首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Journal of dairy science》2022,105(8):6997-7010
Activated autophagy-lysosomal pathway (ALP) can degrade virtually all kinds of cellular components, including intracellular lipid droplets, especially during catabolic conditions. Sustained lipolysis and increased plasma fatty acids concentrations are characteristic of dairy cows with hyperketonemia. However, the status of ALP in adipose tissue during this physiological condition is not well known. The present study aimed to ascertain whether lipolysis is associated with activation of ALP in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes. In vivo, blood and subcutaneous adipose tissue (SAT) biopsies were collected from nonhyperketonemic (nonHYK) cows [blood β-hydroxybutyrate (BHB) concentration <1.2 mM, n = 10] and hyperketonemic (HYK) cows (blood BHB concentration 1.2–3.0 mM, n = 10) with similar days in milk (range: 3–9) and parity (range: 2–4). In vitro, calf adipocytes isolated from 5 healthy Holstein calves (1 d old, female, 30–40 kg) were differentiated and used for (1) treatment with lipolysis inducer isoproterenol (ISO, 10 µM, 3 h) or mammalian target of rapamycin inhibitor Torin1 (250 nM, 3 h), and (2) pretreatment with or without the ALP inhibitor leupeptin (10 μg/mL, 4 h) followed by ISO (10 µM, 3 h) treatment. Compared with nonHYK cows, serum concentration of free fatty acids was greater and serum glucose concentration, DMI, and milk yield were lower in HYK cows. In SAT of HYK cows, ratio of phosphorylated hormone-sensitive lipase to hormone-sensitive lipase, and protein abundance of adipose triacylglycerol lipase were greater, but protein abundance of perilipin 1 (PLIN1) and cell death-inducing DNA fragmentation factor-α-like effector c (CIDEC) was lower. In addition, mRNA abundance of autophagy-related 5 (ATG5), autophagy-related 7 (ATG7), and microtubule-associated protein 1 light chain 3 beta (MAP1LC3B), protein abundance of lysosome-associated membrane protein 1, and cathepsin D, and activity of β-N-acetylglucosaminidase were greater, whereas protein abundance of sequestosome-1 (p62) was lower in SAT of HYK cows. In calf adipocytes, treatment with ISO or Torin1 decreased protein abundance of PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes, but increased glycerol content in the supernatant of calf adipocytes. Moreover, the mRNA abundance of ATG5, ATG7, and MAP1LC3B was upregulated, the protein abundance of lysosome-associated membrane protein 1, cathepsin D, and activity of β-N-acetylglucosaminidase were increased, whereas the protein abundance of p62 was decreased in calf adipocytes treated with ISO or Torin1 compared with control group. Compared with treatment with ISO alone, the protein abundance of p62, PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes were higher, but the glycerol content in the supernatant of calf adipocytes was lower in ISO and leupeptin co-treated group. Overall, these data indicated that activated ALP is associated with increased lipolysis in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes.  相似文献   

2.
Lipid metabolism plays a crucial role in the adaptation of dairy cows to periods of energy insufficiency. The objective of the current study was to determine if lipolytic proteins are consistently regulated when energy mobilization is stimulated by different factors. We evaluated 2 models of altered energy balance in mid-lactation Holstein cows, including feed restriction (FR) and administration of bovine growth hormone (GH), by quantifying the abundance and (or) phosphorylation of hormone-sensitive lipase (HSL), perilipin (PLIN), and adipose triglyceride lipase (ATGL). For GH administration, adipose tissue and blood samples were collected 4 d before and 3 and 7 d after administration of GH (n = 20 cows). Similarly, adipose and blood samples were obtained 6 d before and 1 and 4 d after initiation of FR (n = 18 cows). Estimated net energy balance decreased and nonesterified fatty acid concentration increased in both experimental models. Decreased ATGL and PLIN protein abundance was observed with GH administration and FR. Additionally, the abundance of phosphorylated HSLSer565 decreased in both models. Decreased abundance of phosphorylated PLIN was observed with GH administration, but not FR. Decreased ATGL protein abundance appears to be a consistent response to energy insufficiency in lactating cows, as this response was also described with negative energy balance at the onset of lactation. In contrast, the abundance of PLIN protein and phosphorylation of HSL using antibodies targeting serine residue 565 of HSL (HSLSer565) were altered in the current research, but not at the onset of lactation. Our findings demonstrate that lipolysis is altered through the regulation of multiple proteins, and that this regulation differs according to physiological state in lactating cows.  相似文献   

3.
