首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Alcalase碱性蛋白酶酶解蛋清制备抗氧化活性肽   总被引:4,自引:0,他引:4  
研究Alcalase碱性蛋白酶酶解鸡蛋蛋清制备小分子活性肽.确定酶解的最佳工艺是:酶解pH值为9.0,酶解温度为70℃,底物浓度[S]为4.5%,酶加入量[E]/[S]为6%.水解时间4 h,水解度达到33%.采用化学发光法研究蛋清肽混合物的抗氧化性,结果表明,不同浓度和水解度的蛋清肽混合物均具有清除活性氧和抗脂质氧化的能力.随着蛋清肽混合物浓度增大,清除能力增大,抗氧化性增大.不同水解度的蛋清肽混合物,其清除活性氧和抗脂质氧化能力稍有不同,但区别不大.用葡聚糖凝胶SephadexG-15测定水解物分子量分布,结果表明水解产物中的主要成分是分子量集中在1300u的寡肽.  相似文献   

2.
Alcalase碱性蛋白酶水解棉籽蛋白动力学研究   总被引:1,自引:0,他引:1  
采用pH-stat法对Alcalase碱性蛋白酶水解棉籽蛋白的动力学特性进行了研究,确定了Alcalase碱性蛋白酶水解棉籽蛋白的最佳反应条件:温度60℃、pH8.0、酶与底物比750 U/g、底物质量分数5%,水解300 min后水解度可以达到12.43%;动力学参数:Km=6.013 3 mol/L、vmax=9.549 3×10-3mol/(min·L).  相似文献   

3.
研究了Alcalase碱性蛋白酶对大豆分离蛋白的水解效果,并研究了pH、温度、酶用量、底物质量分数、水解时间对该酶水解效果的影响。通过正交实验和极差分析可确定最佳工艺条件为:温度58℃,pH8.0,底物质量分数5.0%,酶用量10.0%(E:S),水解时间300min。   相似文献   

4.
Alcalase碱性蛋白酶对大豆分离蛋白水解作用的研究   总被引:29,自引:2,他引:29  
研究了Alcalase碱性蛋白酶对大豆分离蛋白的水解效果,并研究了pH、温度、酶用量、底物质量分数、水解时间对该酶水解效果的影响。通过正交实验和极差分析可确定最佳工艺条件为:温度58℃,pH8.0,底物质量分数5.0%,酶用量10.0%(E:S),水解时间300min。  相似文献   

5.
以绿豆为原料,用Alcalase碱性蛋白酶酶解绿豆分离蛋白制备小分子多肽.采用单因素及多因素试验方法优化酶解条件.考察酶解过程中绿豆分离蛋白预处理、料液比、酶解温度、加酶量、酶解时间等对小肽得率的影响.测定水解产物的功能特性,并用液质联用技术(LC-MS)考察酶解得到的小肽的分子量分布范围.结果表明:绿豆分离蛋白预处理条件为95℃处理20 min.酶解最佳条件为:65℃、pH8.5、底物浓度9%、加酶量6 000 U/g、酶解240 min,水解度可达35.86%.经液质联用(HPLC-MS)分析证明水解产物的分子量集中在1 000 u以下.绿豆分离蛋白各功能特性得到很好地改善,表明该酶对绿豆分离蛋白水解效果良好,完全能达到制备多肽的水解度要求.  相似文献   

6.
通过测定水解度的方法,研究Alcalase碱性蛋白酶对甘薯蛋白的水解效果,并探讨了pH、温度、酶用量、底物浓度、水解时间对该酶水解效果的影响.通过正交实验和极差分析确定最佳工艺条件为温度45℃,开始的pH值8.0,底物浓度3%(w/v),酶与底物的浓度比4%(w/v),水解时间240min.此外,Alcalase水解甘薯蛋白可分成3个不同分子量的组分.  相似文献   

7.
为掌握碱性蛋白酶对荞麦蛋白的酶解特性,实现对荞麦蛋白的深加工利用及生物活性肽的开发.采用pH-stat法,系统分析了底物浓度、酶浓度、pH及温度对荞麦蛋白水解度的影响,并运用对数函数对水解动力学过程进行描述和拟合.结果表明:在碱性蛋白酶水解荞麦蛋白的过程中,水解度随水解时间的变化呈现对数函数关系,可用公式h=(1/b)ln(1+abt)对其水解动力学过程进行描述;底物具有促进水解反应速度和抑制酶活性的双重作用,在低底物浓度条件下,荞麦蛋白的水解度较高;当底物浓度增加到6%时,蛋白水解度与底物浓度的关系曲线出现转折,水解度较低且趋于平缓;在酶浓度为0.002 g/mL时,水解反应的临界底物浓度为12.27%;在pH9.8、水解温度为50℃、水解时间30 min的条件下,碱性蛋白酶催化水解荞麦蛋白的动力学方程为h=1.218 2 ln(1+12.6([E]/[S]+0.58)t)  相似文献   

