首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Hydrogen can be recovered by fermentation of organic material rich in carbohydrates, but much of the organic matter remains in the form of acetate and butyrate. An alternative to methane production from this organic matter is the direct generation of electricity in a microbial fuel cell (MFC). Electricity generation using a single-chambered MFC was examined using acetate or butyrate. Power generated with acetate (800 mg/L) (506 mW/m2 or 12.7 mW/ L) was up to 66% higher than that fed with butyrate (1000 mg/L) (305 mW/m2 or 7.6 mW/L), demonstrating that acetate is a preferred aqueous substrate for electricity generation in MFCs. Power output as a function of substrate concentration was well described by saturation kinetics, although maximum power densities varied with the circuit load. Maximum power densities and half-saturation constants were Pmax = 661 mW/m2 and Ks = 141 mg/L for acetate (218 ohms) and Pmax = 349 mW/m2 and Ks = 93 mg/L for butyrate (1000 ohms). Similar open circuit potentials were obtained in using acetate (798 mV) or butyrate (795 mV). Current densities measured for stable power outputwere higher for acetate (2.2 A/m2) than those measured in MFCs using butyrate (0.77 A/m2). Cyclic voltammograms suggested that the main mechanism of power production in these batch tests was by direct transfer of electrons to the electrode by bacteria growing on the electrode and not by bacteria-produced mediators. Coulombic efficiencies and overall energy recovery were 10-31 and 3-7% for acetate and 8-15 and 2-5% for butyrate, indicating substantial electron and energy losses to processes other than electricity generation. These results demonstrate that electricity generation is possible from soluble fermentation end products such as acetate and butyrate, but energy recoveries should be increased to improve the overall process performance.  相似文献   

2.
以从长白山温泉中分离的一株高温厌氧产氢菌CBZ-S-MEE2为菌种,对该菌利用不同碳源发酵产氢进行研究。利用葡萄糖进行发酵产氢时,最大产气速率为180mL(/L.h),产氢效率为1.8mol H2/mol葡萄糖,表明该菌可以快速利用葡萄糖发酵产氢,对葡萄糖的转化效率高。对未经预处理纤维素和以纤维素为主要成分的碳源进行发酵时,该菌在硫元素缺失或pH偏碱性的状态下不能充分的生长,产氢速率低。在改进试验中,通过维持较好的硫元素平衡,以纤维素为唯一碳源发酵时,最大产气速率为77mL(/L.h),产氢效率为7.5mol H2/gVS。表明高温厌氧菌CBS-Z-MEE2可以利用未经预处理的纤维素原料为唯一碳源进行发酵产氢,这为以纤维素为主要成分的生物质发酵产氢奠定了技术基础。  相似文献   

3.
Tubular microbial fuel cells for efficient electricity generation   总被引:17,自引:0,他引:17  
A tubular, single-chambered, continuous microbial fuel cell (MFC) that generates high power outputs using a granular graphite matrix as the anode and a ferricyanide solution as the cathode is described. The maximal power outputs obtained were 90 and 66 W m(-3) net anodic compartment (NAC) (48 and 38 W m(-3) total anodic compartment (TAC)) for feed streams based on acetate and glucose, respectively, and 59 and 48 W m(-3) NAC for digester effluent and domestic wastewater, respectively. For acetate and glucose, the total Coulombic conversion efficiencies were 75 +/- 5% and 59 +/- 4%, respectively, at loading rates of 1.1 kg chemical oxygen demand m(-3) NAC volume day(-1). When wastewater was used, of the organic matter effectively removed (i.e., 22% at a loading of 2 kg organic matter m(-3) NAC day(-1)), up to 96% was converted to electricity on a Coulombic basis. The lower overall efficiency of the wastewater-treating reactors is related to the presence of nonreadily biodegradable organics and the interference of alternative electron acceptors such as sulfate present in the wastewater. To further improve MFCs, focus has to be placed on the enhanced conversion of nonrapidly biodegradable material and the better directing of the anode flow toward the electrode instead of to alternative electron acceptors. Also the use of sustainable, open-air cathodes is a critical issue for practical implementation.  相似文献   

4.
Glucose fermentation to hydrogen results in the production of acetic and butyric acids. The inhibitory effect of these acids on hydrogen yield was examined by either adding these acids into the feed of continuous flow reactors (external acids), or by increasing glucose concentrations to increase the concentrations of acids produced by the bacteria (self-produced). Acids added to the feed at a concentration of 25 mM decreased H2 yields by 13% (acetic) and 22% (butyric), and 60 mM (pH 5.0) of either acid decreased H2 production by >93% (undissociated acid concentrations). H2 yields were constant at 2.0 +/- 0.2 mol H2/mol glucose for an influent glucose concentration of 10-30 g/L. At 40 g glucose/L, H2 yields decreased to 1.6 +/- 0.1 mol H2/mol glucose, and a switch to solventogenesis occurred. A total undissociated acid concentration of 19 mM (self-produced acids) was found to be a threshold concentration for significantly decreasing H2 yields and initiating solventogenesis. Hydrogen yields were inhibited more by self-produced acids (produced at high glucose feed concentrations) than by similar concentrations of externally added acids (lower glucose feed concentrations). These results show the reason hydrogen yields can be maximized by using lower glucose feed concentrations is that the concentrations of self-produced volatile acids (particularly butyric acid) are minimized.  相似文献   

