首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dairy cattle breeding organizations tend to sell semen to breeders operating in different environments and genotype × environment interaction may play a role. The objective of this study was to investigate optimization of dairy cattle breeding programs for 2 environments with genotype × environment interaction. Breeding strategies differed in 1) including 1 or 2 environments in the breeding goal, 2) running either 1 or 2 breeding programs, and 3) progeny testing bulls in 1 or 2 environments. Breeding strategies were evaluated on average genetic gain of both environments, which was predicted by using a pseudo-BLUP selection index model.When both environments were equally important and the genetic correlation was higher than 0.61, the highest average genetic gain was achieved with a single breeding program with progeny-testing all bulls in both environments. When the genetic correlation was lower than 0.61, it was optimal to have 2 environment-specific breeding programs progeny-testing an equal number of bulls in their own environment only. Breeding strategies differed by 2 to 12% in average genetic gain, when the genetic correlation ranged between 0.50 and 1.00. Ranking of breeding strategies, based on the highest average genetic gain, was relatively insensitive to heritability, number of progeny per bull, and the relative importance of both environments, but was very sensitive to selection intensity. With more intense selection, running 2 environment-specific breeding programs was optimal for genetic correlations up to 0.70-0.80, but this strategy was less appropriate for situations where 1 of the 2 environments had a relative importance less than 10 to 20%. Results of this study can be used as guidelines to optimize breeding programs when breeding dairy cattle for different parts of the world.  相似文献   

2.
The objective of this study was to evaluate a genomic breeding scheme in a small dairy cattle population that was intermediate in terms of using both young bulls (YB) and progeny-tested bulls (PB). This scheme was compared with a conventional progeny testing program without use of genomic information and, as the extreme case, a juvenile scheme with genomic information, where all bulls were used before progeny information was available. The population structure, cost, and breeding plan parameters were chosen to reflect the Danish Jersey cattle population, being representative for a small dairy cattle population. The population consisted of 68,000 registered cows. Annually, 1,500 bull dams were screened to produce the 500 genotyped bull calves from which 60 YB were selected to be progeny tested. Two unfavorably correlated traits were included in the breeding goal, a production trait (h2 = 0.30) and a functional trait (h2 = 0.04). An increase in reliability of 5 percentage points for each trait was used in the default genomic scenario. A deterministic approach was used to model the different breeding programs, where the primary evaluation criterion was annual monetary genetic gain (AMGG). Discounted profit was used as an indicator of the economic outcome. We investigated the effect of varying the following parameters: (1) increase in reliability due to genomic information, (2) number of genotyped bull calves, (3) proportion of bull dam sires that are young bulls, and (4) proportion of cow sires that are young bulls. The genomic breeding scheme was both genetically and economically superior to the conventional breeding scheme, even in a small dairy cattle population where genomic information causes a relatively low increase in reliability of breeding values. Assuming low reliabilities of genomic predictions, the optimal breeding scheme according to AMGG was characterized by mixed use of YB and PB as bull sires. Exclusive use of YB for production cows increased AMGG up to 3 percentage points. The results from this study supported our hypothesis that strong interaction effects exist. The strongest interaction effects were obtained between increased reliabilities of genomic estimated breeding values and more intensive use of YB. The juvenile scheme was genetically inferior when the increase in reliability was low (5 percentage points), but became genetically superior at higher reliabilities of genomic estimated breeding values. The juvenile scheme was always superior according to discounted profit because of the shorter generation interval and minimizing costs for housing and feeding waiting bulls.  相似文献   