8.
Alcalase酶解制备大豆肽工艺条件的优化   总被引:2,自引:0,他引:2  
以大豆分离蛋白为原料,研究了用Alcalase碱性蛋白酶水解制备大豆肽。以蛋白水解度和蛋白水解液等电点溶解度为指标,通过单因素试验及正交试验得出最佳水解条件为:料液比1:20,酶解pH8.5,酶解温度60℃,加酶量5400U/g蛋白。此条件下,蛋白水解度为18.79%,等电点溶解度是86.32%。  相似文献   

9.
2709碱性蛋白酶酶解大豆分离蛋白的研究   总被引:1,自引:0,他引:1  
从预处理温度、预处理时间、底物浓度、加酶量、酶解温度、酶解时间等方面研究了2709碱性蛋白酶对大豆分离蛋白酶解的影响,并运用正交试验设计和方差分析优化了酶解条件。结果表明,在70℃预处理10min水解度得到极大的提高。单因素正交试验结果表明:以3%底物浓度,4000U/gSPI加酶量,50℃酶解4、5h效果较好。方差分析结果表明,加酶量和酶解温度对水解度影响显著,酶解时间和底物浓度对水解度影响不显著。  相似文献   

10.
《粮食与油脂》2016,(8):53-57
选用Protex 6L蛋白酶和Protex 51FP蛋白酶对大豆分离蛋白进行酶法水解,以水解度为考察值对其酶解工艺进行优化。基于单因素试验,考察了碱性蛋白酶Protex 6L的酶解参数对酶解的影响,并利用Design Expert软件设计响应面对酶解条件进行优化分析。试验表明:在酶解p H8.5、酶解温度58℃、底物浓度7%、加酶量5 800 U/g、酶解时间4 h条件下的大豆分离蛋白的水解度(DH)为13.23%。通过Protex 51FP外切蛋白酶对其苦味进行调节,加入5 600 HU/g的Protex51FP外切蛋白酶可使苦味得以改善。  相似文献   

11.
以蚕豆蛋白为原料,采用碱性蛋白酶酶解、酒精发酵制备蚕豆多肽酒,并对其抗氧化性进行了研究.结果表明:蚕豆蛋白酶解优化工艺为底物浓度32 g/L,水解温度43.2℃,酶用量9 821.12 U/g,pH 9.50,在此条件下酶解2h,蚕豆蛋白的水解度达到19.64%.以蚕豆酶解液为原料制备多肽酒的发酵工艺为加糖量20%,酵母接种量0.22%,发酵温度28℃,发酵时间6d,在此条件下制得的蚕豆多肽酒的酒精含量为9.6%,呈透明的棕黄色,口感醇正、鲜爽、具有发酵酒的醇香.本试验条件下制备的蚕豆多肽酒具有较强的抗氧化性.  相似文献   

12.
采用碱性蛋白酶酶解蚕豆分离蛋白,通过正交试验确定最佳酶解反应条件:反应温度为50℃,pH值为8.5,酶与底物比为16000 U/g,底物浓度为60g/L.在此条件下,水解度可以达到15.55%.  相似文献   

13.
中性蛋白酶和碱性蛋白酶对玉米蛋白水解作用的研究   总被引:6,自引:0,他引:6  
何莉萍  刘良忠 《食品科学》2008,29(3):152-157
本实验研究了中性蛋白酶和碱性蛋白酶分别作用和共同作用对玉米蛋白粉中玉米蛋白的水解效果.结果表明,中性蛋白酶水解玉米蛋白的较佳水解条件是:酶浓度3544U/g、pH7.0、温度55℃、水解时间(t)为2h,碱性蛋白酶水解玉米蛋白粉的较佳水解条件是:酶浓度840U/g、pH8.0、温度55℃、水解时间2h.采用中性蛋白酶和碱性蛋白酶复合水解玉米蛋白比单一酶水解的效果好,水解液的水解度达到20%以上.  相似文献   

14.
Alcalase对大豆分离蛋白凝胶性质的影响   总被引:5,自引:0,他引:5  
研究了Alcalase蛋白酶对大豆分离蛋白凝胶形成过程中温度、酶的添加量、酶反应速率及水解度对凝胶体系流变学性质的影响及蛋白质各亚基在水解过程中的变化情况。结果表明:反应存在着温度限制,同时也受水解度和酶添加量的影响。在较低温度:20℃、30℃时能得到较高的凝胶强度;温度升高,凝胶强度减弱。低温下,较大的酶添加量有利于反应体系的胶凝,而高温下,较低的酶添加量才有利于体系的胶凝。低的水解度下有利于形成稳定的凝胶,40℃时水解度超过8%就不能形成稳定的凝胶。经Alcalase作用后,大豆分离蛋白的7S和11S球蛋白均有不同程度的水解。  相似文献   

15.
以蚕豆为主要原料,添加一定比例的面粉,采用挤压膨化的方法对原料蚕豆和面粉进行预处理,然后进行制曲,可提高蚕豆酱制曲过程中的蛋白酶活力。以螺杆转速、面粉比例、机筒末区温度、物料水分含量为试验因素,采用Box-Behnken中心组合设计响应面试验,分析挤压参数对成曲蛋白酶活力的影响,并确定最优挤压膨化工艺。结果表明,最佳挤压膨化参数为:螺杆转速120 r/min,面粉比例17%,机筒末区温度130℃,物料水分含量45%,该条件下蛋白酶活力可达(1331.91±8.22)U/g,与蒸煮法处理相比,成曲蛋白酶活力提高了33.57%。在最优制曲条件下得到的蚕豆酱呈红褐色,酱香较浓。经检测蚕豆酱的氨基酸态氮含量为0.720 g/100 g,水分为50.75%。  相似文献   