《Journal of dairy science》2022,105(9):7829-7841
Mitochondria are the main site of fatty acid oxidation and reactive oxygen species (ROS) formation. Damaged or dysfunctional mitochondria induce oxidative stress and increase the risk of lipid accumulation. During the process of mitophagy, PTEN induced kinase 1 (PINK1) accumulates on damaged mitochondria and recruits cytoplasmic Parkin to mitochondria. As an autophagy receptor protein, sequestosome-1 (p62) binds Parkin-ubiquitinated outer mitochondrial membrane proteins and microtubule-associated protein 1 light chain 3 (LC3) to facilitate degradation of damaged mitochondria. In nonruminants, clearance of dysfunctional mitochondria through the PINK1/Parkin-mediated mitophagy pathway contributes to reducing ROS production and maintaining metabolic homeostasis. Whether PINK1/Parkin-mediated mitophagy plays a similar role in dairy cow liver is not well known. Thus, the objective of this study was to investigate mitophagy status in dairy cows with fatty liver and its role in free fatty acid (FFA)-induced oxidative stress and lipid accumulation. Liver and blood samples were collected from healthy dairy cows (n = 10) and cows with fatty liver (n = 10) that had a similar number of lactations (median = 3, range = 2 to 4) and days in milk (median = 6 d, range = 3 to 9 d). Calf hepatocytes were isolated from 5 healthy newborn female Holstein calves (1 d of age, 30–40 kg). Hepatocytes were transfected with small interfering RNA targeted against PRKN for 48 h or transfected with PRKN overexpression plasmid for 36 h, followed by treatment with FFA (0.3 or 1.2 mM) for 12 h. Mitochondria were isolated from fresh liver tissue or calf hepatocytes. Serum concentrations of β-hydroxybutyrate were higher in dairy cows with fatty liver. Hepatic malondialdehyde (MDA) and hydrogen peroxide (H2O2) were greater in cows with fatty liver. The lower protein abundance of PINK1, Parkin, p62, and LC3-II in hepatic mitochondrial fraction of dairy cows with fatty liver indicated the mitophagy was impaired. In hepatocytes, knockdown of PRKN decreased protein abundance of p62 and LC3-II in the mitochondrial fraction, and increased contents of triacylglycerol (TG), MDA, and H2O2. In addition, protein abundances of PINK1, Parkin, p62, and LC3-II were lower in the mitochondrial fraction from hepatocytes treated with 1.2 mM FFA than the hepatocytes treated with 0.3 mM FFA, whereas the content of TG, MDA, and H2O2 increased. In 1.2 mM FFA-treated hepatocytes, PRKN overexpression increased protein abundance of p62 and LC3-II in the mitochondrial fraction and decreased contents of TG, MDA, and H2O2. Together, our data demonstrate that low abundance of mitophagy markers is associated with ROS overproduction in dairy cows with fatty liver and impaired mitophagy induced by a high concentration of FFA promotes ROS production and lipid accumulation in female calf hepatocytes.  相似文献   

4.
Severe negative energy balance around parturition is an important contributor to ketosis, a metabolic disorder that occurs most frequently in the peripartal period. Autophagy and mitophagy are important processes responsible for breaking down useless or toxic cellular material, and in particular damaged mitochondria. However, the role of autophagy and mitophagy during the occurrence and development of ketosis is unclear. The objective of this study was to investigate autophagy and mitophagy in the livers of cows with subclinical ketosis (SCK) and clinical ketosis (CK). We assessed autophagy by measuring the protein abundance of microtubule-associated protein 1 light chain 3-II (LC3-II; encoded by MAP1LC3) and sequestosome-1 (p62, encoded by SQSTM1), as well as the mRNA abundance of autophagy-related genes 5 (ATG5), 7 (ATG7), and 12 (ATG12), beclin1 (BECN1), and phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3). Mitophagy was evaluated by measuring the protein abundance of the mitophagy upstream regulators PTEN-induced putative kinase 1 (PINK1) and Parkin. Liver and blood samples were collected from healthy cows [n = 15; blood β-hydroxybutyrate (BHB) concentration <1.2 mM], cows with SCK (n = 15; blood BHB concentration 1.2 to 3.0 mM) and cows with CK (n = 15; blood BHB concentration >3.0 mM with clinical signs) with similar lactation numbers (median = 3, range = 2 to 4) and days in milk (median = 6, range = 3 to 9). The serum activity of aspartate aminotransferase and alanine aminotransferase was greater in cows with CK than in healthy cows. Levels of oxidative stress biomarkers malondialdehyde and hydrogen peroxide were also higher in liver tissue from ketotic cows (SCK and CK) than from healthy cows. Compared with cows with CK and healthy cows, the hepatic mRNA abundance of MAP1LC3, SQSTM1, ATG5, ATG7, ATG12, and PIK3C3 was upregulated in cows with SCK. Compared with healthy cows, cows with SCK had a lower abundance of p62 and a greater abundance of LC3-II, but levels of both were higher in cows with CK. The mRNA abundance of ATG12 was lower in cows with CK than in healthy cows. Furthermore, the hepatic protein abundance of PINK1 and Parkin was greater in cows with SCK and slightly lower in cows with CK than in healthy cows. These data demonstrated differences in the hepatic activities of autophagy and mitophagy in cows with SCK compared with cows with CK. Although the precise mechanisms for these differences could not be discerned, autophagy and mitophagy seem to be involved in ketosis.  相似文献   

5.
