首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The destabilisation mechanism of oil-in-water (o/w) emulsions was studied as a function of oil content (20% and 40% o/w), homogenisation conditions and crystallisation temperatures (10, 5, 0, −5 and −10 °C). A mixture of anhydrous milk fat and soya bean oil was used as the lipid phase and whey protein isolate (2 wt%) as emulsifier. Crystallisation and melting behaviours were analysed using differential scanning calorimetry. Physicochemical stability was measured with a vertical scan macroscopic analyser. Emulsions with 20% oil were found to be less stable than those with 40% oil. For 20% o/w emulsions, the crystallisation was delayed and inhibited in emulsions with smaller droplets and promoted in emulsions with larger droplets when compared with 40% o/w emulsions. Depending on the droplet sizes in the emulsion, the formation of lipid crystals (in combination with the emulsifier) either stabilises (small droplets) or destabilises (big droplets) the emulsion.  相似文献   

2.
Oil in water emulsions (40 wt%) were prepared from a homologous series of n-alkanes (C10–C18). The samples were temperature cycled in a differential scanning calorimeter (two cycles of 40 °C to −50 °C to 40 °C at 5 °C min−1) and in bulk (to −20 °C). The emulsions destabilized and phase-separated after freeze–thaw if the droplets were solid at the same time as the continuous phase and were more unstable if a small molecule (SDS or polyoxyethylene sorbitan monolaurate) rather than a protein (whey protein isolate or sodium caseinate) emulsifier was used. The unstable emulsions formed a self-supporting cryo-gel that persisted between the melting of the water and the melting of the hydrocarbon phase. Microscopy provides further evidence of a hydrocarbon continuous network formed during freezing by a mechanism related to partial coalescence which collapses during lipid melting to allow phase separation.  相似文献   

3.
The influence of emulsifier type (Tween 20, whey protein isolate, casein) on the physical properties of 20 wt% hydrogenated palm oil-in-water emulsions after crystallization of (i) the oil phase only or (ii) both the oil and water phases has been examined. Emulsion stability was assessed by differential scanning calorimetry measurements of fat destabilization after cool–heat cycles, and by measurements of mean particle size, oiling off, and gravitational separation after isothermal storage (−20 to 37 °C). Tween 20-stabilized emulsions showed appreciable fat destabilization at temperatures where the oil phase was partially crystalline, which was attributed to partial coalescence. Protein-stabilized emulsions were stable under these conditions, which was mainly attributed to the relatively thick interfacial membranes surrounding the droplets. When both oil and water phases crystallized, there was complete destabilization of Tween 20- and casein-stabilized emulsions, and extensive destabilization of whey protein-stabilized emulsions, which was attributed to ice crystallization. The results of this study could facilitate the development of frozen food products with improved properties.  相似文献   

4.
The addition of water to lipsticks in the form of a water-in-oil emulsion is an attractive opportunity for cosmetics manufacturers to deliver hydrophilic molecules to the consumers, as well as improving the moisturizing properties. In this work, the effect of the emulsifier type and water content on the structural properties of the designed products was investigated. It has been shown that PGPR leads to smaller droplets than the other emulsifiers tested. This was attributed to the ability of PGPR to form elastic interfaces that slow the coalescence between droplets during the process. It was also observed that crystals of wax tend to form structures at the interface upon cooling that prevent coalescence during storage. These structures also prevent leakage of water into the continuous phase. No effect of the water content on the melting properties of the emulsions was observed. Upon addition of more than 10% water, softening of the material was measured, due to the overall decrease in solid content. Addition of crystalline material (hard paraffin) was successfully used to reinstate the material properties.  相似文献   

