首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Modified atmosphere packaging (MAP) technology offers the possibility to retard the respiration rate and extend the shelf life of fresh produce, and is increasingly used globally as value adding in the fresh and fresh-cut food industry. However, the outbreaks of foodborne diseases and emergence of resistant foodborne pathogens in MAP have heightened public interest on the effects of MAP technology on the survival and growth of pathogenic organisms. This paper critically reviews the effects of MAP on the microbiological safety of fresh or fresh-cut produce, including the role of innovative tools such as the use of pressurised inert/noble gases, predictive microbiology and intelligent packaging in the advancement of MAP safety. The integration of Hazard Analysis and Critical Control Points-based programs to ensure fresh food quality and microbial safety in packaging technology is highlighted.  相似文献   

2.
PURPOSE: New fresh-cut fruit and vegetable products are being developed worldwide. Nutrition educators' perceptions of these products were studied. METHODS: Professional dietitians in Nova Scotia were asked to complete a questionnaire on their use of fresh-cut produce. The questionnaire also elicited their attitudes and perceptions about the convenience, taste/quality, nutrition/health benefits, cost, and safety of fresh-cut fruit and vegetables. RESULTS: Sixty-three percent of respondents reported eating five to six servings of fruit and vegetables a day. This group most frequently consumed fresh-cut fruit as snacks or dessert, and vegetables in stir-fry dishes or salads or cooked with meals. In general, fresh-cut fruit and vegetables were perceived as convenient, safe, and nutritious. While approximately 50% of participants felt fresh-cut produce did not differ in taste from whole fresh produce, almost the same number considered whole fresh produce superior in taste. CONCLUSIONS: Dietitians have a generally positive perception of fresh-cut products; however, there is uncertainty about the nutritional value, cost/benefit, and use of the products. Dietitians require more information on the nutrient value of these products and on suggested alternative uses. Attention should be paid to developing fresh-cut products that have good sensory quality.  相似文献   

3.
Consumption of unpasteurised fruit/vegetable juices has increased in recent years due to their freshness, low calorie contribution and good nutritional quality. However, unpasteurised fresh juices with low acidity (pH > 4.6) and high water activity (aw > 0.85) can support the growth of pathogens. Hence, pasteurisation is a necessary process in the production of low‐acid juices. Consumer demand has required minimally processed high‐quality foods that are free from additives, that are fresh tasting and microbiologically safe, and with an extended shelf life. High hydrostatic pressure (HHP) treatment is considered to be an alternative to thermal pasteurisation for fruit and vegetable juices. HHP treatment could preserve nutritional value and the sensory properties of fruits and vegetables due to its limited effect on the covalent bonds of low‐molecular‐mass compounds such as colour, flavour compounds and vitamins. However, inactivation of important foodborne pathogens in low‐acid foods by HHP is most urgent and critical. More research should be performed in order to satisfy consumer demands for fresh‐tasting products while retaining safety.  相似文献   

4.
Postharvest decay and insect infestation are two major causes that contribute towards higher postharvest losses during the fresh produce supply chain. Although decay and pest infestation could be controlled successfully via pesticide applications, the use of chemicals at the postharvest stage is becoming limited due to the strict regulations regarding pesticide residue levels enforced by importing countries. Heat treatments are environmentally friendly and recommended as alternative treatments to replace pesticide applications, especially with regard to fresh produce. These treatments help to eradicate pathogens or pests that are present on the fruit surface while maintaining the overall quality of the fresh produce during the supply chain. Browning is regarded as an economically important physiological disorder that causes detrimental effects on the quality maintenance of fresh-cut produce. Contamination of fresh produce by foodborne pathogens could occur at any stage during the production, harvesting, postharvest chain, or processing, and heat treatments could be recommended as an antibrowning or disinfection treatment for the fresh-cut industry. In light of the above, this review summarizes the effects of postharvest heat treatments on postharvest decay, insect infestation, physiological disorders, fruit ripening, retention of color, and bioactive compounds.  相似文献   

