首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
The Burkholderia multivorans strain ATCC 17616 carries three circular chromosomes with sizes of 3.4, 2.5, and 0.9 Mb. To reveal the distribution and organization of the genes for fundamental cell functions on the genome of this bacterium, the dnaA and dnaK gene regions of ATCC 17616 were cloned and characterized. The gene organization of the dnaA region was rnpA-rmpH-dnaA-dnaN-gyrB with a single consensus DnaA-binding box (TTATCCACA) between the rmpH and dnaA genes. This intergenic region, however, did not work as an autonomously replicating sequence in ATCC 17616. On the other hand, the gene organization of the dnaK region was grpE-orf1 (gene for thioredoxin homologue)-dnaK-dnaJ-pabB (gene for p-aminobenzoate synthetase component homologue). A putative heat-shock promoter that showed good homology to the sigma32-dependent promoter consensus sequence in Escherichia coli was found upstream of the grpE gene, suggesting that these five genes constitute an operon. In M9 succinate minimal medium the dnaJ mutant grew more slowly than the wild-type strain, indicating that this operon is functional. Pulsed-field gel electrophoresis and Southern blot analyses indicated that both the dnaA and dnaK gene regions exist as single copies on the 3.4 Mb chromosome.  相似文献   

2.
Thirty one bacteriocin-producing Lactobacillus isolates were identified among 135 lactobacilli isolated from the Congolese fermented maize product poto poto, during the preparation and from the finished product. Using species-specific PCR and 16S rRNA gene sequencing, 28 and 3 isolates were identified as L. plantarum and L. fermentum, respectively. Cluster analysis of RAPD-PCR fingerprints revealed two main groups (G1 and G2) plus the L. fermentum isolate C4-13. Group G1 contained 23 isolates with a similarity coefficient >74.5%, and could be divided in two subgroups (G1-1, G1-2) each with several branches, plus the L. plantarum isolate C11. Group G2 contained 8 isolates with a similarity coefficient >86%, with two main branches. Using PCR amplification with specific primers, several genes of the plantaricin cluster found in L. plantarum C11 were identified in the isolates. The number of genes that were detected varied between the strains. The L. fermentum isolate EC11 also contained the plnDEFG genes. PCR amplification of DNA from isolates with primers directed to the upstream and downstream region of the plantaricin cluster generated an amplicon identical to that obtained with DNA from the control strain L. plantarum WCFS1. Amplification products from the positive strains were used for restriction analysis with HindIII, EcoRI and KpnI in separate reactions. Cluster analysis of restriction profiles revealed high similarities for EcoRI and HindII digest profiles, and an identical profile for all KpnI digests. The L. fermentum EC11 isolate clustered with L. plantarum strains in a group with a high correlation coefficient. The results suggest a low degree of diversity in the plantarincin gene cluster. However, other strains that tested positive for individual plantaricin genes may present great heterogeneity in the plantaricin operons. Because of their broad spectra of inhibition (including Escherichia coli, Salmonella enterica, Enterobacter aerogenes, Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis), isolates from the present study could be used to improve the safety and storage stability of poto poto.  相似文献   

3.
X-prolyl dipeptidyl aminopeptidase (X-PDAP) from Lactobacillus helveticus IF03809 expressed nearly full activity under high salt conditions, such as 2 M NaCl. We cloned and sequenced the pepX gene for X-PDAP. The calculated M, of deduced X-PDAP (803 amino acids) was 90,847 and the protein was distantly related (35 to 44% identity) to known X-PDAPs of Lactobacillus sp. including L. helveticus CNRZ32 (40% identity). Native and recombinant X-PDAP were purified to homogeneity from both L. helveticus IF03809 and Escherichia coli DH5alpha harboring the pepX gene on a plasmid, respectively. The native enzyme appeared to be a dimer of 220 kDa, as estimated by gel filtration column chromatography. It hydrolyzed an X-prolyl-linkage, but not prolyl- or X-prolyl-X-peptide bonds, and tolerated up to 2 M NaCl as well as some other chlorides of monovalent cations. Determination of the flanking sequences revealed two divergent genes. The upstream region of the pepX gene encodes oppA gene for a putative oligopeptide permease, while the downstream region encodes tnp gene specifying a possible transposase of the IS3 family. The oppA gene shares a 176 bp-promoter region with pepX in the intergenic region, implying a relationship between this oligopeptide transport system and X-PDAP.  相似文献   