Fatty liver is a common metabolic disorder in dairy cows during the transition period. Perilipin 5 (PLIN5), a lipid droplet coat protein, plays important roles in the development of hepatic steatosis in mice and humans. Whether PLIN5 plays a role in the development of fatty liver in dairy cows is unknown. An in vivo study consisting of 10 healthy and 10 cows with fatty liver was performed to harvest liver tissue and blood samples. In addition, hepatocytes isolated from calves were infected with PLIN5 overexpression adenovirus for 48 h; treated with 0, 0.6, 1.2, or 2.4 mM nonesterified fatty acids (NEFA) for 24 h; or infected with PLIN5 silencing adenovirus for 48 h and then treated with 1.2 mM NEFA for 24 h. Serum concentrations of NEFA and β-hydroxybutyrate were greater in cows with fatty liver. Milk production and plasma glucose concentrations were lower in cows with fatty liver. The results revealed that PLIN5 is highly expressed in steatotic liver and localized to lipid droplets. The abundance of fatty acid and triacylglycerol (TAG) synthesis-related proteins including sterol regulatory element binding protein-1c, fatty acid synthase, acetyl-coA carboxylase 1, diacylglycerol acyltransferase 1, and diacylglycerol acyltransferase 2 was greater in the liver of cows with fatty liver. In contrast, the abundance of microsomal triglyceride transfer protein (MTP), apolipoprotein B100, and apolipoprotein E was lower in the liver of cows with fatty liver. Consequently, cows with fatty liver exhibited severe hepatic TAG accumulation and lower blood concentration of very low density lipoprotein apolipoprotein B (VLDL-ApoB). Overexpression of PLIN5 and exogenous NEFA in cultured hepatocytes increased the abundance of sterol regulatory element binding protein-1, fatty acid synthase, acetyl-coA carboxylase 1, diacylglycerol acyltransferase 1, and diacylglycerol acyltransferase 2 but decreased the abundance of microsomal triglyceride transfer protein, apolipoprotein B100, and apolipoprotein E, which promoted TAG synthesis and inhibited VLDL-ApoB assembly, inducing lipid accumulation. Importantly, knockdown of PLIN5 attenuated the upregulation of TAG synthesis and downregulation of VLDL-ApoB assembly induced by NEFA. Overall, these data suggest that NEFA activate PLIN5, leading to TAG accumulation and inhibition of VLDL assembly. As such, these mechanisms explain in part the development of hepatic steatosis in dairy cows.  相似文献   

6.
《Journal of dairy science》2022,105(7):6030-6040
When ketosis occurs, supraphysiological levels of free fatty acids (FFA) can cause oxidative injury to the mammary gland and autophagy can regulate the cellular oxidative status. The aim of this study was to investigate the autophagy status of mammary tissue and its associations with oxidative stress in healthy and clinically ketotic dairy cows. Mammary tissue and blood samples were collected from healthy cows [n = 15, β-hydroxybutyrate (BHB) <0.6 mM] and clinically ketotic cows (n = 15, BHB >3.0 mM) at 3 to 15 (average = 7) days in milk. For in vitro study, bovine mammary epithelial cells (BMEC) isolated from healthy cows were treated with 0, 0.3, 0.6, or 1.2 mM FFA for 24 h. Furthermore, BMEC were pretreated with 100 nM rapamycin, an autophagy activator, for 4 h or 50 mM 3-methyladenine (3-MA), an autophagy inhibitor, for 1 h, followed by treatment with or without FFA (1.2 mM) for another 24 h. Oxidation indicators and autophagy-related protein abundance were measured. Compared with healthy cows, serum concentrations of FFA, BHB, and malondialdehyde were greater in clinically ketotic cows, but milk production (kg/d), milk protein (kg/d), activities of superoxide dismutase, catalase, and glutathione peroxidase were lower. Abundances of mRNA and protein of autophagy-related gene 5 (ATG5) and 7 (ATG7) were lower, but sequestosome-1 (SQSTM1, also called p62) greater in mammary tissue of clinically ketotic cows. The mRNA abundance of microtubule-associated protein 1 light chain 3 (MAP1LC3, also called LC3) and protein abundance of LC3-II were lower in mammary tissue of clinically ketotic cows. In vitro, exogenous FFA increased the content of malondialdehyde and reactive oxygen species, but decreased the activities of superoxide dismutase, catalase, and plasma glutathione peroxidase. Compared with the 0 mM FFA group, abundance of ATG5, ATG7, LC3-II was greater, but p62 was lower in the 0.6 mM FFA-treated cells. Similarly, abundance of ATG5, ATG7, and LC3-II was lower, but p62 greater in the 1.2 mM FFA-treated cells relative to 0 mM FFA group. Culture with rapamycin alleviated oxidative stress induced by 1.2 mM FFA, whereas 3-MA aggravated it. Overall, results indicated that a low concentration (0.6 mM) of FFA can induce oxidative stress and activate autophagy in BMEC. At higher concentrations of FFA (1.2 mM), autophagy is impaired and oxidative stress is aggravated. Autophagy is a mechanism for BMEC to counteract FFA-induced stress. As such, it could serve as a potential target for further development of novel strategies against oxidative stress.  相似文献   

7.
