首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterosis and breed differences were estimated for milk yield traits, somatic cell score (SCS), and productive life (PL), a measure of longevity. Yield trait data were from 10,442 crossbreds and 140,421 purebreds born since 1990 in 572 herds. Productive life data were from 41,131 crossbred cows and 726,344 purebreds born from 1960 through 1991. The model for test-day yields and SCS included effects of herd-year-season, age, lactation stage, regression on sire's predicted transmitting ability, additive breed effects, heterosis, and recombination. The model for PL included herd-year-season, breed effects, and general heterosis. All effects were assumed to be additive, but estimates of heterosis were converted to a percentage of the parent breed average for reporting. Estimates of general heterosis were 3.4% for milk yield, 4.4% for fat yield, and 4.1% for protein yield. A coefficient of general recombination was derived for multiple-breed crosses, but recombination effects were not well estimated and small gains, not losses, were observed for yield traits in later generations. Heterosis for SCS was not significant. Estimated heterosis for PL was 1.2% of mean productive life and remained constant across the range of birth years. Protein yield of Brown Swiss x Holstein crossbreds (0.94 kg/d) equaled protein yield of purebred Holsteins. Fat yields of Jersey x Holstein and Brown Swiss x Holstein crossbreds (1.14 and 1.13 kg/d, respectively) slightly exceeded that of Holsteins (1.12 kg/d). With cheese yield pricing and with all traits considered, profit from these crosses exceeded that of Holsteins for matings at breed bases. For elite matings, Holsteins were favored because the range of evaluations is smaller and genetic progress is slower in breeds other than Holstein, in part because fewer bulls are sampled. A combined national evaluation of data for all breeds and crossbreds may be desirable but would require an extensive programming effort. Animals should receive credit for heterosis when considered as mates for another breed.  相似文献   

2.
Character states of New Zealand herds were formed within the environmental ranges of herd average total lactation yield of fat plus protein (MS), which is a proxy for feeding level, summer heat load index (HLI), herd size, and altitude. A univariate multibreed sire model was applied to first-lactation (2 yr old) records of milk, fat, and protein within each environmental character state to estimate breed and heterosis effects. A scaling effect was observed for MS yield between overseas Holstein-Friesian (OHF) and New Zealand Jersey (NZJ) animals when comparing breed performance in extreme MS character states. For example, differences for milk, fat, and protein yield between these breeds were 561, 1.3, and 9.3 kg, respectively, in the character state averaging 227 kg of MS/cow, much smaller than the differences of 1,151, 3.1, and 23.0 in the character state averaging 376 kg of MS/cow. Heterosis levels for milk, fat, and protein yields were highest for OHF × NZJ, followed by New Zealand Friesian (NZF) × NZJ and OHF × NZF with average heterosis for all traits of 7.3, 5.7, and 2.7%, respectively. Heterosis levels for OHF × NZF were suppressed in very low MS yield environments and in many cases were not significantly different from zero. Heterosis was suppressed in crosses with OHF in the high HLI environment. Crossbred animals (OHF × NZJ, NZF × NZJ, and OHF × NZF) generally achieved higher fat yields than any of the straight-bred animals.  相似文献   

3.
During the last decade, the use of systematic crossbreeding in dairy cattle herds has increased in several countries of the world. The aim of this study was to estimate the effect of breed proportion and heterosis on milk production traits and udder health traits in dairy cattle. The study was based on records on milk yield (MY), protein yield (PY), fat yield (FY), somatic cell score (SCS), and mastitis (MAST) from 73,695 first-lactation dairy cows in 130 Danish herds applying systematic crossbreeding programs. Around 45% of the cows were crosses between Danish Holstein (DH), Danish Red (DR), or Danish Jersey (DJ), and the remaining were purebred DH, DR, or DJ. The statistical model included the fixed effects of herd-year, calving month, and calving age and an effect representing the lactation status of the cow. In addition, the model included a regression on calving interval from first to second lactation, a regression on the proportion of DH, DR, and DJ genes, and a regression on the degree of heterozygosity between DH and DR, DH and DJ, and DR and DJ. Random effects were the genetic effect of the cow and a residual. The effect of breed proportions was estimated relatively to DH. For MY, a pure DR yielded 461 kg milk less than DH, whereas a pure DJ yielded 2,259 kg milk less than a pure DH. Compared with DH, PY was 41.7 kg less for DJ, whereas PY for DR was 4.0 kg less than for DH. For FY, a DR yielded 10.6 kg less than DH, whereas there was no significant effect of breed proportion between DJ and DH. A DR cow had lower SCS (0.13) than DH, whereas DJ had higher SCS (0.14) than DH. There was no significant effect of breed proportion on MAST between the 3 breeds. Heterosis was significant in all combinations of breeds for MY, FY, and PY. Heterosis for crosses between DH and DR was 257 kg (3.2%), 11.9 kg (3.2%), and 8.9 kg (3.2%) for MY, PY, and FY, respectively. Corresponding figures for crosses between DH and DJ were 314 kg (4.4%), 14.3 kg (4.4%), and 10.4 kg (4.0%), whereas heterosis between DR and DJ was 462 kg (6.7%), 19.6 kg (6.7%), and 13.9 kg (5.4%) for MY, PY, and FY, respectively. Heterosis was only significant for SCS in the crosses between DH and DR. Heterosis effects for MAST were nonsignificant for all the crosses. The results obtained in this study demonstrate that in first lactation cows, there is a positive effect of heterosis on milk production traits, but limited effect on udder health traits.  相似文献   

