首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
Chen H. 《毛纺科技》2016,(8):48-50
Influence of clothing design, fabric cutting and sewing of characteristics of wool fabric was studied in this paper by research the characteristics of wool fibers and fabrics. The studies showed that different temperament and spirit can be shown by different specifications of the fabric with different visual features and appearance characteristics which can affect the design of clothing styles, wave shapes, pattern, etc characteristics of appearance, and choices of suitable clothing technological parameters of comfort, cutting and sewing. It can be drawn conclusion that the characteristics of wool fibers, weaving technology, patterns, color collocation, and clothing technological parameters of comfort, cutting and sewing, etc should be considered to develop the wool fabric with excellent elegant and functionality.  相似文献   

2.
3.
《造纸信息》2017,(8):99-100
正On January 25~(th),2017,the Ministry of Industry and Information Technology,the Commerce Department and the Ministry of Science and Technology jointly released Guidance of Accelerating the Development of Renewable Resources Industry(hereafter referred to as guidance),aiming at accelerating renewable resources  相似文献   

4.
The tendency in general Digitizing,Networking,diversification and quickness. Digitizing,networking-Digital and network technology will penetrate the in- dustry even far and wide; Diversification-The color and type of printing products will be developed; Quickness-Quick printing at re- quest and streamlined delivery is a new goal of the printers.  相似文献   

5.
6.
The objective of this study was to evaluate the effect of addition of CO(2) to raw milk on UHT milk quality during storage. Control milk (without CO(2) addition) and treated milk (with CO(2) addition up to pH 6.2) were stored in bulk tanks at 4°C for 6d. After storage, both samples were UHT processed using indirect heating (140°C for 5s). Samples were aseptically packed in low-density polyethylene pouches and stored in the dark at room temperature. Raw milk was evaluated upon receipt for physicochemical composition, proteolysis, lipolysis, standard plate count, psychrotrophic bacteria, and Pseudomonas spp. counts, and after 6d of storage for proteolysis, lipolysis, and microbial counts. After processing, UHT milk samples were evaluated for physicochemical composition, proteolysis, and lipolysis. Samples were evaluated for proteolysis and lipolysis twice a month until 120d. Peptides from pH 4.6-soluble N filtrates were performed by reversed-phase HPLC after 1 and 120d of storage. A split-plot design was used and the complete experiment was carried out in triplicate. The results were evaluated by ANOVA and Tukey's test. After 6d of storage, CO(2)-treated raw milk kept its physicochemical and microbiological quality, whereas the untreated milk showed significant quality losses. A significant increase in proteolysis occurred during 120d of storage in both treatments, but the increase occurred 1.4 times faster in untreated UHT milk than in CO(2)-treated UHT milk. In both UHT milks, the proteolysis was a consequence of the action of plasmin and microbial proteases. However, the untreated UHT milk showed higher microbial protease activity than the treated UHT milk. The addition of CO(2) to the raw milk maintained the quality during storage, resulting in UHT milk with less proteolysis and possibly longer shelf life, which is usually limited by age gelation of UHT milk.  相似文献   

7.
Carboxymethylated cellulose nanofibril (CMCNF) is an effective green dispersant to prepare well-dispersed monolayer montmorillonites (MMTs) in water, thereby facilitating the preparation of a high-performance MMT/polymer nanocomposite film. However, not enough attention has been paid to correlating the degree of substitution (DS) of CMCNFs with the mechanical and optical properties of the final nanocomposite films. In this study, a series of homogeneous monolayer MMT nanoplatelet dispersions was prepared initially using CMCNFs with different DS as a dispersant, and the as-prepared CMCNF-dispersed MMT dispersions were then mixed with sodium carboxymethyl cellulose (CMC-Na) to fabricate nacre-like nanocomposite films with different contents of MMTs through self-assembly. The layered nanostructure and optical and mechanical properties of the as-prepared CMCNF-dispersed MMT/CMC-Na nanocomposite films were investigated, which demonstrated that CMCNFs with lower DS have a positive effect on their optical and mechanical properties. This study sheds light on the preparation of MMT-based nanocomposite films with superior optical and mechanical properties.  相似文献   