3.
Genomic selection has the potential to revolutionize dairy cattle breeding because young animals can be accurately selected as parents, leading to a much shorter generation interval and higher rates of genetic gain. The aims of this study were to assess the effects of genomic selection and reduction of the generation interval on the rate of genetic gain and rate of inbreeding. Furthermore, the merit of proven bulls relative to young bulls was studied. This is important for breeding organizations as it determines the relative importance of progeny testing. A closed nucleus breeding scheme was simulated in which 1,000 males and 1,000 females were born annually, 200 bulls were progeny tested, and 20 sires and 200 dams were selected to produce the next generation. In the “proven” (PROV) scenario, only cows with own performance records and progeny-tested bulls were selected as parents. The proportion of the genetic variance that was explained by simulated marker information (M) was varied from 0 to 100%. When M increased from 0 to 100%, the rate of genetic gain increased from 0.238 to 0.309 genetic standard deviations (σ) per year (+30%), whereas the rate of inbreeding reduced from 1.00 to 0.42% per generation. Alternatively, when young cows and bulls were selected as parents (YNG scenario), the rate of genetic gain for M = 0% was 0.292 σ/yr but the corresponding rate of inbreeding increased substantially to 3.15% per generation. A realistic genomic selection scheme (YNG with M = 40%) gave 108% higher rate of genetic gain (0.495 σ/yr) and approximately the same rate of inbreeding per generation as the conventional system without genomic selection (PROV with M = 0%). The rate of inbreeding per year, however, increased from 0.18 to 0.52% because the generation interval in the YNG scheme was much shorter. Progeny-testing fewer bulls reduced the rate of genetic gain and increased the rate of inbreeding for PROV, but had negligible effects for YNG because almost all sires were young bulls. In scenario YNG with M = 40%, the best young bulls were superior to the best proven bulls by 1.27 σ difference in genomic estimated breeding value. This superiority increased even further when fewer bulls were progeny tested. This stochastic simulation study shows that genomic selection in combination with a severe reduction in the generation interval can double the rate of genetic gain at the same rate of inbreeding per generation, but with a higher rate of inbreeding per year. The number of progeny-tested bulls can be greatly reduced, although this will slightly affect the quality of the proven bull team. Therefore, it is important for breeding organizations to predict the future demand for proven bull semen in light of the increasing superiority of young bulls.  相似文献   

4.
The aim of this study was to evaluate the effect of herd environment class on the genetic and phenotypic relationships of mature equivalent milk yield (MY) on age at first calving (AFC). Data analyzed were 248,230 first parity records of Holstein cows, daughters of 588 sires in 3,042 herds in the United States. Heritability for AFC was 0.33 ± 0.01 and 0.20 ± 0.01 in high and low environment herds, respectively, and 0.47 ± 0.01 in the complete data set. The correlation between AFC sires’ predicted breeding values of low and high classes was 0.69. Genetic correlations between MY and AFC were −0.52 ± 0.02 and −0.31 ± 0.03 in high and low environment herds, respectively, and −0.44 ± 0.02 in the complete data set representing intermediate environments. If selection is based on the whole data set, expected correlated responses for AFC estimated as a result of 1,000 kg of genetic gain in MY, for high and low herd environment herds were −26.1 and −15.3 d, respectively, and −32.6 for the complete data set; hence the highest reduction in AFC occurs in intermediate environment herds. Different estimates of the heritability of AFC, the correlation between AFC breeding values of low and high classes as well as changes in the genetic correlation between MY and AFC across environments indicate genotype × environment interaction. Caution in interpretation is warranted because genetic relationships are dynamic, especially in populations undergoing selection. Current relationships may differ from those during the time period of the present study (1987–1994). Notwithstanding this possibility, methods and findings from the present study provide insight about the complexity of genetic association and genotype × environment interactions between AFC and MY.  相似文献   

5.
The objective of this study was to compare a conventional dairy cattle breeding program characterized by a progeny testing scheme with different scenarios of genomic breeding programs. The ultimate economic evaluation criterion was discounted profit reflecting discounted returns minus discounted costs per cow in a balanced breeding goal of production and functionality. A deterministic approach mainly based on the gene flow method and selection index calculations was used to model a conventional progeny testing program and different scenarios of genomic breeding programs. As a novel idea, the modeling of the genomic breeding program accounted for the proportion of farmers waiting for daughter records of genotyped young bulls before using them for artificial insemination. Technical and biological coefficients for modeling were chosen to correspond to a German breeding organization. The conventional breeding program for 50 test bulls per year within a population of 100,000 cows served as a base scenario. Scenarios of genomic breeding programs considered the variation of costs for genotyping, selection intensity of cow sires, proportion of farmers waiting for daughter records of genotyped young bulls, and different accuracies of genomic indices for bulls and cows. Given that the accuracies of genomic indices are greater than 0.70, a distinct economic advantage was found for all scenarios of genomic breeding programs up to factor 2.59, mainly due to the reduction in generation intervals. Costs for genotyping were negligible when focusing on a population-wide perspective and considering additional costs for herdbook registration, milk recording, or keeping of bulls, especially if there is no need for yearly recalculation of effects of single nucleotide polymorphisms. Genomic breeding programs generated a higher discounted profit than a conventional progeny testing program for all scenarios where at least 20% of the inseminations were done by genotyped young bulls without daughter records. Evaluation of levels of annual genetic gain for individual traits revealed the same potential for low heritable traits (h2 = 0.05) compared with moderate heritable traits (h2 = 0.30), preconditioning highly accurate genomic indices of 0.90. The final economic success of genomic breeding programs strongly depends on the complete abdication of any forms of progeny testing to reduce costs and generation intervals, but such a strategy implies the willingness of the participating milk producers.  相似文献   