5.
食源性致病微生物不仅会引起食品腐败,造成经济损失,也给人类健康带来很大威胁,因此亟需开发高效、安全、不影响食品品质的食源性致病微生物控制技术。益生菌是近年微生物和食品科研领域研究热点,益生菌除具有调节和改善健康功能,其本身及代谢物对微生物较强的清除和抑制作用,使其可应用于对食源性致病微生物的控制。明悉益生菌及其代谢物类型、潜在的抑制微生物机制以及应用现状对相关控制技术的研发至关重要。分析了现有益生菌及其代谢物对食源性致病微生物的抑制机制,主要为破坏细胞结构、影响遗传物质复制、阻断能量代谢途径、干扰群体感应系统、控制生物被膜形成、竞争关键性营养物质等方面的单机制或多机制联合作用;同时基于目前益生菌及其代谢物在食品安全和品质控制中的应用研究实例,探讨了其在果蔬、肉类等食品中的应用方式、应用条件,对货架期的延长效果等;分析了益生菌及其代谢物在抗菌效能提高、活性包装、与其他食品品质控制技术联用等方面研究的发展趋势。研究结果旨在为基于益生菌及其代谢物的食品安全和品质控制技术的开发和应用提供借鉴和参考。  相似文献   

6.
Fresh fruits and vegetables are highly perishable and are subject to large postharvest losses due to physiological (senescence), pathologic (decay), and physical (mechanical damage) factors. In addition, contamination of fresh produce with foodborne human pathogens has become a concern. Gaseous ozone has multiple benefits including destruction of ethylene, inactivation of foodborne and spoilage microorganisms, and degradation of chemical residues. This article reviews the beneficial effects of gaseous ozone, its influence on quality and biochemical changes, foodborne human pathogens, and spoilage microorganisms, and discusses research needs with an emphasis on fruits. Ozone may induce synthesis of a number of antioxidants and bioactive compounds by activating secondary metabolisms involving a wide range of enzymes. Disparities exist in the literature regarding the impact of gaseous ozone on quality and physiological processes of fresh produce, such as weight loss, ascorbic acid, and fruit ripening. The disparities are complicated by incomplete reporting of the necessary information, such as relative humidity and temperatures at which ozone measurement and treatment were performed, which is needed for accurate comparison of results among studies. In order to fully realize the benefits of gaseous ozone, research is needed to evaluate the molecular mechanisms of gaseous ozone in inhibiting ripening, influence of relative humidity on the antimicrobial efficacy, interaction between ozone and the cuticle of fresh produce, ozone signaling pathways in the cells and tissues, and so forth. Possible adverse effects of gaseous ozone on quality of fresh produce also need to be carefully evaluated for the purpose of enhancing microbial and chemical safety of fresh produce.  相似文献   

7.
Experiments were conducted to determine the effectiveness of different treatments based on the use of neutral electrolysed water (EW) on fresh-cut lettuce. EW was diluted to obtain different free chlorine concentrations (120, 60 and 12 ppm) and to compare with standard washing treatment of 120 ppm chlorine solution. Shelf-life quality and safety markers were studied at the beginning and at the end of the 7-day-storage at 4 °C. The use of EW decreased the respiration rate of the samples which might be related with the observed reduction in microbial spoilage. The use of EW also increased the activity of a browning-related enzyme (polyphenoloxydase) although sensory results showed all samples as acceptable at the end of the 7 day-storage. Perhaps longer storage time might increase the risk to browning development in the samples treated with EW. The highest EW concentration (120 ppm free chlorine) was the most effective treatment in reducing sample microbial load; however this treatment also affected the final produce with effects such as loss of turgor, plasmolysis and a reduction in mineral content.Results suggest an intermediate EW concentration with 60 ppm free chlorine could be an alternative to 120 ppm chlorine (from sodium hypochlorite) for sanitizing fresh-cut vegetables, reducing to half the amount of chlorine used and maintaining the antimicrobial effectiveness and without differences affecting the quality. However further studies will be necessary in order to observe the effect of the oxidising capacity of EW on other quality and safety markers as pathogens and nutritional content.Industrial relevanceChlorine solutions have been widely used to sanitise fruit and vegetables in the fresh-cut industry. However, the association of chlorine with the possible formation of carcinogenic chlorinated compounds in water has called into question the use of chlorine in food processing. The efficacy in controlling the microbial load and browning of samples treated with electrolysed water shows it as a promising decontaminant agent for fresh-cut lettuce. Due to the high oxidising potential of the EW quality requirements must be balanced to obtain the optimal treatment conditions keeping satisfying safety levels. The use of EW-60 showed similar safety and quality (browning) results as the use of chlorine or double EW concentration (EW-120). However the treatment EW-120 affected negatively the textural properties. The study suggests the use of EW-60 as an alternative to sodium hypochlorite solution with 120 ppm available chlorine, obtaining similar safety and quality results and reducing the amount of chlorine needed. Further investigations in the effect of EW on lettuce, such as those on pathogens or nutritional markers (e.g. carotenoids and vitamin C) are recommended in order to explore this alternative that might reduce the increasingly concerning use of chlorine to decontaminate this type of product.  相似文献   