《Journal of dairy science》2022,105(1):842-855
Intense and protracted adipose tissue (AT) fat mobilization increases the risk of metabolic and inflammatory periparturient diseases in dairy cows. This vulnerability increases when cows have endotoxemia—common during periparturient diseases such as mastitis, metritis, and pneumonia—but the mechanisms are unknown. Fat mobilization intensity is determined by the balance between lipolysis and lipogenesis. Around parturition, the rate of lipolysis surpasses that of lipogenesis, leading to enhanced free fatty acid release into the circulation. We hypothesized that exposure to endotoxin (ET) increases AT lipolysis by activation of classic and inflammatory lipolytic pathways and reduction of insulin sensitivity. In experiment 1, subcutaneous AT (SCAT) explants were collected from periparturient (n = 12) Holstein cows at 11 ± 3.6 d (mean ± SE) before calving, and 6 ± 1 d and 13 ± 1.4 d after parturition. Explants were treated with the endotoxin lipopolysaccharide (LPS; 20 µg/mL; basal = 0 µg/mL) for 3 h. The effect of LPS on lipolysis was assessed in the presence of the β-adrenergic agonist and promoter of lipolysis isoproterenol (ISO; 1 µM; LPS+ISO). In experiment 2, SCAT explants were harvested from 24 nonlactating, nongestating multiparous Holstein dairy cows and exposed to the same treatments as in experiment 1 for 3 and 7 h. The effect of LPS on the antilipolytic responses induced by insulin (INS = 1 µL/L, LPS+INS) was established during ISO stimulation [ISO+INS, LPS+ISO+INS]. The characterization of lipolysis included the quantification of glycerol release and the assessment of markers of lipase activity [adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and phosphorylated HSL Ser563 (pHSL)], and insulin pathway activation (AKT, pAKT) using capillary electrophoresis. Inflammatory gene networks were evaluated by real-time quantitative PCR. In periparturient cows, LPS increased AT lipolysis by 67 ± 12% at 3 h across all time points compared with basal. In nonlactating cows, LPS was an effective lipolytic agent at 3 h and 7 h, increasing glycerol release by 115 ± 18% and 68.7 ± 16%, respectively, relative to basal. In experiment 2, LPS enhanced ATGL activity with minimal HSL activation at 3 h. In contrast, at 7 h, LPS increased HSL phosphorylation (i.e., HSL activity) by 123 ± 11%. The LPS-induced HSL lipolytic activity at 7 h coincided with the activation of the MEK/ERK inflammatory pathway. In experiment 2, INS reduced the lipolytic effect of ISO (ISO+INS: ?63 ± 18%) and LPS (LPS+INS: ?45.2 ± 18%) at 3 h. However, the antilipolytic effect of INS was lost in the presence of LPS at 7 h (LPS+INS: ?16.3 ± 16%) and LPS+ISO+INS at 3 and 7 h (?3.84 ± 23.6% and ?21.2 ± 14.6%). Accordingly, LPS reduced pAKT:AKT (0.11 ± 0.07) compared with basal (0.18 ± 0.05) at 7 h. Our results indicated that exposure to LPS activated the classic and inflammatory lipolytic pathways and reduced insulin sensitivity in SCAT. These data provide evidence that during endotoxemia, dairy cows may be more susceptible to lipolysis dysregulation and loss of adipocyte sensitivity to the antilipolytic action of insulin.  相似文献   

8.
