers to various starches (potato, sweet potato, kudzu, corn, wheat, and mung bean), heated at 100C for 10 min with stirring to make a hot paste and allowed to gel quiescently at 5C for 2 h in order to investigate the effects of the filler particle on the texture of the gels. The parameters of hardness, cohesiveness and adhesiveness were determined instrumentally and compared. The filler particles of collagen and chitin were effective in increasing hardness of corn starch gels but had no effects on hardness of the potato, sweet potato, kudzu, wheat and mung bean starch gels except at the lower starch concentrations. Cohesiveness was increased slightly in all starch gels by addition of collagen whereas chitin addition only increased the cohesiveness of sweet potato and mung bean starch gels. Collagen and chitin addition increased adhesiveness all of starch gels, but the intensity of the effect was most remarkable for collagen. The observed differences in effects was apparently due to differences in the interactions between starches and filler particles arising from differences in the surface properties of the filler particles.  相似文献   

19.
Blends of native starches can be used to obtain special sensory properties avoiding the use of chemically modified starches. The mixture design approach was used to analyze the textural properties (hardness, adhesiveness, cohesiveness and gumminess) of gels obtained with different proportions of yam, corn and cassava starches (6% total solids) and related to microstructural characteristics. Maximum limits of 60% yam starch and 70% corn starch and minimum level of 30% cassava starch were fixed to minimize syneresis under storage. Hardness, adhesiveness and gumminess increased with the proportion of corn starch in the blends. The lowest values of hardness corresponded to the blends containing higher proportions of cassava starch, that has the lowest amylose content. Corn starch was the component that less contributed to cohesiveness. The characteristic high cohesiveness of cassava starch pastes (related to its higher amylopectin content) was reduced when it was mixed in adequate proportions with yam and/or corn starches. Gels containing only yam starch presented syneresis values close to 40% after 24° h storage at 4°C; the decrease of the maximum level of yam starch to 60% as well as the inclusion of cassava starch in the blends reduced weight losses. Disadvantages found in gels containing individual starches, such as exudate in yam and corn starch gels, and excessive cohesiveness in cassava starch gels, are minimized improving their possible applications, when blends are used.  相似文献   

20.
This study investigated the effects of heat‐moisture treatment (HMT) on the resistant starch content and thermal, morphological, and textural properties of rice starches with high‐, medium‐ and low‐amylose content. The starches were adjusted to 15, 20 and 25% moisture levels and heated at 110°C for 1 h. The HMT increased the resistant starch content in all of the rice starches. HMT increased the onset temperature and the gelatinisation temperature range (Tfinish–Tonset) and decreased the enthalpy of gelatinisation of rice starches with different amylose contents. This reduction increased with the increase in the moisture content of HMT. The morphology of rice starch granules was altered with the HMT; the granules presented more agglomerated surface. The HMT affected the textural parameters of rice starches; the high‐ and low‐amylose rice starches subjected to 15 and 20% HMT possessed higher gel hardness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号