8.
In this study, the inhibition of an alginate-based edible coating (EC) containing thyme oil (0.05%, 0.35% and 0.65%) was evaluated against Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus and Escherichia coli O157:H7 inoculated onto fresh-cut apples. To investigate the antibacterial mechanism of thyme oil, the constituent compounds of that were analysed by gas chromatography-mass spectrometry (GC-MS), and the cellular damage of pathogens was observed by scanning electron microscopy (SEM). Results showed that alginate-based EC containing thyme oil effectively inhibited the growth of pathogens on fresh-cut apples. GC-MS analysis revealed thymol (47.23%) as the major compounds in thyme oil. SEM showed that the cell membrane of foodborne pathogens was damaged by thyme oil, causing their inactivation. Treatment with alginate-based EC containing 0.05% thyme oil preserved the sensory characteristics of fresh-cut apples. Therefore, using alginate-based EC with thyme oil may represent a potential approach to preserve and enhance the safety of fresh-cut apples.  相似文献   

9.
The consumption of fresh-cut fruit has substantially risen over the last few years, leading to an increase in the number of outbreaks associated with fruit. Moreover, consumers are currently demanding wholesome, fresh-like, safe foods without added chemicals. As a response, the aim of this study was to determine if the naturally occurring microorganisms on fruit are “competitive with” or “antagonistic to” potentially encountered pathogens. Of the 97 and 107 isolates tested by co-inoculation with Escherichia coli O157:H7, Salmonella and Listeria innocua on fresh-cut apple and peach, respectively, and stored at 20 °C, seven showed a strong antagonistic capacity (more than 1-log unit reduction). One of the isolates, CPA-7, achieved the best reduction values (from 2.8 to 5.9-log units) and was the only isolate able to inhibit E. coli O157:H7 at refrigeration temperatures on both fruits. Therefore, CPA-7 was selected for further assays. Dose-response assays showed that CPA-7 should be present in at least the same amount as the pathogen to adequately reduce the numbers of the pathogen. From the results obtained in in vitro assays, competition seemed to be CPA-7's mode of action against E. coli O157:H7. The CPA-7 strain was identified as Pseudomonas graminis. Thus, the results support the potential use of CPA-7 as a bioprotective agent against foodborne pathogens in minimally processed fruit.  相似文献   

10.
During the past decade there were more than 50 reported outbreaks involving leafy green vegetables contaminated with foodborne pathogens. Leafy greens, including cabbage, are fresh foods rarely heated before consumption, which enables foodborne illness. The need for improved safety of fresh food drives the demand for nonthermal food processes to decrease the risk of pathogens while maintaining fresh quality. This study examines the efficacy of electron-beam (e-beam) irradiation in decreasing indigenous microflora on fresh-cut cabbage and determines the optimal dosage to pasteurize fresh-cut cabbage inoculated with Escherichia coli K-12. Fresh-cut cabbage (100 g) was inoculated with ~8 log E. coli K-12 and e-beam irradiated at doses of 0, 1.0, 2.3, or 4.0 kGy. At 2.3 kGy there was <1.0 log indigenous microflora remaining, indicating greater than a 4.0-log reduction by e-beam. At a 4.0-kGy dose there was >7-log reduction of E. coli K-12 in the fresh-cut cabbage. The D(10)-value for E. coli K-12 in fresh-cut cabbage was 0.564 kGy. E-beam irradiation is thus a viable nonthermal treatment that extends the shelf life and increases the safety of fresh cabbage by reducing or eliminating indigenous microflora and unwanted pathogens.  相似文献   

11.
Many types of spoilage and pathogenic microorganisms exist on fresh, minimally processed, and fully processed potato products. Potatoes are processed into many products including frozen, dried, ready-to-eat, and minimally processed. The microbiological quality of finished potato products is influenced by the natural microflora, processing, handling, and human contact. The natural microflora of potatoes are influenced by soil and airborne inocula, agricultural practices, harvesting methods, and storage conditions. The microflora of processed products are influenced by all of the factors and conditions affecting the natural microflora as well as the processes applied to the product. Increased consumer demand for new and existing potato products highlights the importance of ensuring their microbiological safety. This review considers the sources of microorganisms, microflora, foodborne disease pathogens, and outbreaks associated with, and selected microbiological research involving, potatoes and potato products.  相似文献   

