首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
A β-N-acetylhexosaminidase (β-NAHA) (EC 3.2.1.52) with molecular mass of 64.1 kDa and isoelectric point of 5.5 was purified from a commercial papaya latex preparation. The optimum pH for p-nitrophenyl-N-acetyl-β-d-glucosaminide (pNP-β-GlcNAc) hydrolysis was five; the optimum temperature was 50 °C; the Km was 0.18 mM, Vmax was 37.6 μmol min−1 mg−1 and activation energy (Ea) was 10.3 kcal/mol. The enzyme was thermally stable after holding at 30–45 °C for 40 min, but its activity decreased significantly when the temperature exceeded 50 °C. Heavy metal ions, Ag+ and Hg2+, at a concentration of 0.25 mM and Zn2+ and Cu2+, at a concentration of 0.5 mM, significantly inhibited enzyme activity. The β-NAHA had only one active site for binding both pNP-β-GlcNAc and p-nitrophenyl-N-acetyl-β-d-galactosaminide (pNP-β-GalNAc). A prototropic group with pKa value of about five on the enzyme may be involved in substrate binding and transformation, as examined by Dixon–Webb plots.  相似文献   

2.
A trypsin was purified from pyloric caeca of pirarucu (Arapaima gigas). The effect of metal ions and protease inhibitors on its activity and its physicochemical and kinetic properties, as well its N-terminal sequence, were determined. A single band (28.0 kDa) was observed by SDS–PAGE. Optimum pH and temperature were 9.0 and 65 °C, respectively. The enzyme was stable after incubation for 30 min in a wide pH range (6.0–11.5) and at 55 °C. The kinetic parameters Km, kcat and kcat/Km were 0.47 ± 0.042 mM, 1.33 s−1 and 2.82 s−1 mM−1, respectively, using BApNA as substrate. This activity was shown to be very sensitive to some metal ions, such as Fe2+, Hg2+, Zn2+, Al3+, Pb2+, and was highly inhibited by trypsin inhibitors. The trypsin N-terminal sequence IVGGYECPRNSVPYQ was found. The features of this alkaline peptidase suggest that it may have potential for industrial applications (e.g. food and detergent industries).  相似文献   

3.
Polyphenol oxidase (PPO) of several Ferula sp. was extracted and purified through (NH4)2SO4 precipitation, dialysis, and gel filtration chromatography. Leaf and stem extracts were used for the determination of enzyme properties. Optimum conditions, for pH, temperature, and ionic strength were determined. The best substrates of PPO were catechol for leaf and (−) epicatechin for stem samples. Optimum pH and temperature were determined. KM and Vmax values were 2.34 × 10−3 M and 8541 EU/ml for catechol, and 2.89 × 10−3 M and 5308 EU/ml for (−) epicatechin. The most effective inhibitor was sodium diethyl dithiocarbamate for leaf samples and sodium metabisulphite for stem samples. Both inhibitors indicated competitive reactions. PPO showed irreversible denaturation after 40 min at 60 °C.  相似文献   

4.
Naringinase, induced from Aspergillus niger CECT 2088 cultures, was immobilized into a polymeric matrix consisting of poly(vinyl alcohol) (PVA) hydrogel, cryostructured in liquid nitrogen, to obtain biocatalytically active beads. The effects of matrix concentration, enzyme load and pH on immobilization efficiency were studied. Between 95% and 108% of the added naringinase was actively entrapped in PVA cryogel, depending on the conditions of immobilization used. The optimal conditions were: 8% (w/v) PVA at pH 7 and 1.6–3.7 U ml−1 of enzyme load. The pH/activity profiles revealed no change in terms of shape or optimum pH (4.5) upon immobilization of naringinase. However, the optimum temperature was shifted from 60 °C to 70 °C and the activation energy of reaction, Ea, was decreased from 8.09 kJ mol−1 to 6.36 kJ mol−1 by immobilization. The entrapped naringinase could be reused through six cycles (runs of 24 h at 20 °C), retaining 36% efficacy for the hydrolysis of naringin in simulated juice.  相似文献   

5.
Trypsin was purified from the viscera of barbel by precipitation using ammonium sulphate (0-80%), Sephadex G-100, and Mono Q-Sepharose ion exchange chromatography. The trypsin was purified 27-fold, with 79 U/mg specific activity and 31% recovery. The enzyme had a molecular weight of 24 kDa; purified trypsin appeared as a single band on native-PAGE. The optimum pH and temperature for enzyme activity were pH 10.0 and 55 °C with BAPNA used as a substrate. The N-terminal amino acid sequence of the first 12 amino acids of the purified trypsin was IVGGYECTPYSQ. The Michaelis-Menten constant (Km) and catalytic constant (kcat) values of the enzyme were 0.018 mM and 1.21 s−1, respectively. The study also investigated the effects of purified trypsin on the recovery of carotenoproteins from shrimp (Parapenaeus longirostris) shells through hydrolysis using 1.0 U barbel trypsin/g shrimp shells for 1 h at 30 °C. The freeze-dried carotenoproteins recovered contained 71.09% protein, 16.47% lipid, 7.78% ash, and 1.79% chitin.  相似文献   