6.
Local breeds are rarely subject to modern selection techniques; however, selection programs will be required if local breeds are to remain a viable livelihood option for farmers. Selection in small populations needs to take into account accurate inbreeding control. Optimum contribution selection (OCS) is efficient in controlling inbreeding and maximizes genetic gain. The current paper investigates genetic progress in simulated dairy cattle populations from 500 to 6,000 cows undergoing young bull selection schemes with OCS compared with truncation selection (TS) at an annual inbreeding rate of 0.003. Selection is carried out for a dairy trait with a base heritability of 0.3. A young bull selection scheme was used because of its simplicity in implementation. With TS, annual genetic gain from 0.111 standard deviation units with 500 cows increases rapidly to 0.145 standard deviation units with 4,000 cows. Then, genetic gain increases more slowly up to 6,000 cows. At the same inbreeding rate, OCS produces higher genetic progress than TS. Differences in genetic gain between OCS and TS vary from to 2 to 6.3%. Genetic gain is also improved by increasing the number of years that males can be used as sires of sires. When comparing OCS versus TS at different heritabilities, we observe an advantage of OCS only at high heritability, up to 8% with heritability of 0.9. By increasing the constraint on inbreeding, the difference of genetic gain between the 2 selection methods increases in favor of OCS, and the advantage at the inbreeding rate of 0.001 per generation is 6 times more than at the inbreeding rate of 0.003. Opportunities exist for selection even in dairy cattle populations of a few hundred females. In any case, selection in local breeds will most often require specific investments in infrastructure and manpower, including systems for accurate data recording and selection skills and the presence of artificial insemination and breeders organizations. A cost-benefit analysis is therefore advisable before considering the implementation of selection schemes in local dairy cattle breeds.  相似文献   

7.
A comparison of dairy cattle breeding designs that use genomic selection   总被引:1,自引:0,他引:1  
Different dairy cattle breeding schemes were compared using stochastic simulations, in which the accuracy of the genomic breeding values was dependent on the structure of the breeding scheme, through the availability of new genotyped animals with phenotypic information. Most studies that predict the gain by implementing genomic selection apply a deterministic approach that requires assumptions about the accuracy of the genomic breeding values. The achieved genetic gain, when genomic selection was the only selection method to directly identify elite sires for widespread use and progeny testing was omitted, was compared with using genomic selection for preselection of young bulls for progeny testing and to a conventional progeny test scheme. The rate of inbreeding could be reduced by selecting more sires every year. Selecting 20 sires directly on their genomic breeding values gave a higher genetic gain than any progeny testing scheme, with the same rate of inbreeding as the schemes that used genomic selection for preselection of bulls before progeny testing. The genomic selection breeding schemes could reduce the rate of inbreeding and still increase genetic gain, compared with the conventional breeding scheme. Since progeny testing is expensive, the breeding scheme omitting the progeny test will be the cheapest one. Keeping the progeny test and use of genomic selection for preselection still has some advantages. It gives higher accuracy of breeding values and does not require a complete restructuring of the breeding program. Comparing at the same rate of inbreeding, using genomic selection for elite sire selection only gives a 13% increase in genetic gain, compared with using genomic selection for preselection. One way to reduce the costs of the scheme where genomic selection was used for preselection is to reduce the number of progeny tested bulls. This was here achieved without getting lower genetic gain or a higher rate of inbreeding.  相似文献   