8.
The biological control capability of strain 34-9 of Kloeckera apiculata against Penicillium italium (Wehmer), postharvest rot of citrus fruits and Botrytis cinerea, postharvest rot of grape fruits was studied in vitro and in vivo. Strain 34-9 of K. apiculata at 3×108 CFU (colony-forming unit)/ml of washed cells provided complete control of 3×105 spores/ml of P. italium and B. cinerea during storage at 25 °C for 6 d. Antagonist population increased 40, 195 times in citrus fruit wound site and grape fruit wound site at 25 °C for 3 d, respectively, then the population stabilized for the remaining storage period. Cell-free culture filtrate, supernatant fluid and sterilized solution of strain 34-9 of K. apiculata had no antagonist against P. italium of citrus and B. cinerea of grape. These results showed that competition for nutrient, not antibiotic production, played a major role in the biological control capability of strain 34-9 of K. apiculata against P. italium of citrus and B. cinerea of grape.  相似文献   

9.
In our context, and in the goal to valorize the Pistacia atlantica species Desfthat grows spontaneously in Algeria occidental except the coastline, and that is used by the nomadic populations in their daily consumptions, we are thinking about drying its leaves. Here, the biochemical analysis of dried leaves ofPistacia atlantica is determined, the sorption is other ms are of great importance in the food industry, especially in the drying; the sorption isotherms of pistachio leaves were measured by the gravimetric method at three temperatures 40, 50 and 60 ℃. The equilibrium was achieved after eight days for desorption and seven days for adsorption with water activity ranging from 5% to 90%. Only the GAB and Peleg models were found to be the most suitable for describing the sorption curves. The isosteric heat of sorption of Pistacia atlantica leaves decreases with an increase in moisture content and was found to be an exponential function of moisture content for adsorption and desorption. The pistachio leaves could be considered as a rich natural source of valuable nutriments (carbohydrates, proteins and lipids); lipid fraction is equal to 2.25%; proteins are the second macronutriment that predominates in these sheets: 4.35%; accordingly carbohydrates content was about 25.77%.  相似文献   

10.
It is well known that wood species and particle size used influence the bending strength of three-layer particleboard. The objective of this study was to investigate the influence of using bagasse particles in surface layer on bending strength of three-layer particleboard panels. The ratio of the mixture of bagasse and wood particles was 3:7 and 4:6 in the surface and middle layers, respectively. Press temperatures were chosen at two levels of?165 and?180?°C. Three levels of urea formaldehyde resin were selected for the surface layers, namely: 8, 10, and 12?percent. Bending strength of the panels was determined according to the procedure of European Union (EN) Standard. The results show that bagasse has a positive effect on the bending strength of boards. In this research, the treatment with 40% bagasse and 12% resin in the surface layers and a?180?°C press temperature has resulted in an optimum bagasse board product.  相似文献   

11.
The aim of the present study was to investigate the effect of wall materials composition on physicochemical characteristics of fish oil microcapsules produced by spray drying (180 °C). Four different combination of coating materials (fish gelatin, chitosan, combination of gelatin and chitosan, and a mixture of microbial transglutaminase (MTGase) with maltodextrin) were applied to two different fish oils to produce 40 % solid emulsions. Scanning electron microscopy and extraction of surface and encapsulated oils revealed that fish gelatin provided the highest preserving effect on the covering fish oil. Meantime, addition of MTGase to gelatin could also increase this ability and reveled less surface oil than chitosan treatment (2.63 and 2.80 % versus 4.66 and 5.23 %, respectively; P?<?0.05). Mixture of gelatin and maltodextrin with MTGase as wall material led to the highest encapsulation efficiency, being selected as the best microencapsulation condition; meantime, application of chitosan with maltodextrin provided the worse encapsulation efficiency (P?<?0.05). All indices of powders (encapsulation efficiency, surface morphology, and particle size) showed that powders prepared from gelatin and gelatin with MTGase increased the encapsulation efficiency and would increase the stability of microcapsule powders.  相似文献   

12.
The effect of clay content, homogenization RPM, and pH on the mechanical and barrier properties of fish gelatin/nanoclay composite films was investigated. The addition of 5% nanoclay (w/w) increased the tensile strength from 30.31 ± 2.37 MPa to 40.71 ± 3.30 MPa. The 9 g clay/100 g gelatin film exhibited the largest improvements in oxygen and water barrier properties. Oxygen permeability decreased from 402.8 × 10−6 ± 0.7 × 10−6 g m/m2 day atm to 114.4 × 10−6 ± 16.2 × 10−6 g m/m2 day atm and the water vapor permeability decreased from 31.2 × 10−3 ± 1.6 × 10−3 ng m/m2 s Pa to 8.1 × 10−3 ± 0.1 × 10−3 ng m/m2 s Pa. The XRD and TEM observation suggested that the ultrasonication treatment (30 min at 40% output) resulted in exfoliation of the silicates.  相似文献   