6.
Trypsin from intestinal extracts of Nile tilapia (Oreochromis niloticus L.) was characterised. Three-step purification – by ammonium sulphate precipitation, Sephadex G-100, and Q Sepharose – was applied to isolate trypsin, and resulted in 3.77% recovery with a 5.34-fold increase in specific activity. At least 6 isoforms of trypsin were found in different ages. Only one major trypsin isozyme was isolated with high purity, as assessed by SDS-PAGE and native-PAGE zymogram, appearing as a single band of approximately 22.39 kDa protein. The purified trypsin was stable, with activity over a wide pH range of 6.0–11.0 and an optimal temperature of approximately 55–60 °C. The relative activity of the purified enzyme was dramatically increased in the presence of commercially used detergents, alkylbenzene sulphonate or alcohol ethoxylate, at 1% (v/v). The observed Michaelis–Menten constant (Km) and catalytic constant (Kcat) of the purified trypsin for BAPNA were 0.16 mM and 23.8 s−1, respectively. The catalytic efficiency (Kcat/Km) was 238 s−1 mM−1.  相似文献   

7.
Thermus thermophilus HB-8 is a source of trehalose synthase (GTase), which catalyses conversion of maltose into trehalose. Specific activity of maltose transglucosylation by cell-free extracts of the bacteria was about 0.1 U mg−1 protein and precipitation at 28% saturation of ammonium sulphate caused 3.5-fold enzyme purification. The optimum temperature for conversion of maltose into trehalose was 65 °C with about 27% of maximum activity at 85 °C. The highest GTase productivity was achieved at cultivation temperature over 60 °C and at NaCl concentration range of 0.1–0.5% (w/v). However, larger concentrations of sodium chloride in the growth media caused a remarkable decrease of GTase synthesis. The results, of ammonium sulphate fractionation and activity towards maltotriose (0.028 U mg−1), maltotetraose (0.16 U mg−1) and GlcαpNp (0.27 U mg−1), show that trehalose synthase and α-glucosidase activities reside in separate protein fractions of cell-free extracts from T. thermophilus cells.  相似文献   

8.
A β-galactosidase from Cicer arietinum seeds has been purified to apparent electrophoretic homogeneity using a combination of various fractionation and chromatographic techniques, giving a final specific activity of 220 units mg−1, with approximately 1840 fold purification. Analysis of the protein by SDS–PAGE revealed two subunits with molecular masses of 48 and 38 kDa, respectively. These bands were further confirmed with LC–MS/MS, indicating that Chick pea β-galactosidase (CpGAL) is a heterodimer. Molecular mass was determined to be 85 kDa by Superose-12 FPLC column, which is in agreement with the molecular mass suggested by mass spectroscopy to be 83 kDa. The optimum pH of the enzyme was 2.8 and it hydrolysed o-nitrophenyl β-d galactopyranoside (ONPG) with a Km value of 1.73 mM at 37 °C. The energy of activation (Ea) calculated in the range of 35 to 60 °C, using Arrhenius equation, was determined to be 11.32 kcal mol−1. The enzyme could also hydrolyse lactose, with an optimum pH of 4.0 at 40 °C. Km and Ea for lactose hydrolysis was found to be 10 mM and 10.57 kcal mol−1, respectively. The enzyme was found to be comparatively thermostable showing maximum activity at 60 °C for both ONPG and lactose. Galactose was found to be the competitive inhibitor. β-Galactosidase also exhibited glycoproteineous properties when applied on Con-A Sepharose column. The enzyme was localised in germinated seeds with X-gal activity staining and shown to be expressed prominently at grown radical tip and seed coat. Sequence alignment of CpGAL with other known plant β-galactosidase showed high amino acid sequence homology.  相似文献   