《Journal of dairy science》2021,104(11):11973-11982
Free fatty acids (FFA)-induced hepatic inflammation agravates liver injury and metabolic dysfunction in dairy cows with ketosis or fatty liver. Under stressful conditions, autophagy is generally considered as a cell protection mechanism, but whether the FFA-induced inflammatory and stress effect on hepatocytes involves an autophagy response is not well known. Thus, the objective of this study was to investigate the effects of FFA on autophagy and the role of autophagy in the activation of NF-κB (nuclear factor kappa B) signaling and NLRP3 (NLR family pyrin domain containing 3) inflammasome in calf hepatocytes. Calf hepatocytes were isolated from 3 healthy Holstein female new-born calves (1 d of age, 30–40 kg) and exposed to various concentrations of FFA (0, 0.3, 0.6, or 1.2 mM) after treatment with or without the autophagy inhibitor chloroquine (CQ) or the autophagy activator rapamycin. Expression of autophagy markers, LC3 (microtubule-associated protein 1 light chain 3) and p62 (sequestosome 1), NF-κB signaling, and NLRP3 inflammasome-related molecules were analyzed via western blot and quantitative real-time PCR. Results revealed that 0.6 and 1.2 mM FFA activated NF-κB signaling and NLRP3 inflammasome as indicated by an elevated ratio of p-NF-κB/NF-κB, protein abundance of NLRP3 and CASP1 (caspase 1), activity of CASP1, and mRNA abundance of IL1B and IL18. In addition, hepatocyte treated with 0.6 and 1.2 mM FFA or autophagy inhibitor CQ displayed increased protein abundance of p62 and LC3-II. Moreover, there was no difference in protein abundance of p62 and LC3-II between calf hepatocytes treated with 1.2 mM FFA and 1.2 mM FFA plus CQ, indicating that FFA inhibits autophagic activity in calf hepatocytes. Treatment with CQ led to overactivation of NF-κB signaling and NLRP3 inflammasome. Furthermore, CQ plus 1.2 mM FFA aggravated FFA-induced inflammation. In contrast, induction of autophagy by rapamycin ameliorated the FFA-activated NF-κB signaling and NLRP3 inflammasome as demonstrated by a lower ratio of p-NF-κB/NF-κB, protein abundance of NLRP3 and CASP1, activity of CASP1, and mRNA abundance of IL1B and IL18. Overall, inhibition of autophagy exacerbated, whereas induction of autophagy alleviated, FFA-induced inflammatory processes in calf hepatocytes, suggesting that impairment of autophagy might be partly responsible for hepatic inflammation and subsequent liver injury in dairy cows with ketosis or fatty liver. As such, regulation of autophagy may be an effective therapeutic strategy for controlling overt inflammatory responses in vivo.  相似文献   

9.
《Journal of dairy science》2023,106(8):5763-5774
During the transition period in dairy cows, high circulating concentrations of nonesterified fatty acids (NEFA) increase hepatic lipid deposits and are considered a major pathological factor for liver damage. We investigated whether AdipoRon, a synthetic small-molecule agonist of adiponectin receptors 1 and 2 shown to prevent liver lipid accumulation in nonruminants, could alleviate NEFA-induced lipid accumulation and mitochondrial dysfunction. Bovine hepatocytes were isolated from 5 healthy Holstein female newborn calves (1 d of age, 30–40 kg, fasting), and independently isolated hepatocytes from at least 3 different calves were used for each subsequent experiment. The composition and concentration of NEFA used in this study were selected according to hematological criteria of dairy cows with fatty liver or ketosis. First, hepatocytes were cultured with various concentrations of NEFA (0, 0.6, 1.2, or 2.4 mM) for 12 h. In a second experiment, hepatocytes were treated with AdipoRon at different concentrations (0, 5, 25, or 50 μM for 12 h) and times (25 μM for 0, 6, 12, or 24 h) with or without NEFA (1.2 mM) treatment. In the last experiment, hepatocytes were treated with AdipoRon (25 μM), NEFA (1.2 mM), or both for 12 h after treatment with or without the autophagy inhibitor chloroquine. Hepatocytes treated with NEFA had increased protein abundance of sterol regulatory element-binding protein 1c (SREBP-1c) and mRNA abundance of acetyl-CoA carboxylase 1 (ACACA), and decreased protein abundance of peroxisome proliferator-activated receptor α (PPARA), proliferator-activated receptor gamma coactivator-1 α (PGC-1α), mitofusin 2 (MFN2), cytochrome c oxidase subunit IV (COX IV), and mRNA abundance of carnitine palmitoyltransferase 1A (CPT1A), along with lower ATP concentrations. AdipoRon treatment reversed these effects, suggesting this compound had a positive effect on lipid metabolism and mitochondrial dysfunction during the NEFA challenge. In addition, upregulated expression of microtubule-associated protein 1 light chain 3-II (LC3-II, encoded by MAP1LC3) and downregulated expression of sequestosome-1 (SQSTM1, also called p62) indicated that AdipoRon enhanced autophagic activity in hepatocytes. The fact that chloroquine impeded the beneficial effects of AdipoRon on lipid accumulation and mitochondrial dysfunction suggested a direct role for autophagy during NEFA challenge. Our results suggest that autophagy is an important cellular mechanism to prevent NEFA-induced lipid accumulation and mitochondrial dysfunction in bovine hepatocytes, which is consistent with other studies. Overall, AdipoRon may represent a promising therapeutic agent to maintain hepatic lipid homeostasis and mitochondrial function in dairy cows during the transition period.  相似文献   

10.