16.
以大豆分离蛋白(soy protein isolate,SPI)为原料,利用碱性蛋白酶对其进行酶解处理(0~24 h),探究SPI的结构变化规律,发现碱性蛋白酶控制酶解可诱导SPI自组装形成系列分布均匀(多相分散系数<0.3)、粒径可控(90~200 nm)且具有不同表面特性的大豆蛋白纳米颗粒(soy protein nanoparticles,SPNs),其中水解度(degree of hydrolysis,DH)及亚基解离/降解是影响SPNs形成的关键性因素。酶解初期(10~30 min,DH约3%),SPI中β-伴大豆球蛋白(7S)组分α与α’亚基的部分降解有利于两亲性结构的释放,提高蛋白表面疏水性,降低临界聚集浓度,形成包含相对完整的7S及大豆球蛋白(11S)亚基的I类纳米颗粒(SPNs-DH 3%)。随着酶解时间的延长(1~2 h),α与α’亚基的进一步降解促进了疏水性β亚基与B亚基的暴露,增强的疏水相互作用导致体系浊度增加,其中可溶性聚集体向不溶性疏水聚集的转化使得蛋白表面疏水性急剧下降,形成以A亚基及部分β亚基为主导的II类亲水型纳米颗粒(SPNs-DH 5%)。酶解后期(4~24 h),A亚基的进一步降解则产生更多亲水性多肽,不利于纳米颗粒的形成。进而探究SPNs的形成机制,圆二色光谱结构表明,SPNs的形成与蛋白α-螺旋和无规卷曲结构向β-折叠转化有关。两类SPNs的整体结构均由疏水相互作用维持,而氢键和二硫键分别参与颗粒表面与内部结构的形成。与SPNs-DH 3%相比,SPNs-DH 5%中形成了更多由二硫键与氢键稳定的折叠结构。此外,由于酶解过程中不断释放抗氧化肽段,其所形成SPNs的抗氧化性较原始SPI均有所提升。  相似文献   

17.
以大豆分离蛋白为底物,通过单因素试验和正交试验,确定超声和Alcalase 酶复合处理对大豆分离蛋白水解的最佳条件。结果表明,最佳水解条件为大豆分离蛋白质量分数5.0%、超声处理时间30min、加酶量5.0%、酶解pH8.0、酶解温度55℃、酶解时间4.0h,在此条件下,大豆分离蛋白水解度为12.21%。  相似文献   

18.
为研究不同品种蚕豆发酵甜瓣子中非挥发性风味物质的特异性,通过对比分析、PLS-DA聚类分析,结合感官评价,探究11种甜瓣子中有机酸、脂肪酸和游离氨基酸组成与含量的差异性。结果显示,不同品种蚕豆发酵甜瓣子营养成分差异性显著(P<0.05)。CH系列和QY甜瓣子有机酸(0.93~1.13 g/100 g)与游离氨基酸(43.18~45.65 g/kg)含量较高;TCX甜瓣子有机酸(1.00 g/100 g)和脂肪酸(2 808.88 µg/g)含量相对较高;YD和SCZG甜瓣子脂肪酸总量较高,其它营养成分含量相对较低。PLS-DA品质差异性分析发现不同品种甜瓣子品质有较大差异。通过变量重要性排序发现品质差异主要与苯丙氨酸、精氨酸、草酸等14种VIP值>1的化合物有关。感官评分结果显示,CH系列和QY甜瓣子的感官评分较高(77.26分~82.75分),品质更好。综上认为QY和CH系列蚕豆发酵甜瓣子中含有更丰富的有机酸、脂肪酸以及游离氨基酸,感官综合评分更高,拥有较好的风味品质,适宜用来加工甜瓣子。  相似文献   

19.
研究中性蛋白酶对核桃蛋白的水解作用,分析pH、温度、水解时间、底物浓度、加酶量对水解度的影响,并采用正交试验对其进行优化。确定中性蛋白酶水解核桃蛋白制备核桃多肽的最佳水解条件为pH6.0、温度40℃、水解时间3.0 h、底物浓度0.7%、加酶量7 501 nkat(以每克底物计),在此条件下核桃蛋白质水解度为48.53%。  相似文献   

20.
碱性蛋白酶提取大米水解蛋白的研究   总被引:10,自引:0,他引:10  
研究了用碱性蛋白酶提取大米水解蛋白的工艺,分析了温度、pH值、加酶量、液固比、提取时间对蛋白质提取率的影响,并用响应面分析法优化了碱性蛋白酶提取大米水解蛋白的工艺条件,确定了工艺参数。其最佳工艺条件为:温度58.9℃、pH值8.77、加酶量(E/S)0.89%、液固比8∶1、提取时间4 h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号