4.
Genetic and phenotypic parameters for Mexican Holstein cows were estimated for first- to third-parity cows with records from 1998 to 2003 (n = 2,971-15,927) for 305-d mature equivalent milk production (MEM), fat production (MEF), and protein production (MEP), somatic cell score (SCS), subsequent calving interval (CAI), and age at first calving (AFC). Genetic parameters were obtained by average information matrix-REML methodology using 6-trait (first-parity data) and 5-trait (second- and third-parity data) animal models. Heritability estimates for production traits were between 0.17 ± 0.02 and 0.23 ± 0.02 for first- and second-parity cows and between 0.12 ± 0.03 and 0.13 ± 0.03 for third-parity cows. Heritability estimates for SCS were similar for all parities (0.10 ± 0.02 to 0.11 ± 0.03). For CAI, estimates of heritability were 0.01 ± 0.05 for third-parity cows and 0.02 ± 0.02 for second-parity cows. The heritability for AFC was moderate (0.28 ± 0.03). No unfavorable estimates of correlations were found among MEM, MEF, MEP, CAI, and SCS. Estimates of environmental and phenotypic correlations were large and positive among production traits; favorable between SCS and CAI; slightly favorable between MEM, MEF, and MEP and SCS, between AFC and SCS, and between SCS and CAI; and small but unfavorable between production traits and CAI. Estimates of genetic variation and heritability indicate that selection would result in genetic improvement of production traits, AFC, and SCS. Estimates of both heritability and genetic variation for CAI were small, which indicates that genetic improvement would be difficult.  相似文献   

5.
The objective of this study was to compare fertility traits of heifers and primiparous cows from Swedish Red × Holstein (SR × HO; n = 634 and 581, respectively), Montbéliarde × Holstein (MO × HO; n = 126 and 114, respectively), Brown Swiss × Holstein (BS × HO; n = 59 and 50, respectively), and MO × (SR × HO) (n = 241 and 139, respectively) crossbreds, versus those of Holstein heifers and cows (HO; n = 3,483 and 2,549, respectively). Animals were born between 2007 and 2011, and belonged to 4 herds located in northern Italy. Heifers were compared for age at first service (AFS), age at first conception (AFC), interval between first service and conception (IFC), nonreturn rate at 56 d after first service (NR56), conception rate at first service (CR), and number of inseminations required for conception (INS). The same traits were evaluated in primiparous cows, except that AFS and AFC were replaced with days at first service (DFS) and days open (DO). The AFS, AFC, IFC, DFS, and DO traits were continuous variables and were thus analyzed under a proportional hazards Cox model that properly accounted for censoring among cows that were culled or failed to conceive. The NR56, CR, and INS traits were analyzed as binary traits using logistic regression. Our results indicated that, among heifers, SR × HO crossbreds had a better chance of having an earlier first service and conceiving earlier than HO, with hazard ratios (HR) of 1.31 for AFS and 1.34 for AFC. Similarly, MO × (SR × HO) crossbreds differed from HO heifers in this regard (HR = 1.18 and 1.24, respectively). For the primiparous cows, all crossbreds showed significant differences for DFS, DO, and IFC relative to purebred HO, with the exception of the BS × HO crossbreds. The MO × HO, SR × HO, and MO × (SR × HO) crossbred cows showed increased chances of having fewer DFS (HR = 1.40, 1.30, and 1.27, respectively), fewer DO (HR = 1.59, 1.43, and 1.58, respectively), and fewer IFC (HR = 1.52, 1.26, and 1.39, respectively) than HO cows. All crossbred genotypes, including BS × HO cows, showed higher probabilities for higher NR56, higher CR, and lower INS than purebred HO cows. Together, these findings indicate that the studied crossbred cows have higher reproductive potential than Holsteins.  相似文献   