12.
Escherichia coli O157:H7, Salmonella and Listeria innocua increased by more than 2 log10 units over a 24 h period on fresh-cut ‘Golden Delicious’ apple plugs stored at 25 and 20 °C. L. innocua reached the same final population level at 10 °C meanwhile E. coli and Salmonella only increased 1.3 log10 units after 6 days. Only L. innocua was able to grow at 5 °C. No significant differences were observed between the growth of foodborne pathogens on fresh-cut ‘Golden Delicious’, ‘Granny Smith’ and ‘Shampion’ apples stored at 25 and 5 °C. The treatment of ‘Golden Delicious’ and ‘Granny Smith’ apple plugs with the antioxidants, ascorbic acid (2%) and NatureSeal® (6%), did not affect pathogen growth. The effect of passive modified atmosphere packaging (MAP) on the growth of E. coli, Salmonella and L. innocua on ‘Golden Delicious’ apple slices was also tested. There were no significant differences in growth of pathogens in MAP conditions compared with air packaging of ‘Golden Delicious’ apple plugs, but the growth of mesophilic and psychrotrophic microorganisms was inhibited. These results highlight the importance of avoiding contamination of fresh-cut fruit with foodborne pathogens and the maintenance of the cold chain during storage until consumption.  相似文献   

13.
Shelf life extension of fresh fruit and vegetables by chitosan treatment   总被引:1,自引:0,他引:1  
Among alternatives that are currently under investigation to replace the use of synthetic fungicides to control postharvest diseases in fresh produce and to extend their shelf life, chitosan application has shown promising disease control, at both preharvest and postharvest stages. Chitosan shows a dual mode of action, on the pathogen and on the plant, as it reduces the growth of decay-causing fungi and foodborne pathogens and induces resistance responses in the host tissues. Chitosan coating forms a semipermeable film on the surface of fruit and vegetables, thereby delaying the rate of respiration, decreasing weight loss, maintaining the overall quality, and prolonging the shelf life. Moreover, the coating can provide a substrate for incorporation of other functional food additives, such as minerals, vitamins, or other drugs or nutraceutical compounds that can be used to enhance the beneficial properties of fresh commodities, or in some cases the antimicrobial activity of chitosan. Chitosan coating has been approved as GRAS substance by USFDA, and its application is safe for the consumer and the environment. This review summarizes the most relevant and recent knowledge in the application of chitosan in postharvest disease control and maintenance of overall fruit and vegetable quality during postharvest storage.  相似文献   

14.
Jang  A-Ra  Han  Areum  Lee  Soyul  Jo  Suyoung  Song  Hana  Kim  Danbi  Lee  Sun-Young 《Food science and biotechnology》2021,30(10):1393-1401
Food Science and Biotechnology - The risk of foodborne illnesses caused by pathogens could be increased in fresh-cut fruit products owing to contamination during processing. Therefore, this study...  相似文献   

15.
Fresh cells of the antagonist Pseudomonas syringae at 2.4 x 10(8) CFU/ml inoculated into wounds of 'Golden Delicious' apple prevented Escherichia coli O157:H7 (concentrations ranging from 2.4 x 10(5) to 2.4 x 10(7) CFU/ml) from growing in the wounds. This occurred when the two microorganisms were co-inoculated or inoculation with E. coli O157:H7 was conducted 1 or 2 days after inoculation with the antagonist. In similar tests, application of the commercial formulation of this antagonist prevented the growth of E. coli O157:H7 in wounds when inoculated 1 or 2 days after application of the antagonist. Populations of E. coli O157:H7 in wounds treated with water (control) before inoculation with this pathogen increased approximately 2 log units during the first 48 h after inoculation. These results indicate that biocontrol agents developed for controlling storage decays of fruits may have the additional benefit of preventing the growth of foodborne pathogens in freshly wounded tissue of intact and fresh-cut fruits.  相似文献   