8.
Short communication: genotype by environment interaction due to heat stress   总被引:1,自引:0,他引:1  
Heat stress was evaluated as a factor in differences between regional evaluations for milk yield in the United States. The national data set (NA) consisted of 56 million first-parity, test-day milk yields on 6 million Holsteins. The Northeastern subset (NE) included 12.5 million records on 1.3 million first-calved heifers from 8 states, and the Southeastern subset (SE) included 3.5 million records on 0.4 million heifers from 11 states. Climatic data were available from 202 public weather stations. Each herd was assigned to the nearest weather station. Average daily temperature-humidity index (meanTHI) 3 d before test date was used as an indicator of heat stress. Two test-day repeatability models were implemented. Effects included in both models were herd-test date, age at calving class, frequency of milking, days in milk × season class, additive genetic (regular breeding value) and permanent environmental effects. Additionally, the second model included random regressions on degrees of heat stress (t = max[0, meanTHI - 72]) for additive genetic (breeding value for heat tolerance) and permanent environmental effects. Both models were fitted with the national and regional data sets. Correlations involved estimated breeding values (EBV) from SE and NE for sires with ≥100 and ≥300 daughters in each region. When heat stress was ignored (first model) the correlations of regular EBV between SE and NE for sires with ≥100 (≥300) daughters were 0.85 (0.87). When heat stress was considered (second model), the correlation increased by up to 0.01. The correlations of heat stress EBV between NE and SE for sires with ≥100 (≥300, ≥700) daughters were 0.58 (0.72, 0.81). Evaluations for heat tolerance were similar in cooler and hotter regions for high-reliability sires. Heat stress as modeled explains only a small amount of regional differences, partly because test-day records depict only snapshots of heat stress.  相似文献   

9.
In breeding is known to impair the health, fertility, and productivity of dairy cattle and other livestock species. Mating programs can address inbreeding concerns on the farm, at least in the short term, but long-term control of inbreeding in a dairy population requires consideration of relationships between young bulls entering AI progeny test programs. The present study discusses an application of optimal contribution methodology to selection of young AI bulls in the five major US dairy breeds. Elite cows and active AI sires from the Ayrshire, Brown Swiss, Guernsey, Holstein, and Jersey breeds were considered as potential bull parents. Genetic merit of selected sires and dams was maximized subject to various constraints on the mean additive genetic relationship within the selected group. Relationships between selected parents can be reduced substantially relative to current levels, but the corresponding reduction in genetic merit may be large. This loss in genetic merit occurs due to lower selection intensity, although it is mainly a reflection of a larger number of bull parents (with progeny more evenly distributed among these parents), rather than selection of genetically inferior "outcross" parents that wouldn't otherwise have been considered. Selected parents were generally older and slightly less inbred than those that would have been chosen had inbreeding been ignored. Although severe restrictions on relationships can be costly, in terms of lost genetic progress, it appears that moderate constraints can keep relationships at a manageable level without a significant loss in genetic merit. Cooperation between breed associations and several competing AI companies may be required to facilitate implementation of this methodology in dispersed populations, but if this can be accomplished, prospects for achieving a balance between inbreeding and selection seem positive.  相似文献   

10.
Genome-wide association studies based on tens of thousands of single nucleotide polymorphisms have been completed for several dairy cattle populations. Methods have been proposed to directly incorporate genome scan data into breeding programs, chiefly by selection of young sires based on their genotypes for the genetic markers and pedigree without progeny test. Thus, the rate of genetic gain is increased by reduction of the mean generation interval. The methods developed so far for application of genomic selection do not require identification of the actual quantitative trait nucleotides (QTN) responsible for the observed variation of quantitative trait loci (QTL). To date, 2 QTN affecting milk production traits have been detected in dairy cattle: DGAT1 and ABCG2. This review will attempt to address the following questions based on the current state of bovine genomics and statistics. What are the pros and cons for QTN determination? How can data obtained from high-density, genome-wide scans be used most efficiently for QTN determination? Can the genome scan results already available and next-generation sequencing data be used to determine QTN? Should QTN be treated differently than markers at linkage disequilibrium with QTL in genetic evaluation programs? Data obtained by genome-wide association studies can be used to deduce QTL genotypes of sires via application of the a posteriori granddaughter design for concordance testing of putative QTN. This, together with next-generation sequencing technology, will dramatically reduce costs for QTN determination. By complete genome sequencing of 21 sires with many artificial insemination sons, it should be possible to determine concordance for all potential QTN, thus establishing the field of QTNomics.  相似文献   