13.
The objective of this study was to evaluate the effect of setting conditions (25 °C for 2 h or 40 °C for 30 min) and combining of microbial transglutaminase (MTGase) and high pressure processing (HPP) on the mechanical properties of heat induced gels obtained from paste from arrowtooth flounder (Atheresthes stomias). Treatments included fish paste control without added MTGase, fish paste incubated with MTGase but not pressurized (MTGase + cooking), fish paste incubated with MTGase and pressurized at 600 MPa for 5 min (MTGase + HPP + cooking) and fish paste pressurized at 600 MPa for 5 min and incubated with MTGase (HPP + MTGase + cooking). The controls and the treated samples were then subjected to one of two thermal treatments: 90 °C for 15 min or 60 °C for 30 min before cooking at 90 °C for 15 min. Samples of fish paste heated at 60 °C before cooking could not be used to prepare gels for texture profile analysis (TPA). TPA showed that pressurization improved the mechanical properties of gels made from paste treated with MTGase and set at 25 °C. The opposite was observed for samples set at 40 °C. Setting at 40 °C appeared to induce proteolytic degradation of myofibrillar proteins.  相似文献   

14.
Cold gelation was carried out on trout (Oncorhynchus mykiss) or on hake (Merluccius merluccius) mince with or without addition of fish oil and using microbial transglutaminase (MTGase). Products were stored at 4 °C for 6 days and lipid oxidation, protein oxidation, texture, water binding capacity, and colour were followed. Results indicated that MTGase was able to generate gels with good properties for both trout and hake. Gels prepared with trout were oxidised whilst gels prepared with hake were stable toward oxidation even in the presence of 5% fish oil. However, in the presence of oil, as an alternative for generating omega-3 enriched products, the activity of MTGase was impaired, as the gels took longer to reach maximum hardness. Furthermore, in all samples containing MTGase, protein oxidation was high.  相似文献   

15.
Fish skin gelatin was extracted from the skin of bigeye snapper (Priacanthus macracanthus) and brownstripe red snapper (Lutjanus vitta) with yields of 6.5% and 9.4% on the basis of wet weight, respectively. Both skin gelatins having high protein but low fat content contained high hydroxyproline content (75.0 and 71.5 mg/g gelatin powder). The bloom strength of gelatin gel from brownstripe red snapper skin gelatin (218.6 g) was greater than that of bigeye snapper skin gelatin (105.7 g) (P<0.05). The addition of microbial transglutaminase (MTGase) at concentrations up to 0.005% and 0.01% (w/v) increased the bloom strength of gelatin gel from bigeye snapper and brownstripe red snapper, respectively (P<0.05). However, the bloom strength of skin gelatin gel from both fish species decreased with further increase in MTGase concentration. SDS-PAGE of gelatin gel added with MTGase showed the decrease in band intensity of protein components, especially, β- and γ- components, suggesting the cross-linking of these components induced by MTGase. Microstructure studies revealed that denser and finer structure was observed with the addition of MTGase.  相似文献   

16.
The gelling and structural properties of microbial transglutaminase (MTGase) and pectin modified fish gelatin were compared to investigate their performances on altering fish gelatin properties. Our results showed that within a certain concentration, both MTGase and pectin had positive effects on the gelation point, melting point, gel strength, textural, and swelling properties of fish gelatin. Particularly, low pectin content (0.5%, w/v) could give fish gelatin gels the highest values of gel strength, melting temperature, and hardness. Meantime, flow behavior results showed that both MTGase and pectin could increase fish gelatin viscosity without changing its fluid characteristic, but the latter gave fish gelatin higher viscosity. Both MTGase and pectin could increase the lightness of fish gelatin gels but decreases its transparency. More importantly, fluorescence and UV absorbance spectra, particle size distribution, and confocal microscopy results indicated that MTGase and pectin could change the structure of fish gelatin with the formation of large aggregates. Compared with MTGae modified fish gelatin, pectin could endow fish gelatin had similar gel strength, thermal and textural properties to pig skin gelatin.  相似文献   

17.
The properties of white shrimp (Penaeus vannamei) gel added with different levels of microbial transglutaminase (MTGase) and subjected to setting at 25 °C for 2 h or 40 °C for 30 min, prior to heating at 90 °C for 20 min were studied. Breaking force of gels with and without setting increased with increasing MTGase amount added (P<0.05). However, no changes in deformation in all samples were noticeable (P>0.05). Directly heated gels showed the lower breaking force than those with prior setting at all MTGase levels added (P<0.05). Generally, gels prepared by setting at 25 °C exhibited the greater breaking force than those set at 40 °C, possibly associated with the appropriate protein structure for cross-linking at 25 °C and greater degradation at 40 °C as evidenced by a greater trichloroacetic acid soluble peptide content (P<0.05). Sodium dodecyl sulfate polyacrylamide gel electrophoretic study revealed that myosin heavy chain (MHC) underwent polymerization to a higher extent in the presence of MTGase, but the strengthening effect on gel was dependent on setting temperature. Regardless of setting condition, microstructure of gel added with MTGase was finer with a smaller void, compared with those of gel without MTGase. Therefore, setting temperature played an essential role in gel property of white shrimp meat added with MTGase.  相似文献   