9.
Optimisation of pectin hydrolysis using pectolytic enzymes produced by Aspergillus niger CECT 2088 was carried out. The effect of enzyme concentration (0.018–0.072%, w/v), substrate concentration (0.004–0.896%, w/v), pH (4.49–5.91), temperature (32.2–67.8 °C) and reaction time (18.2–71.8 min) on the enzymatic process was studied. The experiments were arranged according to a central composite statistical design. Response surface methodology (RSM) was used to assess factor interactions and empirical models regarding four product response variables (i.e., reactor conversion, reducing sugar concentration, endopectolytic productivity and enzymatic depolymerization productivity). Multi-response optimisation was also performed on the reactor and endopectolytic productivity data set of the factorial design. The highest reactor conversion (61%) and endopectolytic productivity (7.2 cSt mg−1 ml−1) were achieved with 1 h reaction time at 46 °C and pH 4.8 at a substrate/enzyme ratio of 11.6.  相似文献   

10.
A novel aspartic protease was extracted from the defatted viscera of sardinelle (Sardinella aurita) and purified, with a 9.5-fold increase in specific activity and 23.3% recovery. The molecular weight of the purified enzyme was estimated to be 17 kDa by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE). The purified enzyme appeared as a single band on native-PAGE. The optimum pH and temperature for protease activity were around 3.0 and 40 °C, respectively. The enzyme showed pH stability between 2.0 and 5.0 and retained more than 50% of its activity after heating for 30 min at 50 °C. The enzyme lost 90% of its activity after incubation with pepstatin A at room temperature, but was not inhibited by soybean trypsin inhibitor or phenylmethylsulfonyl fluoride. Its Km value was determined to be 0.73 × 10−4 M using haemoglobin as a substrate. The N-terminal 12 amino acid sequence of the purified acidic protease was R V I I E D X D Q F C T. This sequence showed low homology with aspartic peptidases of several other species of fish, suggesting that the enzyme is a new aspartic protease.  相似文献   

11.
Two trypsins of anionic form (trypsin A) and cationic form (trypsin B) from the pyloric caeca of mandarin fish (Siniperca chuatsi) were highly purified by a series of chromatographies, including DEAE-Sephacel, Sephacryl S-200 HR, Q-Sepharose or SP-Sepharose. Purified trypsins revealed a single band on native-PAGE. The molecular weights of trypsin A and B were 21 kDa and 21.5 kDa, respectively, as estimated by SDS–PAGE, both under reducing and non-reducing conditions. Zymography analysis showed that both trypsins were active in degrading casein. Trypsin A and B exhibited maximal activity at 35 °C and 40 °C, respectively, and shared the same optimal pH of 8.5, using Boc-Phe-Ser-Arg-MCA as substrate. The two trypsins were stable up to 45 °C and in the pH range from 4.5 to 11.0. Trypsin inhibitors are effective on these two enzymes and their susceptibilities were similar. Both trypsins were activated by metal ions such as Ca2+ and Mg2+ and inactivated by Fe2+, Zn2+, Mn2+, Cu2+, Al3+, Ba2+ and Co2+ to different degrees. Apparent Km values of trypsin A and B were 2.18 μM and 1.88 μM, and Kcat values were 81.6 S−1 and 111.3 S−1 for Boc-Phe-Ser-Arg-MCA, respectively. Immunoblotting analysis using anti-common carp trypsin A positively cross-reacted with the two enzymes, suggesting their similarity. The N-terminal amino acid sequence of trypsin B was determined as IVGGYECEAH, which is highly homologous with trypsins from other species of fish.  相似文献   

12.
The combined effects of high pressure processing (HPP) and pH on the glycolytic and proteolytic activities of Lactococcus lactis subsp. lactis, a commonly used cheese starter culture and the outgrowth of spoilage yeasts of Candida species were investigated in a fermented milk test system. To prepare the test system, L. lactis subsp. lactis C10 was grown in UHT skim milk to a final pH of 4.30 and then additional samples for treatment were prepared by dilution of fermented milk with UHT skim milk to pH levels of 5.20 and 6.50. These milk samples (pH 4.30, 5.20 and 6.50) with or without an added mixture of two yeast cultures, Candida zeylanoides and Candida lipolytica (105 CFU mL−1 of each species), were treated at 300 and 600 MPa (≤20 °C, 5 min) and stored at 4 °C for up to 8 weeks. Continuing acidification by starter cultures, as monitored during storage, was substantially reduced in the milk pressurised at pH 5.20 where the initial titratable acidity (TA) of 0.40% increased by only 0.05% (600 MPa) and 0.10% (300 MPa) at week 8, compared to an increase of 0.30% in untreated controls. No substantial differences were observed in pH or TA between pressure-treated and untreated milk samples at pH 4.30 or 6.50. The rate of proteolysis in milk samples at pH values of 5.20 and 6.50 during storage was significantly reduced by treatment at 600 MPa. Treatment at 600 MPa also reduced the viable counts of both Candida yeast species to below the detection limit (1 CFU mL−1) at all pH levels for the entire storage period. However, samples treated at 300 MPa showed recovery of C. lipolytica from week 3 onwards, reaching 106–107 CFU mL−1 by week 8. In contrast, C. zeylanoides did not show any recovery in any of the pressure-treated samples during storage.  相似文献   