11.
《Journal of dairy science》2022,105(6):5261-5270
Butana is one of the local dairy cattle breeds of Sudan commonly kept by smallholder producers. This breed has been strongly promoted to advance the dairy production sector in the country. The main problem, however, is the lack of a systematic breeding program that involves smallholder producers. The aim of the current study was to identify the most promising design for a breeding program to improve the milk yield performance of Butana cattle under smallholder production conditions. In total, 3 breeding scenarios, including (1) the use of farm bulls, (2) the use of village bulls, and (3) the rotational use of village bulls within village groups, were simulated using a stochastic simulation approach. For each breeding scenario, 3 selection methods for bulls were considered, namely random mating, phenotypic selection, and selection based on estimated breeding value (EBV). The results showed that no genetic gain was realized with random mating in all breeding scenarios. In the farm bull breeding scenario, annual genetic gain (standard deviation units) ranged from 0.01 to 0.19 (phenotypic selection) and from 0.01 to 0.39 (selection based on EBV). In the village bull breeding scenarios, the annual genetic gain ranged from 0.01 to 0.21 (phenotypic selection) and 0.01 to 0.45 (selection based on EBV). The lowest genetic gain was realized for the rotational use of village bulls among villages within groups. Through the rotational use of village bulls, however, a higher genetic variance was maintained than in the farm and village bull breeding scenarios. We concluded that a village bull breeding program with selection based on EBV of young bulls was the most promising breeding design for achieving the breeding goal. Further studies are needed to assess the organizational feasibility of such a breeding program to ensure the participation of smallholder producers and its sustainability.  相似文献   

12.
The availability of genomic estimated breeding values (GEBV) allows for possible modifications to existing dairy cattle breeding programs. Selection index calculations including genomic and phenotypic observations as index sources were used to determine the optimal number of offspring per genotyped sire with a focus on functional traits and the design of cooperator herds, and to evaluate the importance of a central station test for genotyped bull dams. Evaluation criteria to compare different breeding strategies were correlations between index and aggregate genotype (rTI), and the relative selection response percentage (RSR) of an index without single nucleotide polymorphism information in relation to a single nucleotide polymorphism-based index. The number of required daughter records per sire to achieve a predefined rTI strongly depends on the accuracy of GEBV (rmg) and the heritability of the trait. For a desired rTI of 0.8, h2 = 0.10, and rmg = 0.5, at least 57 additional daughters have to be included in the genetic evaluation. Daughter records of genotyped sires are not necessary for optimal scenarios where rmg is greater than or equal to rTI. There still is a substantial need for phenotypic daughter records, especially for low-heritability functional traits and rmg < 0.7. Phenotypic records from genotyped potential bull dams have no relevance for increasing rTI, even with a low value for rmg of 0.5. Hence, genomic breeding programs should focus on recording functional traits within progeny groups, preferably in cooperator herds. For low-heritability traits and with rmg > 0.7, the RSR of conventional breeding programs was only 10% of RSR from genomic breeding strategies. As shown in scenarios including 2 traits in the index as well as in the aggregate genotype, the availability of highly accurate GEBV for production traits and low-accuracy GEBV for functional traits increased the risk of widening the gap between selection responses in production and functionality. Counteractions are possible, such as via higher economic weights for low-heritability functional traits. Finally, an alternative selection strategy considering only 2 pathways of selection for genotyped male calves and for cow dams was evaluated. This strategy is competitive with a 4-pathway genomic breeding program if the fraction of selected male calves for the artificial insemination program is below 1% and if selection is focused on functionality, thus pointing to substantial insufficiencies caused by low reliabilities of breeding values for cows for such traits in conventional bull dam selection schemes.  相似文献   