The ability of liver to respond to changes in nutrient availability is essential for the maintenance of metabolic homeostasis. Autophagy encompasses mechanisms of cell survival, including capturing, degrading, and recycling of intracellular proteins and organelles in lysosomes. During negative nutrient status, autophagy provides substrates to sustain cellular metabolism and hence, tissue function. Severe negative energy balance in dairy cows is associated with fatty liver. The aim of this study was to investigate the hepatic autophagy status in dairy cows with severe fatty liver and to determine associations with biomarkers of liver function and inflammation. Liver and blood samples were collected from multiparous cows diagnosed as clinically healthy (n = 15) or with severe fatty liver (n = 15) at 3 to 9 d in milk. Liver tissue was biopsied by needle puncture, and serum samples were collected on 3 consecutive days via jugular venipuncture. Concentrations of free fatty acids and β-hydroxybutyrate were greater in cows with severe fatty liver. Milk production, dry matter intake, and concentration of glucose were all lower in cows with severe fatty liver. Activities of serum aspartate aminotransferase, alanine aminotransferase, glutamate dehydrogenase, and γ-glutamyl transferase were all greater in cows with severe fatty liver. Serum concentrations of haptoglobin and serum amyloid A were also markedly greater in cows with severe fatty liver. The mRNA expression of autophagosome formation-related gene ULK1 was lower in the liver of dairy cows with severe fatty liver. However, the expression of other autophagosome formation-related genes, beclin 1 (BECN1), phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3), autophagy-related gene (ATG) 3, ATG5, and ATG12, did not differ. More important, ubiquitinated proteins, protein expression of sequestosome-1 (SQSTM1, also called p62), and microtubule-associated protein 1 light chain 3 (MAP1LC3, also called LC3)-II was greater in cows with severe fatty liver. Transmission electron microscopy revealed an increased number of autophagosomes in the liver of dairy cows with severe fatty liver. Taken together, these results indicate that excessive lipid infiltration of the liver impairs autophagic activity that may lead to cellular damage and inflammation.  相似文献   

11.
12.
13.
A balanced lipolytic regulation in adipose tissues based on fine-tuning of prolipolytic and antilipolytic pathways is of vital importance to maintain the metabolic health in dairy cows. Antilipolytic pathways, such as the G protein-coupled receptor 109A (GPR109A)-mediated pathway and the insulin signaling pathway in bovine adipose tissues may be involved in prohibiting excessive lipomobilization by reducing triglycerol hydrolysis. This study aimed to evaluate the in vitro antilipolytic potential of the mentioned pathways in bovine adipose tissue explants. Therefore, subcutaneous and retroperitoneal adipose tissue samples (approximately 100 mg) of German Holstein cows were treated for 90 min ex vivo with nicotinic acid (2, 8, or 32 μM), nicotinamide (2, 8, or 32 μM), β-hydroxybutyrate (0.2, 1, or 5 mM), or insulin (12 mU/L), with a concurrent lipolytic challenge provoked with 1 μM isoproterenol. Lipolytic and antilipolytic responses of the adipose tissues were assessed by measuring free glycerol and nonesterified fatty acid release. To identify molecular components of the investigated antilipolytic pathways, protein abundance of GPR109A and the extent of hormone-sensitive lipase (HSL) phosphorylation at serine residue 563 were detected by Western blotting. Treatment with nicotinic acid or β-hydroxybutyrate decreased the lipolytic response in adipose tissue explants and concurrently reduced the extent of HSL phosphorylation, but treatment with nicotinamide or insulin did not. Subcutaneous adipose tissue constitutively expressed more GPR109A protein, but no other depot-specific differences were observed. This study provides evidence that the GPR109A-mediated pathway is functionally existent in bovine adipose tissues, and confirms that HSL phosphorylation at serine residue 563 is also important in antilipolytic regulation in vitro. This antilipolytic pathway may be involved in a balanced lipid mobilization in the dairy cow.  相似文献   

14.
15.
16.