13.
Extraction of secoisolariciresinol from seed hulls and whole seeds of flax was improved using an enzymatic step with cellulase R10 from Trichoderma reesei that allowed better yield as compared to β-glucosidase. The cellulase assisted extraction process was further optimised for different parameters such as duration and concentration of hydromethanolic extraction, duration of alkaline hydrolysis, pH, duration and incubation temperature as well as enzyme concentration. Best results were obtained using a method including the following successive steps: 16 h of 70% hydromethanolic extraction, 6 h of 0.1 M sodium hydroxide hydrolysis followed by a 6 h incubation with 1 unit ml−1 of cellulase R10 in 0.1 M citrate–phosphate buffer pH 2.8 at 40 °C. Under these conditions, all forms of the main flax lignan were recovered as the aglycone form, i.e. secoisolariciresinol. Highest yields in secoisolariciresinol diglucoside (SDG) equivalent reached 7.72% of flaxseed hull (cv. Baladin) dry weight and 2.88% of whole seed (cv. Barbara) weight, thus allowing a significant improvement in comparison with published methods.  相似文献   

14.
Glucoamylases (GAs) from a wild and a deoxy-d-glucose-resistant mutant of a locally isolated Aspergillus niger were purified to apparent homogeneity. The subunit molecular mass estimated by SDS–PAGE was 93 kDa for both strains, while the molecular masses determined by MALDI-TOF for wild and mutant GAs were 72.876 and 72.063 kDa, respectively. The monomeric nature of the enzymes was confirmed through activity staining. Significant improvement was observed in the kinetic properties of the mutant GA relative to the wild type enzyme. Kinetic constants of starch hydrolysis for A. niger parent and mutant GAs calculated on the basis of molecular masses determined through MALDI-TOF were as follows: kcat = 343 and 727 s−1, Km = 0.25 and 0.16 mg mL−1, kcat/Km (specificity constant) = 1374 and 4510 mg mL−1 s−1, respectively. Thermodynamic parameters for soluble starch hydrolysis also suggested that mutant GA was more efficient compared to the parent enzyme.  相似文献   

15.
Peroxidase from olive fruit (Olea europaea L., cv Douro) in a black ripening stage was purified to electrophoretic homogeneity, resulting in four cationic and four anionic fractions. The anionic fractions accounted for 92% of recovered activity and showed molecular masses of 18–20 kDa. The anionic fraction PODa4, the predominant fraction that comprised about 70% of total recovered activity, showed an isoelectric point of 4.4 and optimum pH and temperature of, respectively, 7.0 and 34.7 °C, and apparent Km values of 41.0 and 0.53 mM, for phenol and H2O2, respectively. From the activity-temperature profile, the denaturation temperature and the changes in enthalpy and heat capacity for unfolding of PODa4 were estimated as being, respectively, 36.5 °C, 411.2 and −13.6 kJ mol−1 K−1. The activation energy for phenol oxidation by PODa4 was 99.1 kJ mol−1, corresponding to a calculated temperature coefficient (Q10) of 4. The arabinose (39 mol%) and galacturonic acid (38 mol%) content of the carbohydrate moiety indicated the existence of pectic material in the purified PODa4 fraction. Co-migration of the carbohydrate with the protein band in the isoelectric focusing electrophoresis, points to PODa4 fraction as being a pectin type binding peroxidase.  相似文献   

16.
Defatted Erythrina variegata flour was prepared from dehusked seed meal by hexane extraction of residual oil. The resulting flour had 403 g kg−1 of protein as compared to 282 g kg−1 in the whole seed-defatted meal. Nitrogen extractability of the defatted flour in water was not much influenced by the length of extraction period above 40 min, but an increased extraction was observed at a higher liquid to solid ratio up to a studied limit of 1:60; the optimal ratio was found to be 1:30. The minimum of 26.9% nitrogen was extracted in the pH range 3.0–4.0 and maximum of 94.8% at pH 12. Addition of sodium chloride (0.1 or 0.5 M) broadened the pH range of minimum nitrogen extractability and shifted it toward a lower pH region. At both concentrations of sodium chloride, a marked increase in nitrogen extractability, in the pH range 3.0–7.0, was observed. Precipitation of protein from an extract of pH 10.0 was maximum (85.3%) at pH 4.75. A higher buffer capacity of the flour was observed in the acidic medium (0.195 mmol HCl g−1 flour) than in alkaline medium (0.093 mmol NaOH g−1). Water absorption and oil absorption values for the whole E. variegata seed flour and the dehusked, defatted flour were 1.81, 1.43 and 1.02, 1.52 kg kg−1, respectively.  相似文献   