6.
The objective of the present study was to investigate how the crossbreeding of Holstein (HO) cows with bulls from Nordic and Alpine European breeds affect milk quality traits, traditional milk coagulation properties (MCP), and curd firmness modeling obtained from individual milk samples. A total of 506 individual milk samples were collected from evening milking at 3 commercial farms located in Northern Italy. Over the past decade, the 3 farms have followed crossbreeding programs in part of their herds, whereas the remainder of the animals consisted of purebred HO. The basic scheme was a 3-breed rotation based on the use of Swedish Red (SR) semen on HO cows (SR × HO), the use of Montbéliarde (MO) semen on first-cross cows [MO × (SR × HO)], and the use of HO semen in the third cross. In all herds, a smaller proportion of purebred HO were mated to M and Brown Swiss (BS) bulls, and these first crosses were mated to SR and MO bulls, respectively. Milk samples were analyzed for milk composition and MCP, and parameters for curd firmness were modeled. Compared with purebred HO, crossbred cows produced less milk with lower lactose content, higher fat and protein content, and a tendency for higher casein content. Crossbred cows generally produced milk with a more favorable curd-firming rate (k20) and curd firmness 30 min after rennet addition, among traditional MCP, and better trends of curd firmness measures as shown by model parameters: estimated rennet coagulation time, asymptotical potential value of curd firmness, and curd-firming instant rate constant. Among crossbred cows, SR × HO presented longer rennet coagulation time compared with MO × HO and BS × HO cows, and MO × HO showed shorter k20 compared with BS × HO cows. Among second-generation cows, those sired by SR bulls showed a lower incidence of noncoagulated samples, higher curd firmness 30 min after rennet addition and asymptotical potential value of curd firmness, and faster curd-firming instant rate constant compared with animals sired by MO bulls. Our results revealed that different sire breeds were characterized by specific technological aptitudes, but that these were not strictly related to other milk quality traits. Furthermore, the favorable characteristics (in terms of the quality and technological properties of milk) could be maintained in the third generation of 3-way crosses without negative effects on milk yield, even though the HO heritage had been reduced from 50 to 25%. Our findings, therefore, suggest that different types of sires can be chosen (depending on the intended use of the milk) to ensure the optimization of farm crossbreeding programs.  相似文献   

7.
Brown Swiss × Holstein (BS × HO) crossbred cows (n = 55) and purebred Holstein (HO) cows (n = 50) were compared for milk yield, fat and protein production, somatic cell score, milking speed, and udder measurements for the first 3 lactations. Cows from a designed experiment were housed in a freestall barn at the experimental station of the federal state of Saxony-Anhalt, Germany, and calved from July 2005 to August 2008. Best prediction was used to determine actual production for 305-d lactations from test-day observations. For the first 3 lactations, BS × HO cows and HO cows were not significantly different for milk yield, fat and protein production, or SCS. Average milking time was significantly longer for BS × HO cows than for HO cows for first, second, and third lactations by 35, 51, and 30 s, respectively. Average milking speed expressed as average yield per minute was significantly lower for BS × HO cows than for HO cows for the first 3 lactations by 0.19, 0.35, and 0.19 kg/min, respectively. Front and rear teats were significantly longer for BS × HO cows than for HO cows. Furthermore, front and rear udder clearance was significantly lower for BS × HO cows compared with HO cows in first and second lactations.  相似文献   