13.
《Journal of dairy science》2023,106(8):5593-5605
Small breeding programs are limited in achieving competitive genetic gain and prone to high rates of inbreeding. Thus, they often import genetic material to increase genetic gain and to limit the loss of genetic variability. However, the benefit of import depends on the strength of genotype-by-environment interaction. Import also diminishes the relevance of domestic selection and the use of domestic breeding animals. Introduction of genomic selection has potentially exacerbated this issue, but is also opening the potential for smaller breeding programs. The aim of this paper was to determine when and to what extent small breeding programs benefit from importing genetic material by quantifying the genetic gain as well as the sources of genetic gain. We simulated 2 cattle breeding programs of the same breed that represented a large foreign and a small domestic breeding program. The programs differed in selection parameters of sire selection, and in the initial genetic mean and annual genetic gain. We evaluated a control scenario without the use of foreign sires in the domestic breeding program and 24 scenarios that varied the percentage of domestic dams mated with foreign sires, the genetic correlation between the breeding programs (0.8 or 0.9), and the time of implementing genomic selection in the domestic compared with the foreign breeding program (concurrently or with a 10-yr delay). We compared the scenarios based on the genetic gain and genic standard deviation. Finally, we partitioned breeding values and genetic trends of the scenarios to quantify the contribution of domestic selection and import to the domestic genetic gain. The simulation revealed that when both breeding programs implemented genomic selection simultaneously, the use of foreign sires increased domestic genetic gain only when genetic correlation was 0.9 (10%–18% increase). In contrast, when the domestic breeding program implemented genomic selection with a 10-yr delay, import increased genetic gain at both tested correlations, 0.8 (5%–23% increase) and 0.9 (15%–53% increase). The increase was significant when we mated at least 10% or 25% domestic females with foreign sires and increased with the increasing use of foreign sires, but with a diminishing return. The partitioning analysis revealed that the contribution of import expectedly increased with the increased use of foreign sires. However, the increase did not depend on the genetic correlation and was not proportional to the increase in domestic genetic gain. This represents a peril for small breeding programs because they could be overly relying on import with diminishing returns for the genetic gain, marginal benefit for the genetic variability, and large loss of the domestic germplasm. The benefit and peril of import depends on an interplay of genetic correlation, extent of using foreign sires, and a breeding scheme. It is therefore crucial that small breeding programs assess the possible benefits of import beyond domestic selection. The benefit of import should be weighed against the perils of decreased use of domestic sires and decreased contribution and value of domestic selection.  相似文献   

14.
Dairy farms vary a great deal in the feeding and management systems that are used. These differences affect the performance of the cows, and some genotypes may be affected more than others. If effects of such genotype-by-environment interactions (G×E) are large, then farmers must be made aware of them to make informed breeding decisions. To investigate G×E, a classification system for farm environments was developed based on national- and fine-level data from dairy herds across the United Kingdom. The national data included herd and yield characteristics and local weather information. The fine-level data included information on feeding and management systems on farms, and was obtained from survey results from 778 farms. A principal components analysis of the surveys identified 2 major dimensions characterizing the data. The first dimension explained 14.6% of the variation and was related to the level of production intensity. The second dimension explained 11.5% of the variation and was related to climate. Information on milk yield, herd characteristics, and climate was then extracted from national databases for the survey farms. A canonical correlation analysis was used to relate the survey data to the variables extracted from the national data set to determine the most relevant variables. The canonical correlation between the chosen sets of national data and survey variables was 0.62. This environmental classification was then used to determine how the farm environment affects the life span of dairy cows. The life span of the daughters of 1,000 sires was related to the type of farm environment. The daughters of a majority of sires showed a “plastic” response, with increased life span in less intensive farms. The daughters of a smaller number of sires showed a more generalized response, with life span being less affected by the environment. This G×E suggested that sires vary in the sensitivity of their daughters to different farm environments. This variation in response could allow breeding companies and farmers to match sires to particular farm environments.  相似文献   