5.
The aim of this research was to examine the physical and crystallization characteristics of two type of edible fats with the addition of combination of two kind of emulsifiers and with the addition of, so-called, combined emulsifier 2 in 1. NMR technique was used for measuring the solid fat content (SFC) of fats on different temperatures, as well as for crystallization rate under static conditions, by measuring the change of SFC in a function of time. Also, the possibility of applying of Gompertz’s mathematical method to define kinetics of crystallization was investigated. The hardness of fats was defined by penetration on texture analyser, while the rheological properties were determined using the rotational rheometer. The samples of both fats with emulsifier 2 in 1 added have a lower crystallization rate with less amounts of crystals formed, which indicates better spreadability comparing with samples that contain the combination of two emulsifiers. This is also shown by physical determination, since emulsifier 2 in 1 significantly reduced the values of hardness and work of shearing, as for the values of yield stress and tixotropy curve area. Emulsifier 2 in 1 would significantly facilitate the handling in confectionery industry because it can be used instead of the combination of two different type of emulsifiers, which are usually combined in order to give the necessary technological characteristics of confectionery products that contain the fat phase. Also, this emulsifier would improve the quality of those products since it showed better emulsifying properties than combination of two different emulsifiers.  相似文献   

6.
将单,双甘油脂肪酸酯与蔗糖酯按一定比例复配成不同亲水亲油平衡(hydrophile lipophilic balance,HLB)值的乳化剂,研究复配乳化剂HLB值对稀奶油脂肪聚结及结晶影响,并对其乳液性质及打发性质进行表征。结果表明,随着复配乳化剂HLB值的增大,乳液粒径增大且表观黏度升高进而使搅打时间延长;热力学及Avrami等温结晶动力学结果表明,复配乳化剂HLB值为10时,高熔点乳脂熔融温度改善显著,并且结晶速率最快;HLB值为8~10时打发性较好,乳清泄漏率较低,涂抹性较佳。因此,复配乳化剂HLB值应控制在8~10,此时更适用于高品质裱花稀奶油的工业生产。  相似文献   

7.
The purpose of this study was to examine the impact of emulsifier type on the micro-structural changes that occur to emulsified lipids as they pass through a model gastrointestinal system. Lipid droplets initially coated by different kinds of emulsifiers (lecithin, Tween 20, whey protein isolate and sodium caseinate) were prepared using a high speed blender. The emulsified lipids were then passed through an in vitro digestion model that simulated the composition (pH, minerals, surface active components, and enzymes) of mouth, stomach and small intestine juices. The change in structure and properties of the lipid droplets were monitored by laser scanning confocal fluorescence microscopy, conventional optical microscopy, light scattering, and micro-electrophoresis. In general, there was a decrease in mean droplet diameter (d32) as the droplets moved from mouth to stomach to small intestine. The electrical charge on the droplets stabilized by lecithin, Tween 20 and sodium caseinate were negative throughout the model GI system, while those stabilized by whey protein were positive in the stomach. This suggests that at least some of this globular protein remained attached to the droplet surfaces. The data was interpreted in terms of the competitive adsorption of phospholipids/bile salts with the adsorbed emulsifiers, as well as the enzymatic digestion of proteins and lipids. These results enhance our understanding of the physicochemical and structural changes that may occur to emulsified lipids within the gastrointestinal tract, which may have important consequences for the design of functional foods that alter lipid bioavailability. Nevertheless, there were appreciable differences between the behavior of emulsions within the in vitro model used in this study and literature reports of their behavior within in vivo studies, which highlights the need for more realistic in vitro digestion models.  相似文献   

8.
The microstructural and large deformation rheological properties of model food gels were studied by performing notch propagation tensile testing on the gels using a tensile stage and observing changes in the microstructure of the gels during tensile testing using confocal laser scanning microscopy (CLSM). Heat-set whey protein (WP) gels containing either added sodium caseinate (NaCN) or sunflower oil droplets emulsified with WP or NaCN as the emulsifier protein were prepared in 0 or 50 mM NaCl. The WP gel structure strengthened in the presence of added NaCl and NaCN. The rheological properties of WP gels containing sunflower oil droplets emulsified with WP or NaCN were influenced by the NaCl concentration, oil concentration and extent of oil droplet aggregation in the gel or by the type of emulsifier protein used. During tensile testing, the notch length in all gels increased above a certain critical stress, leading to fracture of the gels through the notch. Also, the microstructural changes in the oil phase of emulsion filled gels subjected to tensile testing were influenced by the structural properties of the WP gel matrix and the proximity of the oil droplet to the fracture path.  相似文献   