8.
The key objectives of this study were to investigate differences in milking characteristics and udder health between Holstein-Friesian (HF), Jersey (J), and Jersey × Holstein-Friesian (F1) cows and to determine possible associations between milking characteristics and udder health. Records were available from 329 lactations (162 cows): 65 HF, 48 J, and 49 F1. Data included lactation mean milk yield, somatic cell score (SCS), incidence of mastitis, average milk flow (AMF), peak milk flow (PMF), and milking duration (MD). Breed group had a significant effect on milk yield and was higher with the HF cows (18.0 kg/d) compared with the J cows (14.2 kg/d). Udder health (SCS and incidence of mastitis at least once during lactation) were similar across the breed groups. Average milk flow was greater with the HF cows (1.36 kg/min) compared with the J cows (1.09 kg/min). Peak milk flow also tended to greater with the HF cows. No difference in MD was observed between the breed groups. The performance of the F1 cows tended to be similar to the mid-parent (breed) mean for udder health and MD, but heterosis was evident for milk yield, AMF, and PMF. Correlations examined showed that phenotypic milk yield was negatively associated with SCS. Increased milk yield was synonymous with increased AMF, PMF, and MD. Correlations between SCS and milking characteristics were weak. Correlations also showed that cows with low AMF and PMF had extended MD. Therefore, no difference in udder health was observed between HF, J, or F1 cows. The fact that higher yielding animals exhibit faster milking speeds was confirmed; however, no difference in MD was observed between the breed groups. Such findings indicate that regularity in the milking process will be maintained within mixed-breed herds.  相似文献   

9.
The objectives of this study were to estimate heritabilities within herds participating in Dairy Herd Improvement and determine the relationship of the individual herd heritability with sire misidentification rate. Individual herd heritabilities for milk, fat, and protein yield and somatic cell score (SCS) were calculated with daughter-dam regression and daughter-sire predicted transmitting ability (PTA) regression using 4,712,166 records from 16,336 herds available for August 2000 evaluations and 7,084,953 records from 20,920 herds available for August 2006 evaluations. Herd heritabilities were estimated using regression models that included fixed breed, age within parity, herd-year-season of calving, dam records nested within state, sire PTA within state, and an interaction between sire PTA and herd variance; random regression coefficients were dam records within herd and sire PTA within herd. Average daughter-dam herd heritability estimates ranged from 0.21 (SCS in 2000) to 0.73 (protein percentage in 2006), whereas daughter-sire herd heritability ranged from 0.10 (SCS in 2000) to 0.42 (protein percentage in 2006). Verification of sire identification with DNA marker analysis was provided by Accelerated Genetics and Alta Genetics Inc. Daughter-sire herd heritability was more strongly correlated with sire misidentification rate than daughter-dam herd heritability. The correlation between the first principal component for all measures of herd heritability and sire misidentification rate was −0.38 (176 herds) and −0.50 (230 herds) in 2000 and 2006, respectively. Herd heritability can be estimated with simple regression techniques for several thousand herds simultaneously. The herd heritability estimates were correlated negatively with sire misidentification rates and could be used to identify herds that provide inaccurate data for progeny testing.  相似文献   

10.
Jersey (JE) × Holstein (HO) crossbred cows (n = 76) were compared with pure HO cows (n = 73) for 305-d milk, fat, and protein production, somatic cell score (SCS), clinical mastitis, lifetime production, and body measurements during their first 3 lactations. Cows were in 2 research herds at the University of Minnesota and calved from September 2003 to June 2008. Best prediction was used to determine actual production for 305-d lactations as well as lifetime production (to 1,220 d in the herd after first calving) from test-day observations. During first lactation, JE × HO cows and pure HO cows were not significantly different for fat plus protein production; however, JE × HO cows had significantly lower fat plus protein production during second (−25 kg) and third (−51 kg) lactation than pure HO cows. Nevertheless, JE × HO cows were not significantly different from pure HO cows for lifetime production or lifetime SCS. The JE × HO cows were not significantly different from pure HO cows for SCS and clinical mastitis during first and second lactations; however, JE × HO cows tended to have higher SCS (3.79) than pure HO cows (3.40), but significantly lower (−23.4%) clinical mastitis during third lactation. The JE × HO cows had significantly less hip height, smaller heart girth, less thurl width, and less pin width than pure HO cows during the first 3 lactations. Furthermore, JE × HO cows had significantly less udder clearance from the ground and significantly greater distance between the front teats than pure HO cows during their first 3 lactations.  相似文献   