Dairy cows with ketosis exhibit signs of pronounced adipose tissue lipolysis and systemic inflammation, both of which exacerbate this metabolic disorder. In nonruminants, CIDEC plays a pivotal role in the formation of large unilocular lipid droplets. The present study aimed to ascertain the role of CIDEC in the lipolytic and inflammatory response of white adipose tissue (WAT) in vivo and in vitro. Subcutaneous adipose tissue and blood samples were collected from 15 healthy cows (blood β-hydroxybutyrate concentration < 1.2 mM) and 15 cows with clinical ketosis (blood β-hydroxybutyrate concentration > 3.0 mM) that had a similar number of lactations (median = 3, range = 2–4) and days in milk (median = 6 d, range = 3–9). Adipocytes isolated from 5 healthy Holstein calves (1 d old, female, 30–40 kg) were used for in vitro studies. Isolated adipocytes were treated with 0, 0.1, 1, or 10 ng/mL TNF-α for 3 h, transfected with CIDEC small interfering RNA for 48 h, or transfected with CIDEC overexpression adenovirus for 48 h followed by treatment with TNF-α (0.1 ng/mL) for 3 h. Serum concentrations of fatty acids were greater, and dry matter intake, milk yield, and serum glucose concentrations lower in cows with clinical ketosis. Protein and mRNA abundance of CIDEC were lesser in subcutaneous WAT of clinically ketotic versus healthy cows. Furthermore, the ratio of phosphorylated hormone sensitive lipase (p-LIPE) to LIPE, phosphorylated RELA (p-RELA) to RELA, and protein abundance of PNPLA2 and phosphorylated inhibitor of κBα (p-NFKBIA) were greater in dairy cows with clinical ketosis. The mRNA abundance of proinflammatory cytokines TNFA and IL1B were greater, and the anti-inflammatory cytokine IL10 was lower in WAT of dairy cows with clinical ketosis. In calf adipocytes, exogenous TNF-α (0.1, 1, or 10 ng/mL) decreased protein and mRNA abundance of CIDEC. In addition, exogenous TNF-α or knockdown of CIDEC reduced the secretion of the anti-inflammatory cytokine IL-10, but increased the ratio of p-LIPE to LIPE, p-RELA to RELA, protein abundance of PNPLA2 and p-NFKBIA, glycerol content, and the secretion of IL-1β in calf adipocytes. Overexpression of CIDEC in TNFα-treated adipocytes attenuated lipolysis and activation of the NF-κB signaling pathway. Overall, these data suggest that inhibition of lipid droplet-associated protein CIDEC by TNF-α contributes to the pronounced lipolysis and inflammation of calf adipocytes, and CIDEC is a relevant target in clinically ketotic cows.  相似文献   

17.
18.
Dairy cows often experience negative energy balance with the onset of lactation, and severe or prolonged negative energy balance can contribute to declines in overall fitness. Energy stores, in the form of adipose tissue triacylglycerides, are mobilized during times of energy deficit, and recent research has implicated several proteins associated with the lipid droplet as lipolytic regulators. The objective of this study was to determine if these novel proteins associated with lipolytic regulation are altered with the changing metabolic demands of lactation. Weekly blood samples were collected from 26 Holstein cows from 21 d before expected parturition through 28 d postpartum, and again at 150 d postpartum. Serum nonesterified fatty acids, glycerol, and β-hydroxybutyrate were measured. Energy balance was calculated from daily feed intake and milk yield, weekly body weight, and monthly milk component measurements. Adipose tissue biopsies were taken 21 d before expected parturition (−21 d) and at 5, 21, and 150 d postpartum. Semiquantitative Western blotting was used to measure abundance of hormone-sensitive lipase (HSL), phosphorylated HSL, perilipin, phosphorylated perilipin (PPLIN), adipose triglyceride lipase (ATGL), and comparative gene identity-58 (CGI-58). Abundance of ATGL was less at 5 and 21 d in milk (DIM) compared with −21 and 150 DIM, even though cows were in negative energy balance and experiencing increased rates of lipolysis in early lactation. In contrast, phosphorylated HSL and PPLIN increased with increasing lipolysis immediately after parturition. Additionally, PPLIN was negatively correlated with milk yield at 5, 21, and 150 d postpartum, and negatively correlated with feed intake and energy balance at 21 d postpartum. This result is consistent with the hypothesis that phosphorylation of perilipin is responsive to signals for increased triaclyglyceride mobilization. Finally, a consistent negative correlation between abundance of perilipin and CGI-58 proteins was observed throughout the transition period. These results confirm that novel lipolytic proteins in adipose tissue are regulated at the level of protein abundance and phosphorylation during the periparturient period and into mid lactation.  相似文献   

19.