9.
The effect of cooling rate on the destabilization of oil-in-water (o/w) emulsions was studied as a function of oil content (20% and 40% o/w), homogenization conditions, and crystallization temperatures (10, 5, 0, ?5 and ?10 °C). The lipid phase was a mixture of anhydrous milk fat and soybean oil, and whey protein was used as the emulsifier. Differential scanning calorimetry was used to analyze the crystallization and melting behaviors; while a vertical scan macroscopic analyzer measured the physicochemical stability. Slow cooling rate increased the stability of emulsions with 20% oil. In addition, slow cooling promoted the onset of crystallization and delayed crystal growth. These effects were more significant in emulsions formulated with 20% oil and formulated under processing conditions that resulted in bigger droplet sizes (~0.9 μm).  相似文献   

10.
乳化稳定剂对冰淇淋融化特性的影响   总被引:1,自引:0,他引:1  
《中国食品工业》1998,(10):34-35
<正> 冰淇淋是一个复杂的食品体系,其连续相是一个部分凝冻的油/水乳状液,在乳状液中,气体(空气)和固体(糖、盐、蛋白质和稳定剂)均匀分布于其中。  相似文献   

11.
EFFECT OF EMULSION DROPLETS ON THE RHEOLOGY OF WHEY PROTEIN ISOLATE GELS   总被引:2,自引:0,他引:2  
The effects of droplet size and emulsifier type on the rheology of whey protein isolate (WPI) gels containing emulsion droplets was studied. Gels were prepared by dispersing droplets of corn oil (20 wt%, d32= 0.7 – 4 μm) in a 10 wt% WPI solution (pH 7.0, 50 mM NaCl), and heating at 90C for 15 min. Gel strength was determined by measuring the stress of gels at 20% compression using an Instron Universal Testing Machine. Droplets stabilized by WPI increased the gel strength, those stabilized by non-ionic surfactants (Tween 20 and Triton X-100) decreased it slightly, and those stabilized by SDS decreased it drastically. Gel strength increased as the droplet size decreased for droplets stabilized by WPI, but was relatively insensitive to the size of droplets stabilized by the small molecule surfactants. These observations may be explained in terms of the interactions between the emulsifiers and the protein network. Droplets coated with emulsifiers which can be incorporated into the protein network reinforce the structure and so increase gel strength, whereas droplets coated with emulsifiers which cannot be incorporated into the protein network disrupt the three dimensional structure of the gel and decrease its strength.  相似文献   

12.
The ability of palm oil (PO) to crystallize as beta prime polymorph has made it an attractive option for the production of margarine fat (MF). Palm stearin (PS) expresses similar crystallization behavior and is considered one of the best substitutes of hydrogenated oils due to its capability to impart the required level of plasticity and body to the finished product. Normally, PS is blended with PO to reduce the melting point at body temperature (37 °C). Lipid phase, formulated by PO and PS in different ratios were subjected to an emulsification process and the following analyses were done: triacylglycerols, solid fat content (SFC), and thermal behavior. In addition, the microstructure properties, including size and number of crystals, were determined for experimental MFs (EMFs) and commercial MFs (CMFs). Results showed that blending and emulsification at PS levels over 40 wt% significantly changed the physicochemical and microstructure properties of EMF as compared to CMF, resulting in a desirable dipalmitoyl-oleoyl-glycerol content of less than 36.1%. SFC at 37 °C, crystal size, crystal number, crystallization, and melting enthalpies (ΔH) were 15%, 5.37 μm, 1425 crystal/μm(2), 17.25 J/g, and 57.69J/g, respectively. All data reported indicate that the formation of granular crystals in MFs was dominated by high-melting triacylglycerol namely dipalmitoyl-oleoyl-glycerol, while the small dose of monoacylglycerol that is used as emulsifier slowed crystallization rate. Practical Application: Most of the past studies were focused on thermal behavior of edible oils and some blends of oils and fats. The crystallization of oils and fats are well documented but there is scarce information concerning some mechanism related to crystallization and emulsification. Therefore, this study will help to gather information on the behavior of emulsifier on crystallization regime; also the dominating TAG responsible for primary granular crystal formations, as well as to determine the best level of stearin to impart the required microstructure properties and body to the finished products.  相似文献   