11.
Emphasis by dairy producers on various yield and fitness traits when culling cows was documented for US Holstein calvings since 1982. Least squares differences between cows retained for additional parities and those culled were estimated for milk, fat, and protein yields; somatic cell score (SCS); days open (DO); dystocia score (DS), final score (FS), and 14 type traits. Compared with cows culled during first lactation, superiority for first-parity milk yield was 569 to 1,175 kg for cows with 2 lactations, 642 to 1,283 kg for cows with ≥2 lactations, 710 to 1,350 kg for cows with 3 lactations, and 663 to 1,331 kg for cows with ≥4 lactations. Cows retained for ≥2 lactations had first-parity SCS that were 0.34 to 0.62 lower (more favorable) than those of cows culled during first lactation; first-parity SCS for cows retained for 3 or ≥4 lactations were even more favorable than those of cows with 1 or 2 lactations. The negative genetic relationship between yield and fertility contributed to increased DO as selection for higher milk yield persisted across time despite considerable preference for early conception when culling cows. In 1982, cows retained in the herd for 2, 3, and ≥4 lactations conceived earlier during first lactation (19, 17, and 23 fewer DO, respectively) than those culled during first lactation; those differences had increased to 34, 41, and 52 fewer DO by 2000. Although DS has a negative relationship with survival, first-parity DS were only slightly lower (by 0.10 to 0.14) for survivors than for cows culled during first lactation. Cows retained for ≥2 lactations had greater first-parity FS by 1.4 to 1.9 points than those culled during first lactation. On a standardized basis, the most intense selection during first lactation was for milk and protein yields with less for fat (74 to 86% of that for milk), DO (18 to 74%), FS (22 to 38%), SCS (19 to 37%), and DS (7 to 15%). Producers continued to emphasize the same traits when culling during second and third lactations. Trait priority by producers during culling could aid in setting trait emphasis when selecting bulls for progeny test and could also be useful in developing software for index-based culling guides.  相似文献   

12.
《Journal of dairy science》2023,106(1):364-380
The objectives of this study were to estimate genetic parameters and individual and maternal breed, heterosis, and recombination loss effects for milk production and fertility traits of Holstein Friesian (F), Jersey (J), and crossbred Holstein Friesian and Jersey (F × J) cows milked once daily (OAD) or twice daily (TAD) in New Zealand. Data on 278,776 lactations from 30,217 OAD and 170,680 TAD milking cows across 644 spring-calving herds were available. Genetic parameters and individual and maternal breed, heterosis, and recombination loss estimates were obtained from univariate animal models. Heritability and repeatability estimates for milk production, milk composition, and fertility traits were consistent across the milking frequencies. Heritability estimates for yields of milk, fat, protein, and lactose varied between 0.21 and 0.29 in OAD and TAD. Heritability estimates for fertility traits ranged from 0.01 to 0.08 in both populations, and estimates were slightly greater in TAD than OAD milking cows. In both milking populations, individual breed effects for yields were in favor of F cows; however, maternal breed effects for yields were in favor of J dams. Jersey cows were more fertile than the F cows in both milking populations, but maternal breed effects for fertility traits were in favor of F dams. Individual heterosis effects were favorable for all traits and were consistent across milking regimens. Crossbred F × J cows had significantly shorter intervals from start of mating to first service and from start of mating to conception, and a higher proportion of 3-wk submission, 3-wk in calf, and 3-wk calving relative to the average of purebred F and J cows. Recombination loss effects were not always unfavorable for production and fertility traits, but most estimates were small with larger standard errors. Favorable maternal heterosis effects were associated with production traits in both milking systems, but maternal heterosis effects were less likely to influence reproductive performance.  相似文献   

13.
Previous studies have documented that ovarian antral follicle count (AFC) is positively correlated with number of healthy follicles and oocytes in ovaries (ovarian reserve), as well as ovarian function and fertility in cattle. However, environmental factors (e.g., nutrition, steroids) during pregnancy in cattle and sheep can reduce AFC in offspring. The role that genetic and environmental factors play in influencing the variability in AFC and, correspondingly, the size of the ovarian reserve, ovarian function, and fertility, are, however, poorly understood. The present study tests the hypothesis that variability in AFC in offspring is influenced not only by genetic merit but also by the dam age and lactation status (lactating cows vs. nonlactating heifers) and milk production during pregnancy. Antral follicle count was assessed by ultrasonography in 445 Irish Holstein-Friesian dairy cows and 522 US Holstein-Friesian dairy heifers. Heritability estimates for AFC (± standard error) were 0.31 ± 0.14 and 0.25 ± 0.13 in dairy cows and heifers, respectively. Association analysis between both genotypic sire data and phenotypic dam data with AFC in their daughters was performed using regression and generalized linear models. Antral follicle count was negatively associated with genetic merit for milk fat concentration. Also, AFC was greater in offspring of dams that were lactating (n = 255) compared with nonlactating dams (n = 89) during pregnancy and was positively associated with dam milk fat concentration and milk fat-to-protein ratio. In conclusion, AFC in dairy cattle is a moderately heritable genetic trait affected by age or lactation status and milk quality but not by level of dam’s milk production during pregnancy.  相似文献   