5.
The effect of ration on heat of glucose fermentation in sheep rumen fluid was investigated. Heat production was measured in a semiadiabatic calorimeter. In trial 1, the effect of glucose (.4 to 6.4 mg) on fermentative heat production was determined in rumen fluid from sheep fed 25 or 100% roughage diet. Heat of glucose fermentation decreased with increase in glucose dose in both diets. Maximal heat of glucose fermentation in both diets agreed with stoichiometric calculations. However, at 6.4 mg glucose, maximal heat was 18 kcal/mol in the 25% roughage diet and 14 kcal/mol in the 100% roughage diet. Purine N and maximal rate of heat production were not affected by diet type. In trial 2, the effect of glucose (1.6 and 6.4 mg) on fermentative heat production was determined in rumen fluid from sheep fed 25, 50, 75, and 100% roughage. In addition, fermentation pattern was measured in donors of the rumen fluid. Heat of glucose fermentation was positively correlated with organic matter digestibility and negatively correlated with rumen pH and acetate concentration. These observations indicate that in addition to the effect of roughage on the fermentation pattern, supplemental adaptation may occur, as indicated by the reduction in the heat of glucose fermentation.  相似文献   

6.
Microbial fuel cells (MFCs) have been used to produce electricity from different compounds, including acetate, lactate, and glucose. We demonstrate here that it is also possible to produce electricity in a MFC from domestic wastewater, while atthe same time accomplishing biological wastewater treatment (removal of chemical oxygen demand; COD). Tests were conducted using a single chamber microbial fuel cell (SCMFC) containing eight graphite electrodes (anodes) and a single air cathode. The system was operated under continuous flow conditions with primary clarifier effluent obtained from a local wastewater treatment plant. The prototype SCMFC reactor generated electrical power (maximum of 26 mW m(-2)) while removing up to 80% of the COD of the wastewater. Power output was proportional to the hydraulic retention time over a range of 3-33 h and to the influent wastewater strength over a range of 50-220 mg/L of COD. Current generation was controlled primarily by the efficiency of the cathode. Optimal cathode performance was obtained by allowing passive air flow rather than forced air flow (4.5-5.5 L/min). The Coulombic efficiency of the system, based on COD removal and current generation, was < 12% indicating a substantial fraction of the organic matter was lost without current generation. Bioreactors based on power generation in MFCs may represent a completely new approach to wastewater treatment. If power generation in these systems can be increased, MFC technology may provide a new method to offset wastewater treatment plant operating costs, making advanced wastewater treatment more affordable for both developing and industrialized nations.  相似文献   

7.
Although microbial fuel cells (MFCs) generate much lower power densities than hydrogen fuel cells, the characteristics of the cathode can also substantially affect electricity generation. Cathodes used for MFCs are often either Pt-coated carbon electrodes immersed in water that use dissolved oxygen as the electron acceptor or they are plain carbon electrodes in a ferricyanide solution. The characteristics and performance of these two cathodes were compared using a two-chambered MFC. Power generation using the Pt-carbon cathode and dissolved oxygen (saturated) reached a maximum of 0.097 mW within 120 h after inoculation (wastewater sludge and 20 mM acetate) when the cathode was equal size to the anode (2.5 x 4.5 cm). Once stable power was generated after replacing the MFC with fresh medium (no sludge), the Coulombic efficiency ranged from 63 to 78%. Power was proportional to the dissolved oxygen concentration in a manner consistent with Monod-type kinetics, with a half saturation constant of K(DO) = 1.74 mg of O2/L. Power increased by 24% when the cathode surface areas were increased from 22.5 to 67.5 cm2 and decreased by 56% when the cathode surface area was reduced to 5.8 cm2. Power was also substantially reduced (by 78% to 0.02 mW) if Pt was not used on the cathode. By using ferricyanide instead of dissolved oxygen, the maximum power increased by 50-80% versus that obtained with dissolved oxygen. This result was primarily due to increased mass transfer efficiencies and the larger cathode potential (332 mV) of ferricyanide than that obtained with dissolved oxygen (268 mV). A cathode potential of 804 mV (NHE basis) is theoretically possible using dissolved oxygen, indicating that further improvements in cathode performance with oxygen as the electron acceptor are possible that could lead to increased power densities in this type of MFC.  相似文献   

8.
After anaerobic dark fermentation of waste activated sludge (WAS) for hydrogen production, there are a large number of organic compounds including protein, polysaccharide, and volatile fatty acids left in the dark fermentation liquid, which can be further bioconverted to hydrogen by photofermentation techniquea. In this study, the enhancement of photofermentative hydrogen produced from WAS dark fermentation liquid by using nano-TiO2 is reported. First, high concentration of NH(4)(+)-N in the dark fermentation liquid was observed to inhibit the photofermentative hydrogen production, and its removal was essential. Then the effect of nano-TiO2 on photofermentative hydrogen generation was investigated, and the addition of 100 mg/L nano-TiO2 increased hydrogen by 46.1%. Finally, the mechanisms for nano-TiO2 improving hydrogen production were investigated. It was found that nano-TiO2 improved the decomposition of protein and polysaccharide to small-molecule organic compounds and promoted the growth of photosynthetic bacteria and the activity of nitrogenase but decreased the H2-uptake hydrogenase activity.  相似文献   

9.
A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m(2) (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m(2). COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m(2) without salinity driven energy, and <0.015 W/m(2) with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water.  相似文献   

10.
A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m(3) H(2)/m(3) d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号