13.
Delivery systems are often needed to encapsulate lipophilic active agents, protect them during storage, and then release them within the mouth. In this study, gelatin and caseinate were used to fabricate temperature-sensitive filled hydrogel particles. Filled hydrogel microspheres were formed by electrostatic complexation of caseinate and gelatin in the presence of caseinate-coated lipid droplets. This was achieved by mixing aqueous 1% sodium caseinate and 1% gelatin solutions (volume ratio 1:2) at pH 5.8 with an oil-in-water emulsion. The majority of lipid droplets were trapped within the hydrogel microspheres. Turbidity and viscosity measurements of the hydrogels indicated that hydrogel particles dissociated upon heating because of gelatin melting (around 35 °C). Light scattering and confocal fluorescence microscopy indicated that lipid droplets were released from the gelatin-based hydrogel particles after oral processing, which was attributed to hydrogel melting under simulated mouth conditions. Our results suggest that hydrogel particles based on electrostatic complexation of sodium caseinate and gelatin could be useful as oral delivery systems for lipophilic active agents.  相似文献   

14.
Emulsion filled alginate microgel particles can be applied as carrier systems for lipophilic actives in pharmaceutical and food formulations. In this study, the effects of oil concentration, emulsifier type and oil droplet size on the physical stability of emulsions encapsulated in calcium alginate microgel particles (20–80 μm) produced by a continuous impinging aerosol technique were studied. Oil emulsions emulsified by using either sodium caseinate (SCN) or Tween 80 were encapsulated at different oil concentrations (32.55, 66.66 and 76.68% w/w of total solids content). The emulsions were analysed before and after encapsulation for changes in emulsion size distribution during storage, and compared to unencapsulated emulsions. The size distribution of encapsulated fine emulsion (mean size ~ 0.20 μm) shifted to a larger size distribution range during encapsulation possibly due to the contraction effect of the microgel particles. Coarse emulsion droplets (mean size ~ 18 μm) underwent a size reduction during encapsulation due to the shearing effect of the atomizing nozzle. However, no further size changes in the encapsulated emulsion were detected over four weeks. The type of emulsifier used and emulsion concentration did not significantly affect the emulsion stability. The results suggest that the rigid gel matrix is an effective method for stabilising lipid emulsions and can be used as a carrier for functional ingredients.  相似文献   

15.
A comparison of the emulsification performance of a high-pressure valve homogeniser (HPH) and a Microfluidizer has been carried out for a range of different oil to aqueous phase viscosity ratios, emulsifier types, pressure drops and number of passes through the chambers. It has been shown that for the same pressure drop across the two chambers, similar droplet sizes are produced (after 5 passes). Differences in droplet size were observed after a single pass, with the HPH producing larger droplets with a wider distribution of sizes. This difference can be attributed to the design of the homogenisation chambers with the HPH producing a wide distribution of shearing forces, so all of the starting emulsion does not experience the maximum stresses at each pass. Droplet size has been shown to be independent of viscosity ratio (0.1–80) for both homogenisers indicating that breakup is occurring in turbulent flow. No effect of emulsifier was observed in the Microfluidizer with SDS, Tween 20 and sodium caseinate. However, with the HPH, the droplet size reached a limiting value after 2 passes with SDS while with Tween 20 and sodium caseinate 5 passes were required indicating that coalescence occurs in the HPH but this is more effectively eliminated by SDS.  相似文献   

16.
Model comminuted meat gels incorporating corn oil droplets, emulsified either with salt-soluble meat proteins (SSMP) or with soy protein isolate (SPI), were prepared by heat treatment of meat paste at 90 °C, and their strength was evaluated by applying a uniaxial compression test. The presence of emulsified oil droplets resulted in a significant reduction of the gel network strength, the extent of decrease being independent of the type of protein emulsifier used. Gels prepared with SSMP, on the other hand, suffered a less pronounced structure disruption by oil droplet incorporation and the extent of disruption depended on the type of protein used for oil emulsification. Competitive adsorption studies in emulsions between SSMP and SPI indicated that the former may partly displace the latter from oil droplet surface, thus, offering binding sites to which the SSMP molecules of the gel network may become attached during the development of system structure.  相似文献   