15.
In this study, we compared genetic gain, genetic variation, and the efficiency of converting variation into gain under different genomic selection scenarios with truncation or optimum contribution selection in a small dairy population by simulation. Breeding programs have to maximize genetic gain but also ensure sustainability by maintaining genetic variation. Numerous studies have shown that genomic selection increases genetic gain. Although genomic selection is a well-established method, small populations still struggle with choosing the most sustainable strategy to adopt this type of selection. We developed a simulator of a dairy population and simulated a model after the Slovenian Brown Swiss population with ~10,500 cows. We compared different truncation selection scenarios by varying (1) the method of sire selection and their use on cows or bull-dams, and (2) selection intensity and the number of years a sire is in use. Furthermore, we compared different optimum contribution selection scenarios with optimization of sire selection and their usage. We compared scenarios in terms of genetic gain, selection accuracy, generation interval, genetic and genic variance, rate of coancestry, effective population size, and conversion efficiency. The results showed that early use of genomically tested sires increased genetic gain compared with progeny testing, as expected from changes in selection accuracy and generation interval. A faster turnover of sires from year to year and higher intensity increased the genetic gain even further but increased the loss of genetic variation per year. Although maximizing intensity gave the lowest conversion efficiency, faster turnover of sires gave an intermediate conversion efficiency. The largest conversion efficiency was achieved with the simultaneous use of genomically and progeny-tested sires that were used over several years. Compared with truncation selection, optimizing sire selection and their usage increased the conversion efficiency by achieving either comparable genetic gain for a smaller loss of genetic variation or higher genetic gain for a comparable loss of genetic variation. Our results will help breeding organizations implement sustainable genomic selection.  相似文献   

16.
Disbudding and dehorning are commonly used cattle management practices to protect animals and humans from injury. They are unpleasant, costly processes subject to increased public scrutiny as an animal welfare issue. Horns are a recessively inherited trait, so one option to eliminate dehorning is to breed for polled (hornlessness). However, due to the low genetic merit and scarcity of polled dairy sires, this approach has not been widely adopted. In March 2018, only 3 Holstein and 0 Jersey active homozygous polled sires were registered with the National Association of Animal Breeders. Alternatively, gene editing to produce high-genetic-merit polled sires has been proposed. To further explore this concept, introgression of the POLLED allele into both the US Holstein and Jersey cattle populations via conventional breeding or gene editing (top 1% of bulls/year) was simulated for 3 polled mating schemes and compared with baseline selection on lifetime net merit (NM$) alone, over the course of 20 yr. Scenarios were replicated 10 times and the changes in HORNED allele frequency, inbreeding, genetic gain (NM$), and number of unique sires used were calculated. Gene editing decreased the frequency of the HORNED allele to <0.1 after 20 yr, which was as fast or faster than conventional breeding for both breeds. In the mating scheme that required the use of only existing homozygous polled sires, inbreeding reached 17% (Holstein) and 14% (Jersey), compared with less than 7% in the baseline scenarios. However, gene editing in the same mating scheme resulted in significantly less inbreeding, 9% (Holstein) and 8% (Jersey). Also, gene editing resulted in significantly higher NM$ after 20 yr compared with conventional breeding for both breeds. Additionally, the gene editing scenarios of both breeds used a significantly greater number of unique sires compared with either the conventional breeding or baseline scenarios. Overall, our simulations show that, given the current genetic merit of horned and polled dairy sires, the use of conventional breeding methods to decrease the frequency of the HORNED allele will increase inbreeding and slow genetic improvement. Furthermore, this study demonstrates how gene editing could be used to rapidly decrease the frequency of the HORNED allele in US dairy cattle populations while maintaining the rate of genetic gain, constraining inbreeding to acceptable levels, and simultaneously addressing an emerging animal welfare concern.  相似文献   

17.
Fertility responses of Mexican Holstein cows to US sire selection   总被引:1,自引:0,他引:1  
Genetic relationships between 2 fertility traits and milk production were investigated using mature-equivalent lactation records of 55,162 daughters of 1,339 Holstein sires in Mexico and 499,401 daughters of 663 Holstein sires in the northeastern United States. Data sets contained yields in first and second lactation, age at first calving (AFC), and calving interval (CI). There were 474 US sires in common between countries. A herd-year standard deviation criterion defined nonoverlapping low- (≤ 1,300 kg) and high- (≥ 1,600 kg) opportunity Mexican herd environments and a low-opportunity (≤ 1,024 kg) US environment. Genetic variances for the average Mexican herd (all data) for AFC and CI were 65 and 85% as large as those obtained from half-sisters in the average US herd. Genetic correlations for first-lactation milk in the average US herd and AFC and CI in the average Mexican environment were unfavorable (0.18 and 0.10). Regression coefficients of AFC in Mexican environments on US genetic gain in milk ranged from 2 to 7 d/1,000 kg. However, the favorable predicted response in AFC from genetic gain in milk in Mexican environments, like those in average US herds, ranged from − 4 to − 7 d/1,000 kg (rg = − 0.20). This unequal AFC response may indicate genotype by environment interaction in fitness performance or differential breeding management of high and low yielding Mexican cows. The potential effects of age at first service of breeding females need to be disentangled to accurately assess genetic improvement needs for Mexican Holstein herds.  相似文献   

