首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
酪胺分子印迹聚合物的制备及识别特性研究   总被引:1,自引:0,他引:1  
利用分子印迹技术制备用于酪胺快速检测的分子印迹聚合物.以酪胺为模版分子,甲基丙烯酸(MAA)为功能单体,偶氮二异丁腈(AIBN)为引发剂,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,在乙腈中沉淀聚合制备了酪胺分子印迹聚合物微球.通过紫外光谱法对酪胺与MAA的相互作用进行了分析,结果表明在研究的浓度范围内主客体主要存在形式为1个酪胺分子与1个MAA分子发生作用.对聚合物吸附动力学进行了初步研究,通过静态平衡吸附实验研究了聚合物微球对模板分子的结合能力,印迹聚合物微球在8h后逐渐达到吸附平衡.利用Langmuir数学模型对吸附特性进行了分析,Scatchard图显示印迹聚合物的最大吸附量Bmax=325.0μmol/g和解吸常数KD=0.577mmol/L.同时印迹聚合物的吸附选择性较好.此方法合成的印迹聚合物微球对酪胺有较好的结合性能,可应用于酪胺的分离检测.  相似文献   

2.
拟制备阿魏酸分子印迹聚合物微球,考察聚合物的特异吸附性能。以阿魏酸为模板分子,丙烯酰胺(AM)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,2,2′-偶氮二异丁腈(AIBN)为引发剂,采用沉淀聚合法合成分子印迹微球,采用静态吸附及扫描电镜(SEM)方法对微球进行表征。制得的印迹聚合物微球的形貌和吸附性能较好,对阿魏酸与肉桂酸的选择性分离因子α为1.97。分子印迹聚合物微球对阿魏酸分子有特异性吸附和识别能力。  相似文献   

3.
在光和热引发条件下,以氨基甲酸甲酯为模板分子,CdSe/CdS核壳量子点为荧光组分,采用沉淀聚合法制备了氨基甲酸甲酯荧光分子印迹微球。利用X射线衍射仪、扫描电镜和红外光谱对量子点和聚合物的形貌、结构等进行分析,通过吸附试验考察聚合微球的性能。聚合物球形尺寸均匀,内部存在大量印迹位点,并呈现出较好的特异吸附性和荧光性能。此聚合物有望作为荧光传感器应用于食品、环境等领域中氨基甲酸酯类农药残留的快速检测。  相似文献   

4.
芦丁分子印迹聚合物的制备及其吸附性能的研究   总被引:1,自引:1,他引:0  
以芦丁为模板分子,以α-甲基丙烯酸(MAA)和丙烯酰胺(AM)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,利用分子印迹技术在甲醇/水(V/V,1/4)溶剂中合成了芦丁分子印迹聚合物(MIPs),研究了不同功能单体及其用量和不同交联剂用量的聚合体系组成对印迹聚合物吸附特性的影响。对最佳比例制备的MIPs进行了吸附等温实验和Scatchard分析,其结合位点的离解常数Kd分别为105.26mg.L-1和1250mg.L-1,饱和吸附量Qmax分别为18.02mg.g-1和73.50mg.g-1。并利用红外光谱(IR)对分子印迹聚合物进行了表征。  相似文献   

5.
以纳米SiO2为载体,苏丹红IV为模版分子,甲基丙烯酸为功能单体,二甲基丙烯酸乙二醇酯为交联剂,采用表面印迹法制备分子印迹物聚合物。对该聚合物进行了吸附等温线的测定以及Scatchard分析,结果表明分子印迹聚合物对苏丹红IV有两种结合方式,计算得到的最大表观吸附量(Qmax)和平衡离解常数(Kd)分别为:Qmax1=0.8306mg/g,Kd1=4.760mg/L;Qmax2=4.146mg/g,Kd2=112.4mg/L。进行了吸附动力学的测定,结果显示该聚合物对苏丹红IV的吸附符合准二级动力学模型。最后应用该聚合物进行基质固相分散萃取辣椒制品中的苏丹红Ⅰ、Ⅱ、Ⅲ、Ⅳ,最佳实验条件为:聚合物与样品的用量比1∶1,研磨时间8min,洗脱剂为4mL 5%乙酸乙醇溶液。该方法兼备了分子印迹技术的选择性和基质固相分散技术的快速分离性。  相似文献   