4.
从变形假单胞菌JUIM01中克隆到吡咯喹啉醌(PQQ)合成基因簇,阐明了其基因组成和生物学信息。根据已报道的假单胞菌的基因组进行简并引物设计,采用LA-PCR技术克隆变形假单胞菌的PQQ合成基因簇,对克隆的基因片段进行测序并使用生物信息学方法进行综合分析。结果表明:克隆到的基因片段全长为11 659 bp,其中包括pqqF、pqqA、pqqB、pqqC、pqqD、pqqE、pqqM、pqqH和pqqI共9个基因,编码PQQ生物合成的前体短肽PqqA和合成途径的相关酶;这些基因与荧光假单胞菌Pf0-1的PQQ合成基因簇的基因组成类似,相应基因的序列一致性达41%~94%。本研究中首次从变形假单胞菌中克隆到PQQ合成基因簇,并对其进行生物信息学分析,为变形假单胞菌的PQQ生物合成途径和胞内再生机制的研究奠定了基础,进而为提高2KGA的生产强度提供了理论支撑。  相似文献   

5.
A 15-kb gene locus including nylon-oligomer-degrading genes from the chromosome of an alkalophilic bacterium, Agromyces sp. KY5R, was cloned and sequenced. The genetic organization was similar to the DNA region flanked by directly repeated IS6100 sequences on the nylon-oligomer-degradative plasmid pOAD2. However, we found several genetic rearrangements between the two DNA regions. Here, we discuss the possible mechanisms underlying the genetic rearrangements.  相似文献   

6.
Fungi contain distinct genes encoding the same class of enzyme that are differentially regulated according to conditions. We cloned two catalase genes, catA and catB, from Aspergillus oryzae. The catA gene predicts a 747-amino-acid polypeptide sharing 81% identity with Aspergillus fumigatus catalase (catA) and 77% with Aspergillus nidulans catalase (catA). The catB gene predicts a 725-amino-acid polypeptide sharing 82% identity with A. fumigatus catalase (catB) and 75% with A. nidulans catalase (catB). However, the catA and catB genes share little homology (41%) with one another, suggesting that each gene belongs to a distinct gene family. Overexpression studies demonstrated that both genes encode a functional catalase. Promoter assays indicated that the catA gene is developmentally regulated as it was preferentially expressed in solid-state cultures undergoing sporulation. However, its expression was not affected by hydrogen peroxide treatment. Conversely, the catB gene was highly expressed under all culture conditions tested, and it was induced by hydrogen peroxide treatment. These results suggest that the catB gene may be mainly used for detoxification of oxidative stress while the catA gene may have another role such as chaperoning proteins in the spore.  相似文献   

7.
萘降解细菌的分离及其降解和转座基因的分子检测   总被引:4,自引:0,他引:4       下载免费PDF全文
用富集培养法,从工业废水和活性污泥中分离到9个高效降解萘的细菌菌株(ND7~ND15).对菌株ND7、ND8、ND9和ND10所进行的16SrDNA序列分析表明,它们都属于假单胞菌属(Pseudomonas).PCR实验结果表明,上述4个菌株都含有蔡降解基因nahAc、nahG、nahH和catA,ND7和ND8菌株还含有萘降解基因nahU.DNA杂交实验结果表明,上述9个萘降解菌株都含有转座酶基因tnpA1和解体酶基因tnpR.这些结果表明,萘降解细菌的降解基因和转座基因具有高度的保守性.酶学实验证明,ND7、ND8、ND9和ND10菌株都具有儿茶酚1,2-双加氧酶活力和儿萘酚2,3-双加氧酶活力,但在不同菌株中这两种酶的比活力有明显不同.  相似文献   