14.
The objectives of this study were to estimate variance components and predict sire breeding values for milk, fat, and protein yield by using a multiple-trait model in which lactation yield in each country was considered as a different trait. Data included first lactation records of 16,145,832 Holstein-sired cows that calved between January 1, 1990, and December 31, 1997, in 243,466 herds in Australia, Austria, Belgium, Canada, the Czech Republic, Estonia, Finland, Germany, Hungary, Ireland, Israel, Italy, The Netherlands, New Zealand, South Africa, Switzerland, and the USA. Milk, fat, and protein were analyzed separately by using a 17-trait sire model; in this case, "traits" refer to measurements of the same biological parameter in different production systems. Our genetic model included the systematic effects of herd-year-season of calving, age at calving, milking frequency, and heterosis class (i.e., breed composition). Heritability estimates ranged from 0.24 in Australia (protein) to 0.34 in Israel (milk) and The Netherlands (fat). Genetic correlations between countries ranged from 0.77 for Austria-Czech Republic (protein), Estonia-Finland (fat), Estonia-Ireland (milk), Estonia-Israel (milk), and Hungary-New Zealand (fat), to 0.96 for Australia-Ireland (milk), Australia-New Zealand (milk), Belgium-Netherlands (milk), and Belgium-USA (fat). Correlations differed markedly from parameters used currently in international sire evaluations. In particular, genetic correlations were 0.91 to 0.96 between Australia, Ireland, and New Zealand; all of these countries rely heavily on rotational grazing. Correlations were also 0.91 to 0.96 between Belgium, Canada, Italy, The Netherlands, and the USA; all of these countries use intensive management systems. Correlations between these two groups of countries were 0.80 to 0.90. The percentage of elite bulls (top 1% for milk yield) selected in common by each pair of countries ranged from 0.42 for Germany-Estonia and Germany-Israel to 0.78 for Belgium-Netherlands.  相似文献   

15.
Genetic parameters for 18 fatty acids or groups of fatty acids (FA), milk production traits, and somatic cell score (SCS) were estimated by restricted maximum likelihood with a repeatability animal model, using 45,259 test-day records from the first lactations of 13,677 Alpine and Saanen goats. Fatty acid data were collected as part of an extensive recording scheme (PhénoFinLait), and sample testing was based on mid-infrared spectra estimates. The total predicted FA content in milk was approximately 3.5% in Alpine and Saanen goats. Goat milk fat showed similar saturated FA to cattle and sheep, but higher contents of capric (C10:0) FA (~9.7 g/100 g of milk fat). Heritability estimates ranged from 0.18 to 0.49 for FA and estimates were generally higher when FA were expressed in g/100 g of milk fat compared with g/100 g of milk. In general, the 3 specific short- and medium-chain goat FA, caproic acid (C6:0), caprylic acid (C8:0), and especially capric (C10:0) acid, had among the highest heritability estimates (from 0.21 to 0.37; average of 0.30). Heritability estimates for milk yield, fat and protein contents, and SCS were 0.22, 0.23, 0.39, 0.09, and 0.24, 0.20, 0.40, and 0.15, in Alpine and Saanen goats, respectively. When FA were expressed in g/100 g of milk, genetic correlations between fat content and all FA were high and positive. Genetic correlations between the fat content and FA groups expressed in g/100 g of fat led to further investigation of the association between fat content and FA profile within milk fat. Accordingly, in both Saanen and Alpine breeds, no significant genetic correlations were found between fat content and C16:0, whereas the correlations between fat content and specific goat FA (C6:0 to C10:0) were positive (0.17 to 0.59). In addition, the genetic correlation between fat content and C14:0 was negative (−0.17 to −0.35). The values of the genetic correlations between protein content and individual FA were similar, although genetic correlations between protein content and FA groups were close to zero. Genetic correlations of milk yield or SCS with the FA profile were weak. Results for genetic parameters for FA, however, should be further validated, because the low predicting ability of certain FA using mid-infrared spectra and the limited calibration data set might have resulted in low accuracy. In conclusion, our results indicated substantial genetic variation in goat milk FA that supported their amenability for genetic selection. In addition, selection on protein and fat contents is not expected to have an undesirable effect on the FA profile in regard to specificity of goat products and human health.  相似文献   