High blood concentrations of nonesterified fatty acids (NEFA) and altered lipid metabolism are key characteristics of fatty liver in dairy cows. In nonruminants, the mitochondrial membrane protein mitofusin 2 (MFN2) plays important roles in regulating mitochondrial function and intrahepatic lipid metabolism. Whether MFN2 is associated with hepatic lipid metabolism in dairy cows with moderate fatty liver is unknown. Therefore, to investigate changes in MFN2 expression and lipid metabolic status in dairy cows with moderate fatty liver, blood and liver samples were collected from healthy dairy cows (n = 10) and cows with moderate fatty liver (n = 10). To determine the effects of MFN2 on lipid metabolism in vitro, hepatocytes isolated from healthy calves were used for small interfering RNA–mediated silencing of MFN2 or adenovirus-mediated overexpression of MFN2 for 48 h, or treated with 0, 0.6, 1.2, or 2.4 mM NEFA for 12 h. Milk production and plasma glucose concentrations in dairy cows with moderate fatty liver were lower, but concentrations of NEFA and β-hydroxybutyrate (BHB) were greater in dairy cows with moderate fatty liver. Dairy cows with moderate fatty liver displayed hepatic lipid accumulation and lower abundance of hepatic MFN2, peroxisome proliferator-activated receptor-α (PPARα), and carnitine palmitoyltransferase 1A (CPT1A). However, sterol regulatory element-binding protein 1c (SREBP-1c), acetyl CoA carboxylase 1 (ACACA), fatty acid synthase (FASN), and diacylglycerol acyltransferase 1 (DGAT1) were more abundant in the livers of dairy cows with moderate fatty liver. In vitro, exogenous NEFA treatment upregulated abundance of SREBP-1c, ACACA, FASN, and DGAT1, and downregulated the abundance of PPARα and CPT1A. These changes were associated with greater lipid accumulation in calf hepatocytes, and MFN2 silencing aggravated this effect. In contrast, overexpression of MFN2-ameliorated exogenous NEFA-induced lipid accumulation by downregulating the abundance of SREBP-1c, ACACA, FASN, and DGAT1, and upregulating the abundance of PPARα and CPT1A in calf hepatocytes. Overall, these data suggest that one cause for the negative effect of excessive NEFA on hepatic lipid accumulation is the inhibition of MFN2. As such, these mechanisms partly explain the development of hepatic steatosis in dairy cows.  相似文献   

20.
《Journal of dairy science》2022,105(4):3588-3600
Fatty acid accumulation in hepatocytes induced by high concentrations of fatty acids due to lipolysis and the associated oxidative damage they cause occur most frequently after calving. Because of their role in esterification of fatty acids, diacylglycerol acyltransferase isoforms (DGAT1 and DGAT2) could play a role in the susceptibility of dairy cows to develop fatty liver. To gain mechanistic insights, we performed in vivo and in vitro analyses using liver biopsies or isolated primary hepatocytes. The in vivo study (n = 5 cows/group) involved healthy cows [average liver triacylglycerol (TAG) = 0.78%; 0.58 to 0.93%, ratio of triglyceride weight to wet liver weight] or cows diagnosed with fatty liver (average TAG = 7.60%; 5.31 to 10.54%). In vitro, hepatocytes isolated from 3 healthy female calves (1 d old, 44 to 53 kg) were challenged with (fatty acids) or without (control) a 1.2 mM mixture of fatty acids in an attempt to induce metabolic stress. Furthermore, hepatocytes were treated with DGAT1 inhibitor or DGAT2 inhibitor for 2 h followed by a challenge with (DGAT1 inhibitor + fatty acids or DGAT2 inhibitor + fatty acids) or without (DGAT1 inhibitor or DGAT2 inhibitor) the 1.2 mM mixture of fatty acids for 12 h. Data analysis of liver biopsies was compared using a 2-tailed unpaired Student's t-test. Data from calf hepatocyte treatment comparisons were assessed by one-way ANOVA, and multiplicity for each experiment was adjusted by the Holm's procedure. Data indicated that both fatty liver and in vitro challenge with fatty acids were associated with greater mRNA and protein abundance of SREBF1, FASN, DGAT1, and DGAT2. In contrast, mRNA and protein abundance of CPT1A and very low-density lipoprotein synthesis-related proteins MTTP and APOB were markedly lower. However, compared with fatty acid challenge alone, DGAT1 inhibitor + fatty acids led to greater mRNA and protein abundance of CPT1A and APOB, and greater mRNA abundance of SREBF1 and MTTP. Furthermore, this treatment led to lower mRNA abundance of FASN and DGAT2 and TAG concentrations. Compared with fatty acid challenge alone, DGAT2 inhibitor + fatty acids led to greater mRNA and protein abundance of CPT1A, MTTP, and APOB, and lower mRNA and protein abundance of SREBF1 and FASN. In addition, compared with control and fatty acids, there was greater protein abundance of GRP78 and PERK in both DGAT1 and DGAT2 inhibitor with or without fatty acids. Furthermore, compared with control and fatty acids, reactive oxygen species concentrations in the DGAT1 inhibitor with or without fatty acid group was greater. Overall, data suggested that DGAT1 is particularly relevant in the context of hepatocyte TAG synthesis from exogenous fatty acids. Disruption of both DGAT1 and DGAT2 altered lipid homeostasis, channeling fatty acids toward oxidation and generation of reactive oxygen species. Both DGAT isoforms play a role in promoting fatty acid storage into TAG and lipid droplets to protect hepatocytes from oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号