8.
NADPH, a major reducing power in microorganisms, is mostly generated from the pentose phosphate (PP) pathway by glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) expressed by the zwf and gnd genes, respectively. The characteristics of these two genes in Escherichia coli were compared after their re-introduction into the parent strain for over-expression. zwf encoding G6PDH increased the level of NADPH 3 folds compared to gnd encoding 6PGDH. An excess of NADPH depressed cell growth mainly due to the inhibition of citrate synthase in the TCA cycle. Recombinant plasmids containing zwf or gnd co-integrated with the phbCAB operon from Ralstonia eutropha were constructed, and introduced into E. coli for the oddball biosynthesis of PHB. The amount of PHB increased after enforcing the genes; especially the zwf gene an increase of around 41%, due to the rise in NADPH and the depressed TCA cycle, leading to the metabolic flux of intermediates to the pathway for the biosynthesis of PHB.  相似文献   

9.
In our previous study, a system for producing poly(3-hydroxybutyrate) [P(3HB)] was established by introducing a polyhydroxyalkanoate (PHA) biosynthetic gene operon (phaCAB Re) derived from Ralstonia eutropha into Corynebacterium glutamicum. In this study, two experimental strategies have been applied to improve P(3HB) production in recombinant C. glutamicum. One is a codon optimization of the N-terminal-coding region of the PHA synthase (PhaC Re) gene focusing on the codon usage preference for the translation system of C. glutamicum. The other is the replacement of wild-type phaC Re with a modified gene encoding a mutation of Gly4Asp (G4D), which enhanced the production of PhaC Re and P(3HB) in Escherichia coli. The introduction of these engineered PHA synthase genes into C. glutamicum enhanced the production of PhaC(Re) and P(3HB). Interestingly, we found that these gene modifications also caused increases in the concentration of the translation products of the genes encoding monomer-supplying enzymes, beta-ketothiolase (PhaA Re) and acetoacetyl-CoA reductase (PhaB Re). This finding prompted us to carry out a gene dosage of phaAB Re for a double plasmid system, and the highest production (52.5 wt%) of P(3HB) was finally achieved by combining the gene dosage of phaAB Re with codon optimization. The molecular weight of P(3HB) was also increased by approximately 2-fold, as was P(3HB) content. Microscopic observation revealed that the volume of the cells accumulating P(3HB) was increased by more than 4-fold compared with the non-P(3HB)-accumulating cells without filamentous morphologenesis observed in E. coli.  相似文献   

10.
The capsular polysaccharide (CPS) of the important oral streptococcus Streptococcus anginosus, which causes endocarditis, and the genes for its synthesis have not been clarified. In this study, we investigated the gene locus required for CPS synthesis in S. anginosus. Southern hybridization using the cpsE gene of the well-characterized bacterium S. agalactiae revealed that there is a similar gene in the genome of S. anginosus. By using the colony hybridization technique and inverse PCR, we isolated the CPS synthesis (cps) genes of S. anginosus. This gene cluster consisted of genes containing typical regulatory genes, cpsA-D, and glycosyltransferase genes coding for glucose, rhamnose, N-acetylgalactosamine, and galactofuranose transferases. Furthermore, we confirmed that the cps locus is required for CPS synthesis using a mutant strain with a defective cpsE gene. The cps cluster was found to be located downstream the nrdG gene, which encodes ribonucleoside triphosphate reductase activator, as is the case in other oral streptococci such as S. gordonii and S. sanguinis. However, the location of the gene cluster was different from those of S. pneumonia and S. agalactiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号