16.
Coefficients for individual and maternal breed composition and the expected contributions of individual and maternal heterosis and breed source of cytoplasm were assigned to 42,554 primiparous Holstein-Friesian, Jersey, and crossbred cows. The individual additive genetic breed effect influenced all milk production traits. Highly significant maternal additive genetic breed effects equivalent to 3% of the mean were identified for milk yield and milk fat percentage. Individual heterosis was highly significant for milk yield and milk fat yield. A primiparous first cross cow produced 6.1% more milk and 7.2% more milk fat than the average of straightbred cows of both breeds. For milk fat yield, the individual heterosis effect was higher than the individual additive genetic breed difference between Jersey and Holstein-Friesian. A small negative maternal heterosis and a small effect of breed source of cytoplasm were estimated for milk fat percentage. Results suggest that individual heterosis is a major genetic effect for milk yield and milk fat yield. This heterosis could be utilized through a stratified breeding scheme in which high genetic merit nucleus herds maintain genetic progress in the two straightbred populations, and commercial dairy herds employ a rotational cross-breeding scheme to take advantage of both the additive genetic progress and nonadditive genetic effects.  相似文献   

17.
The effects of milk yield at dry-off (DO), different calving intervals (CI; 12 and 15 mo) and breed on metabolism and udder health were studied in 56 primiparous and multiparous cows of the Swedish Red and White (SRB) and Swedish Holstein (SH) breeds. The cows were dried off 55 ± 5 d prior to expected parturition. They were fed 4 kg of DM as silage and wheat straw ad libitum for 5 d, and were milked in the morning of d 2 and 5. Depending on their daily milk yield, the cows were divided into 3 numerically equal groups on 2 d during the week prior to DO: low (LY; 5.0 to 11.4 kg of milk/d, n = 19), medium (MY; 11.5 to 17.7 kg of milk/d, n = 19), and high (HY; 17.8 to 29.5 kg of milk/d, n = 18). The plasma cortisol concentration increased during DO only in MY and HY cows. Plasma nonesterified fatty acids increased during DO in all groups, but the maximum nonesterified fatty acid concentration was related to the milk yield prior to DO. The plasma glucose level during the DO period was not significantly affected by yield, but the insulin concentration decreased after DO, with a more pronounced drop in the HY group. The CI 15-mo group had a higher glucose level and tended to have a higher insulin level in plasma than the CI 12-mo group before DO. They also had a higher body condition than the CI 12-mo group. The results indicate that the CI 15-mo cows had a more positive nutrient balance. There were no effects of CI on milk production or composition during DO. The SRB and SH breeds did not differ in any of the measured plasma parameters or milk production. However, the lower somatic cell counts in SRB than in SH observed before and during DO, as well as after parturition, were attributed to being an effect of breed. The proportion of cows with intramammary infections (IMI) was significantly lower just after calving in the LY group than in the other yield groups. At 2 and 3 wk after DO, significantly fewer cows in the LY group had open teat canals compared with the HY and MY groups, respectively, but teat-end condition did not differ between yield groups. The yield before DO did not significantly influence the somatic cell counts during the first 4 wk after parturition or the presence of IMI 4 wk after parturition. We concluded that in the present study, higher milk yield prior to DO gave rise to a more pronounced metabolic response and a higher risk of contracting IMI during the dry period, at calving, or both, but yield at DO did not have any long-term effects on udder health. A prolonged CI did not facilitate a rapid decrease in milk production. The SRB and SH breeds responded equally in decreasing the milk production during DO, but the SRB breed had lower somatic cell counts.  相似文献   

18.
The objectives of this research were to characterize dry period lengths for US Jerseys, determine the effects of days dry (DD) on subsequent lactation actual milk, fat, and protein yields, fat and protein percentages, somatic cell score (SCS), and days open (DO), and to determine the dry period length that maximizes yield across lactations. Field data, collected through the Dairy Herd Improvement Association, on US Jersey cows first calving between January 1997 and November 2004 were used. Characterization of DD included a frequency distribution of dry period lengths as well as factors affecting US Jersey DD. Of the factors considered in this research, the primary ones affecting dry period length were DO, milk yield, and SCS. Cows with longer DO, lower milk yield, and higher SCS received longer dry periods. The model for analyses included herd-year of calving, year-state-month of calving, parity of calving, previous lactation record, age at calving, and DD as a categorical variable; records were preadjusted for cow effects. A total of 123,032 records from 73,797 cows in 808 herds were used for estimation of DD effects on subsequent lactation actual milk yield. Jersey milk, fat, and protein yields in the subsequent lactation were maximized with 61 to 65 DD. Dry periods of 30 d or fewer resulted in large reductions in subsequent lactation production. A short dry period was beneficial for fat and protein percentages in the subsequent lactation. Short dry periods also resulted in fewer DO in the subsequent lactation; however, this was entirely due to the lower milk yield associated with shortened dry periods. The biggest difference between Jerseys and Holsteins was a much larger detrimental effect on SCS in Jerseys for dry periods of 30 d or less. Jersey SCS increased 10%, relative to the overall mean, for dry periods of 20 d or less and 4.6% for DD between 21 and 30 d. Dry periods of 45 to 70 d maximized yields across adjacent lactations. A dry period length, after first lactation, of 45 to 70 d also maximized actual milk yield across lactations 1, 2, and 3. The final recommendation to Jersey producers is to avoid dry periods of <45 d. Long dry periods (>70 d) should also be avoided because these are even more costly to total yield than dry periods <30 d.  相似文献   