6.
以双酚A(BPA)为模版分子,4-VP为功能单体,Trim为交联剂,采用沉淀聚合法合成BPA分子印迹聚合微球(MIPs)。通过紫外和红外光谱考察BPA与4-VP相作用机理,扫描电镜(SEM)观察MIPs的表观形态;结果表明BPA和4-VP之间形成了氢键并且以1:2的比例相结合,MIPs表面光滑呈球状。吸附实验显示MIPs具有较高的特异性,吸附能力远高于非分子印迹聚合物(NIPs)。对吸附曲线进行Scatchard分析,在MIPs上形成了均匀的BPA吸附位点,其最大表观吸附量(Qmax)和平衡离解常数(Kd)分别为28.83μmol/g和0.3112μmol/L。固相萃取(SPE)分析表明MIPs对BPA具有较高选择性和吸附容量,可以用于分离、富集和检测复杂食品样品中的BPA。  相似文献   

7.
4-甲基咪唑印迹聚合物的制备及其识别特性研究   总被引:1,自引:1,他引:0  
利用分子印迹技术,制备用于4.甲基咪唑(4-MI)快速检测的高分子材料。以4-甲基咪唑为模板分子,α-甲基丙烯酸(MAA)为功能单体,偶氮二异丁腈(AIBN)为引发剂,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,在乙腈中通过沉淀聚合制备rr分子印迹聚合物。用紫外分光光度法对4-MI与MAA的相互作用进行了分析,结果表明主客体主要存在形式为,1个4-MI为1个MAA所包围。利用Langmuir数学模型对吸附特性进行了分析,Scatchard图显示印迹聚合物的最大吸附量Bmax=221.14μmol/g和解吸常数KD=1.8mmol/L。同时对印迹聚合物的吸附选择性和吸附动力学进行了初步研究。  相似文献   

8.
以香兰素(Van)为模板、甲基丙烯酸(MAA)为功能单体、偶氮二异丁腈(AIBN)为引发剂和乙烯二醇二甲基丙烯酸酯(EDMA)为交联剂,采用沉淀聚合法合成一种新型的对Van有特异识别功能的分子印迹聚合物微球(MIPs)。通过UV、傅里叶变换红外光谱仪(FT-IR)和1H NMR光谱法研究模板与功能单体之间的相互作用和识别机理,采用扫描电镜(SEM)考察MIPs表面形态,通过平衡和等温吸附实验对MIPs和非分子印迹微球(NIPs)吸附性能进行研究。结果表明:MAA与Van之间通过氢键相互作用,MIPs具有表面光滑的规则球状结构,MIPs对Van的吸附和识别能力远高于NIPs,并且在120min后达到吸附平衡状态,Scatchard分析表明在MIPs上形成了均匀的对Van有特异性的结合位点,最大表观吸附量Qmax和平衡离解常数Kd分别为7.357μmol/g和4.243×10-5mol/L;选择性分离、分子印迹固相萃取(MIP-SPE)和HPLC实验分析表明,MIPs对Van具有很好的分离和富集能力。  相似文献   

9.
采用分子印迹技术,以反式白藜芦醇为模板分子,通过溶胶-凝胶法制备白藜芦醇纳米二氧化硅表面分子印迹聚合物(MIPs-Res),并通过静态吸附平衡实验、扫描电镜、红外光谱研究聚合物的吸附特性、结构及形貌特征。结果表明:与化学组成相同的非印迹聚合物(NIPs)相比,MIPs-Res对白藜芦醇具有较高的选择性和吸附性,该聚合物最佳吸附溶剂为氯仿-乙腈(体积比1:11),吸附温度为室温25℃,吸附平衡常数Kd1为3.42mg/L,最大表观结合量Qmax1为11.20mg/g,3h内达到吸附平衡,将该印迹聚合物用于选择性分离/富集白藜芦醇是可行的。  相似文献   

10.
以辛弗林为模板分子,丙烯酸和丙烯酸羟乙酯为双功能单体,偶氮二异丁腈为引发剂,乙二醇二甲基丙烯酸酯为交联剂,通过沉淀聚合法制备辛弗林分子印迹聚合物。静态吸附法筛选最佳合成条件,测定最佳条件下聚合物的最大吸附量、特异识别性能和吸附机理,通过扫描电子显微镜对聚合物进行形态表征,以合成的分子印迹聚合物作为固相萃取填料,对枳实粗粉中的辛弗林进行提取和纯化。实验结果表明在10 mL乙腈作为致孔剂的条件下,当模板分子与功能单体、引发剂、交联剂物质的量比为1∶4∶2∶20时,分子印迹聚合物形貌良好,对辛弗林具有特异识别性且吸附效果最佳,最大吸附量为228.82μmol/g。利用分子印迹固相萃取技术对枳实粗粉中的辛弗林进行精制后,辛弗林质量分数由1.93%提高到93.34%,提取率为73.90%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号