16.
This study investigated the impact of storage temperature and duration on the fate of Escherichia coli O157:H7 on commercially packaged lettuce salads, and on product quality. Fresh-cut Romaine and Iceberg lettuce salads of different commercial brands were obtained from both retail and wholesale stores. The packages were cut open at one end, the lettuce salad inoculated with E. coli O157:H7 via a fine mist spray, and resealed with or without an initial N(2) flush to match the original package atmospheric levels. The products were stored at 5 and 12 °C until their labeled "Best If Used By" dates, and the microbial counts and product quality were monitored periodically. The results indicate that storage at 5 °C allowed E. coli O157:H7 to survive, but limited its growth, whereas storage at 12 °C facilitated the proliferation of E. coli O157:H7. There was more than 2.0 log CFU/g increase in E. coli O157:H7 populations on lettuce when held at 12 °C for 3 d, followed by additional growth during the remainder of the storage period. Although there was eventually a significant decline in visual quality of lettuce held at 12 °C, the quality of this lettuce was still fully acceptable when E. coli O157:H7 growth reached a statistically significant level. Therefore, maintaining fresh-cut products at 5 °C or below is critical for reducing the food safety risks as E. coli O157:H7 grows at a rapid, temperature-dependent rate prior to significant quality deterioration. PRACTICAL APPLICATION: Specific information regarding the effect of temperature on pathogen growth on leafy greens is needed to develop science-based food safety guidelines and practices by the regulatory agencies and produce industry. Temperature control is commonly thought to promote quality of leafy greens, not safety, based at least partially on a theory that product quality deterioration precedes pathogen growth at elevated temperatures. This prevalent attitude results in temperature abuse incidents being frequently overlooked in the supply chain. This study demonstrates that human pathogens, such as E. coli O157:H7, can grow significantly on commercially packaged lettuce salads while the product's visual quality is fully acceptable. Packaged fresh-cut salads are marketed as "ready-to-eat" while lacking an effective pathogen kill step during their preparation. Thus, maintaining storage temperature at 5 °C or below is critical to prevent pathogen proliferation and mitigate food safety risks should pathogen contamination inadvertently occur during crop growth or postharvest fresh-cut processing.  相似文献   

17.
The microbiological safety of minimally processed vegetables   总被引:6,自引:0,他引:6  
Summary Demand for fresh, convenient, minimally processed vegetables has led to an increase in the quantity and variety of products available to the consumer. Modified atmosphere packaging, in combination with refrigeration, is increasingly being employed as a mild preservation technique to ensure quality and storage-life. The fresh nature of these products, together with the mild processing techniques and subsequent storage conditions, have presented indigenous and pathogenic microorganisms with new ecosystems and potential infection vehicles; a number of outbreaks of foodborne disease being attributed to their consumption. Psychrotrophic pathogens and pathogens which are capable of maintaining an infectious potential under mild preservation regimes are of particular concern; Listeria monocytogenes , Aeromonas hydrophila and Clostridium botulinum being amongst the most notable. This review describes the processing, packaging and storage procedures involved in the production of minimally processed vegetables, and details their impact upon the survival and growth of associated pathogens. Gaps in our current understanding of the consequences of this novel technology for microbiological safety are highlighted.  相似文献   

18.
天然防腐剂在鲜切水果和果汁保鲜中的研究进展   总被引:1,自引:0,他引:1  
随着国民生活水平的提高,人们对低热量食品的需求不断增大,即食鲜切水果和果汁的消费也逐渐增加,它们的安全性越来越受到人们的重视。鲜切水果和果汁由于组织和形态被破坏极易受到病原微生物和腐败微生物的污染,如果加工或储存条件不当,极易造成微生物致病和腐败。微生物学、酶学、化学或物理学变化均能引起鲜切水果与未高温消毒果汁的质量损失。其中,微生物造成的损失非常重要,有两方面原因:一是微生物毒素或病原微生物对消费者的健康构成威胁,二是微生物腐败给消费者造成经济损失。使用防腐剂可以有效减少微生物污染增强安全性。天然防腐剂既能保证食品安全又能保持品质特征,近年来,将其用于鲜切水果与未高温消毒果汁以防止微生物腐败方面的研究备受关注。本文综述了来自动物、植物和微生物的天然防腐剂对鲜切水果和果汁中病原微生物及腐败微生物的抑菌作用。  相似文献   

19.
20.
热处理对鲜切果蔬品质影响的研究进展   总被引:1,自引:0,他引:1  
鲜切果蔬方便、营养的特性越来越受到加工者和消费者的重视和青睐,然而短暂的货架期已成为限制鲜切果蔬发展的瓶颈难题。为了在保证其食用安全性的前提下,延长鲜切果蔬的货架期,有必要寻找或开发更为环保和安全的鲜切果蔬加工方法,来取代氯水清洗或其他化学试剂在果蔬去皮、切块、清洗等工序中的使用。热处理是一种传统的物理保鲜方法,而将热处理技术应用在鲜切果蔬贮藏保鲜是近年来的研究热点。为此,本文概括了热处理和热处理与其他技术相结合对鲜切果蔬感官品质、营养品质和安全品质的影响,同时归纳了热处理对鲜切果蔬保鲜的机理。以期为热处理应用于鲜切果蔬的贮藏保鲜和提高鲜切果蔬的食用安全提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号