18.
In order to obtain low salt fish products, the effects of the addition of 0.5% (w/w based on whole product, wp) MTGase and different levels (0.25%, 0.50%, 1.00% and 2.50%, w/w wp) of sodium chloride salt to heat-induced gels from farmed sea bass (Dicentrarchus labrax) trimmings were tested and compared with gels without salt and/or without MTGase.MTGase and salt addition, both, had a favourable effect on texture. However, only salt incorporation augmented water holding capacity (WHC).A synergistic effect was detected between MTGase and salt for several important textural properties, particularly, gel strength, which reached 64.3 ± 8.1 N mm, a value comparable to those of best quality surimi. Moreover, MTGase required addition of salt to the product for its effect to be felt, however only a minimal amount (0.25%, w/w wp) sufficed. In fact, the addition of MTGase enabled reduction in salt content to 1.0% (w/w wp), without significant loss of textural and overall quality.  相似文献   

19.
Chee-Yuen Gan 《LWT》2009,42(1):174-179
Soy protein isolate (SPI), microbial transglutaminase (MTGase) and ribose (R) were used to modify physical properties and in-vitro starch hydrolysis of yellow noodle. Four types of noodles were produced; noodles with SPI (SPI/C noodles), noodles with SPI and ribose (SPI/R noodles), noodles with SPI and microbial transglutaminase (SPI/MTGase noodles) and noodles with SPI, ribose and MTGase (SPI/R/MTGase noodles). γ-glutamyl-lysine bonds by MTGase and ribose-induced Maillard reaction within SPI were induced by incubating the noodles for 5 h at 40 °C followed by steaming for 30 min. Cooked noodles were assessed for physical properties such as pH, color, tensile strength and elasticity, and in-vitro hydrolysis index (HI) and estimated glycemic index (GI). SPI/R/MTGase and SPI/MTGase noodles exhibited significantly (P < 0.05) higher tensile strength and elasticity than SPI/R and SPI/C noodles. HI and GI were in the order; SPI/R/MTGase < SPI/MTGase < SPI/R < SPI/C noodles. Incorporation of SPI that was treated with MTGase and ribose may be useful for controlling the texture and starch hydrolysis of yellow noodles. These attributes may be due to the formation of γ-glutamyl-lysine bonds during incubation of SPI, and ribose-induced Maillard reaction during steaming of the noodles.  相似文献   

20.
Fish gelatin extraction from wastes of fish Herring species (Tenualosa ilisha) was carried out by a series of pretreatment with 0.2 M Ca(OH)2 followed by 0.1 M citric acid and final water extraction at 50 °C for 3 h. The resulting fish gelatin preparation was evaluated for its dynamic viscoelastic properties, gelling and melting temperatures and gel strength. The gelling and melting temperatures of gelatin samples (at 6.67%, w/v) were obtained from differential scanning calorimetry and rheological studies. The melting temperature of extracted fish gelatin (EFG) obtained ranged from 16.2 to 16.7 °C compared to that of commercial fish gelatin gel (CFG), from 23.7 to 25.6 °C and halal bovine gelatin (HBG), from 26.5 to 28.7 °C. On the other hand, gelling temperatures of EFG, CFG and HBG ranged from 5.1 to 5.2 °C, 11.9 to 17.46 °C, and 12.6 to 19.33 °C, respectively. EFG gave gels with a considerably lower G′ values than CFG and HBG. The bloom strength of EFG gels at 6.67% (w/v) was 69.03 g which was much lower than HBG (336.2 g) and CFG (435.9 g). Enzyme transglutaminase was added in the amounts of 0.5, 1.0, 3.0 and 5.0 mg/g gelatin to modify the gel properties of the extracted fish gelatin. The modified EFG gels obtained had higher gel strengths of 101.1 g and 90.56 g with added transglutaminase of 1.0 and 3.0 mg/g, respectively. However with addition of 5.0 mg/g enzyme the gel strength increased only up to 75.06 g. SDS-PAGE of extracted gelatin gel showed protein band intensities for α1-chains and 53 kDa but in gels added with higher concentration of transglutaminase, these protein band intensities seemed to disappear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号