17.
The development of structure in ice cream, characterized by its smooth texture and resistance to collapse during melting, depends, in part, on the presence of solid fat during the whipping and freezing steps. The objective of this study was to investigate the potential application of 10% rice bran wax (RBW) oleogel, comprised 90% high‐oleic sunflower oil and 10% RBW, to replace solid fat in ice cream. A commercial blend of 80% saturated mono‐ and diglycerides and 20% polysorbate 80 was used as the emulsifier. Standard ice cream measurements, cryo‐scanning electron microscopy (cryo‐SEM), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM) were used to evaluate the formation of structure in ice cream. RBW oleogel produced higher levels of overrun when compared to a liquid oil ice cream sample, creating a lighter sample with good texture and appearance. However, those results were not associated with higher meltdown resistance. Microscopy revealed larger aggregation of RBW oleogel fat droplets at the air cell interface and distortion of the shape of air cells and fat droplets. Although the RBW oleogel did not develop sufficient structure in ice cream to maintain shape during meltdown when a mono‐ and diglycerides and polysorbate 80 blend was used as the emulsifier, micro‐ and ultrastructure investigations suggested that RBW oleogel did induce formation of a fat globule network in ice cream, suggesting that further optimization could lead to an alternative to saturated fat sources for ice cream applications.  相似文献   

18.
Ice milk mixes were made with and without stabilizer/emulsifier as well as with and without milk protein isolate (sodium caseinate or whey protein isolate). The mixes were evaluated for rheological, freezing, melting, and sensory properties. Adding a stabilizer/emulsifier blend to ice milk changed its physical properties more than adding milk protein isolates. The mixes with stabilizer/emulsifier exhibited increased viscosity and chewiness and decreased drainage rate, iciness, and vanilla flavor intensity. The mixes with added caseinate exhibited increased viscosity compared with those with added whey protein isolate. Overall, the quality of ice milk mix was more dependent on stabilizer/emulsifier addition than on milk protein isolate addition.  相似文献   

19.
为探索共聚酰胺6/66(PA6/66)的熔体加工性能,研究PA6/66相对分子质量对其熔融行为、结晶行为和熔体流变行为的影响,借助差示扫描量热仪、熔体流动速率仪、毛细管流变仪等对系列不同相对分子质量PA6/66和PA6树脂的结晶行为和流变性能等进行表征。结果表明:PA6/66呈现单一的熔融峰,其熔点和玻璃化转变温度受相对分子质量影响较小,分别约为210 ℃和45 ℃;与PA6相比,PA6/66的熔点、熔融焓值和结晶焓值显著降低;随相对分子质量的增加,降温速率为20 ℃/min时,PA6/66的结晶焓值由45.16 J/g下降为43.67 J/g,明显低于同等相对分子质量下PA6的结晶焓值;不同相对分子质量的PA6/66共聚物均为假塑性流体,随着温度的升高,其非牛顿指数增大,对剪切速率的敏感程度降低;在高剪切速率下,PA6/66具有比PA6更高的黏流活化能。  相似文献   

20.
Six different formulations, corresponding to three types of fat (hydrogenated or refined coconut oils or refined palm oil) and two mixtures of mono- and di-glycerides, namely saturated and partially unsaturated were chosen to investigate the influence of the oil phase nature and the low molecular weight emulsifier type on the networks present in ice cream. Ice creams were characterized for particle size distribution of fat globules, melting resistance and amount of proteins in the aqueous phase. Variation of rheological parameters as a function of temperature allowed following the ice network melting, the fat globule aggregation state and destabilization, and the structural arrangement of proteins. Presence of unsaturated fatty acids in the emulsifier promoted an increased percentage of agglomerated fat globules, increased melting time and higher storage modulus values at 5 °C. The influence of the fat type on ice cream characteristics was mainly illustrated by different rheological parameters and, to a lesser extent, by melting time, whereas the amount of proteins in the aqueous phase did not allow discriminating among the formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号