17.
An extracellular aspartyl proteinase from Mucor mucedo DSM 809 submerged cultures was purified by a two-steps chromatographic procedure. The enzyme had a molecular weight (MW) of 32.7 kDa, and an isoelectric point (pI) value of 4.29; no evidence of N-linked glycosylation was found. As judged by mass spectrometry, the primary structure of the M. mucedo enzyme presented homology with Rhizopus spp. proteinases. The secondary structure showed 4% α-helix, 48% β-sheet and 48% random coil structure in 20 mM phosphate buffer (pH 5.8), as evidenced by circular dichroism spectroscopy. When acting on milk to provoke curd formation, the proteinase showed maximum potency at pH 5.0 and at 40 °C. The enzyme was heat-sensitive and became completely inactivated after incubation at 55 °C for 10 min. These results indicate that the milk-clotting enzyme from M. mucedo can be considered as a potential substitute for bovine chymosin in cheese manufacturing.  相似文献   

18.
The specific activity and catalytic efficiency (kcat/Km) of the recombinant putative protein from Providencia stuartii was the highest for d-lyxose among the aldose substrates, indicating that it is a d-lyxose isomerase. Gel filtration analysis suggested that the native enzyme is a dimer with a molecular mass of 44 kDa. The maximal activity for d-lyxose isomerization was observed at pH 7.5 and 45 °C in the presence of 1 mM Mn2+. The enzyme exhibited high isomerization activity for aldose substrates with the C2 and C3 hydroxyl groups in the left-hand configuration, such as d-lyxose, d-mannose, l-ribose, d-talose, and l-allose (listed in decreasing order of activity). The enzyme exhibited the highest activity for d-xylulose among all pentoses and hexoses. Thus, d-lyxose was produced at 288 g/l from 500 g/l d-xylulose by d-lyxose isomerase at pH 7.5 and 45 °C for 2 h, with a conversion yield of 58 % and a volumetric productivity of 144 g l− 1 h− 1. The observed kcat/Km (920 mM− 1 s− 1) of P. stuartiid-lyxose isomerase for d-xylulose is higher than any of the kcat/Km values previously reported for sugar and sugar phosphate isomerases with monosaccharide substrates. These results suggest that the enzyme will be useful as an industrial producer of d-lyxose.  相似文献   

19.
The first chemical characterization of abbamele, a traditional honey decoction from Sardinia (Italy) is hereby reported. Water content (from 17.7% to 27.7%), electrical conductivity (from 0.19 to 0.81 mS cm−1), pH (from 3.21 to 3.92), free acidity (from 26.1 to 87.6 meq kg−1), invertase activity (from 0 to 1.02 U kg−1), 5-(hydroxymethyl)-2-furaldehyde, HMF (from 881 to 4776 mg kg−1), total polyphenols (from 188 to 984 mg kg−1) and free amino acid contents of thirteen abbamele samples, from industrial and traditional producers, were obtained in an attempt to compare this traditional product with honey and to study the relationship between its main features and the production procedures. The long thermal treatment involved in the production of abbamele has been identified as the main cause of very low (or absent) invertase activity and free amino acid content as well as the very high content of HMF.  相似文献   

20.
The identification of foodborne microorganisms and their endospores in food products are important for food safety. The present work compares Bacillus (Bacillus licheniformis, Bacillus circulans and Bacillus subtilis) and Micrococcus (Micrococcus luteus) species with Fourier transform infrared (FTIR) spectroscopy. Our results show that there are several characteristic peaks belonging to both the Micrococcus and Bacillus species which can be used for the identification of these foodborne bacteria and their endospores. For Micrococcus species, a new band was observed at 1338 cm−1 which may be due to acetate oxidation via the carboxylic acid cycle. The bands at 1313 cm−1 and 1256 cm−1 can be explained by an exopolymer formation and the other bands at 1074 cm−1 and 550 cm−1, may be due to the glycogen-like storage material in Micrococcus spp. There are also characteristic peaks at 993 cm−1 and 801 cm−1 for these bacterial species. Different Bacillus species also showed characteristic peaks at 1000–500 cm−1 region. Dipicolinic acid (DPA) bands at ∼728 cm−1 and ∼703 cm−1 seen only in B. circulans were the marker of an endospore formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号