19.
The aim of this study was to assess the level of somatic cell count (SCC) and to explore the impact of somatic cell score (SCS) on the functional longevity of Canadian dairy cattle by using a Weibull proportional hazards model. Data consisted of 1,911,428 cows from 15,970 herds sired by 7,826 sires for Holsteins, 80,977 cows in 2,036 herds from 1,153 sires for Ayrshires, and 53,114 cows in 1,372 herds from 1,758 sires for Jerseys. Functional longevity was defined as the number of days from the first calving to culling, death, or censoring. The test-day SCC was transformed to a linear score, and the resulting SCS were averaged within each lactation. The average SCS were grouped into 10 classes. The statistical model included the effects of stage of lactation; season of production; annual change in herd size; type of milk recording supervision; age at first calving; effects of milk, fat, and protein yields, calculated as within-herd-year-parity deviations; herd-year-season of calving; SCS class; and sire. The relative culling rate was calculated for animals in each SCS class after accounting for the aforementioned effects. The overall average SCC for Holsteins was 167,000 cells/mL, for Ayrshires was 155,000 cells/mL, and for the Jerseys was 212,000 cells/mL. In all breeds there were no appreciable differences in the relative risk of culling among classes of SCS breed averages (i.e., up to a SCS of 5). However, as the SCS increased beyond the breed average, the relative risk of cows being culled increased considerably. For instance, Holstein, Ayrshire, and Jersey cows with the highest classes of SCS had, respectively, a 4.95, 6.73, and 6.62 times greater risk of being culled than cows with average SCS.  相似文献   

20.
Adverse prenatal environments, such as maternal stress and infections, can influence the health and performance of offspring. Mastitis is the most common disease in dairy cattle, yet the intergenerational effects have not been specifically investigated. Therefore, we examined the associations between the dam's mammary gland health and daughter performance using somatic cell score (SCS) as a proxy for mammary health. Using data obtained from Dairy Records Management Systems (Raleigh, NC), we linked daughter records with their dam's records for the lactation in which the daughter was conceived. Linear and quadratic relationships of dam mean SCS with the daughter's age at first calving (AFC; n = 15,992 daughters, 4,366 herds), first- (n = 15,119 daughters, 4,213 herds) and second-lactation SCS (n = 3,570 daughters, 1,554 herds), first- and second-lactation mature-equivalent 305-d milk yield, and milk component yields were assessed using mixed linear regression models. We uncovered a phenomenon similar to those found in human and mouse models examining prenatal inflammation effects, whereby daughters born from dams with elevated SCS had poorer performance. Dam mean SCS was positively associated with daughter's AFC and first- and second-lactation mean SCS. Furthermore, for every 1-unit increase in dam mean SCS, daughter's first- and second-lactation mature-equivalent fat yield declined by 0.34% and 0.91% (?1.6 ± 0.49 kg, ?4.0 ± 1.0 kg, respectively), although no effect was found on first- or second-lactation milk or milk protein yield. When accounting for genetics, daughter SCS, and AFC (first lactation only), dam mean SCS was associated with reduced second-lactation milk fat yield (?3.5 ± 1.8 kg/unit SCS), and a tendency was found for first-lactation milk fat yield (?1.9 ± 1.0 kg/unit SCS). Taken together, the association of greater dam mean SCS with lesser daughter milk fat yield is likely due to a few underlying mechanisms, in particular, a predisposition for mastitis and alterations in the epigenome controlling milk fat synthesis. As such, future studies should examine epigenetic mechanisms as a potential underpinning of this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号