18.
The objective of this paper was to investigate the importance of a genotype × environment interaction (G × E) for somatic cell score (SCS) across levels of bulk milk somatic cell count (BMSCC), number of days in milk (DIM), and their interaction. Variance components were estimated with a model including random regressions for each sire on herd test-day BMSCC, DIM, and the interaction of BMSCC and DIM. The analyzed data set contained 344,029 test-day records of 24,125 cows, sired by 182 bulls, in 461 herds comprising 13,563 herd test-days. In early lactation, considerable G × E effects were detected for SCS, indicated by 3-fold higher genetic variance for SCS at high BMSCC compared with SCS at low BMSCC, and a genetic correlation of 0.72 between SCS at low and at high BMSCC. Estimated G × E effects were smaller during late lactation. Genetic correlations between SCS at the same level of BMSCC, across DIM, were between 0.43 and 0.89. The lowest genetic correlation between SCS measures on any 2 possible combinations of BMSCC and DIM was 0.42. Correlated responses in SCS across BMSCC and DIM were, on some occasions, less than half the direct response to selection in the response environment. Responses to selection were reasonably high among environments in the second half of the lactation, whereas responses to selection between environments early and late in lactation tended to be low. Selection for reduced SCS yielded the highest direct response early in lactation at high BMSCC.  相似文献   

19.
A genomic preselection step of young sires is now often included in dairy cattle breeding schemes. Young sires are selected based on their genomic breeding values. They have better Mendelian sampling contribution so that the assumption of random Mendelian sampling term in genetic evaluations is clearly violated. When these sires and their progeny are evaluated using BLUP, it is feared that estimated breeding values are biased. The effect of genomic selection on genetic evaluations was studied through simulations keeping the structure of the Holstein population in France. The quality of genetic evaluations was assessed by computing bias and accuracy from the difference and correlation between true and estimated breeding values, respectively, and also the mean square error of prediction. Different levels of heritability, selection intensity, and accuracy of genomic evaluation were tested. After only one generation and whatever the scenario, breeding values of preselected young sires and their daughters were significantly underestimated and their accuracy was decreased. Genomic preselection needs to be accounted for in genetic evaluation models.  相似文献   

20.
The superiority of selection schemes employing information about a known quantitative trait locus (QTL) over conventional schemes is examined for dairy cattle breeding schemes. Stochastic simulation of a dairy cattle population with selection practices, structures, and parameters similar to the US Holstein population was implemented. Additive genetic effects were estimated by an animal model. Two schemes were compared: a QTL-assisted selection scheme in which the genotype of a known QTL was accounted for in the animal model as a fixed factor, and a QTL-free selection scheme in which the QTL was simulated but was not fit separately in the animal model. Under the QTL-assisted selection scheme, all animals in the mixed model were assumed to be genotyped for the QTL. The effect of using QTL information on the genetic response, the frequency of the favorable QTL allele, and the accuracy of evaluation were examined. Moreover, the effect was studied in four distinct paths of selection: active sires, proven young bulls, bull dams, and first-lactation cows. Average superiority values of 4.6, 7.6, 11.7, and 1.1% for genetic response were observed over 16 yr of selection for active sires, young bulls, bull dams, and first-lactation cows, respectively. Frequency of the favorable QTL allele changed faster in bull dams than males, and was the slowest in first-lactation cows. Finally, accuracy of evaluation under the QTL-assisted selection scheme was higher than under the QTL-free selection scheme. Young bulls ofthe QTL-assisted selection scheme on average had 0.049 higher accuracy, and first-lactation cows had on average 0.185 higher accuracy than corresponding animals of the QTL-free selection scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号