首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This study was conducted to determine if stimulated meat starter culture (MSC; Pediococcus acidilactici) would further control Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus during salami fermentation. Manganese ion (0.005% of MnSO4) was used as a stimulator for the growth and acid production of MSC. After 24-h salami fermentation, nonstimulated MSC and stimulated MSC reduced E. coli O157:H7 levels by 1.3 and 2.3 log10 units, respectively. Nonstimulated MSC reduced L. monocytogenes levels by 1.2 log10 units, whereas the stimulated MSC achieved a 2.2-log10 reduction after 24-h fermentation. In the case of S. aureus, nonstimulated MSC and stimulated MSC reduced S. aureus levels by 1.3 and 2.3 log10 units after 24-h fermentation, respectively. Stimulated MSC by MnSO4 reduced those foodborne pathogens more effectively compared with nonstimulated MSC (P < 0.05).  相似文献   

2.
Escherichia coli O157:H7, Salmonella Typhimurium, or Listeria monocytogenes was spread onto the surface of Lebanon bologna luncheon slices using sterile glass rods. The inoculated slices were stacked and vacuum packaged. The packages were stored at 3.6 or 13 degrees C. The foodborne pathogens. E. coli O157:H7, Salmonella Typhimurium, or L. monocytogenes were reduced in Lebanon bologna during storage at 3.6 or 13 degrees C. The higher storage temperature (13.0 degrees C) resulted in significantly faster destruction of E. coli O157:H7 and L. monocytogenes, compared to storage at refrigeration temperature (3.6 degrees C) (P < 0.005). E. coli O157:H7 was the most resistant to destruction among the three foodborne pathogens. A linear destruction of E. coli O157:H7 occurred only after an initial lag period. Storage temperature did not have a significant effect on the rate of destruction of Salmonella Typhimurium. Foodborne pathogens inoculated prior to fermentation did not show any enhanced survival compared to control cells (inoculated after fermentation) during storage of the Lebanon bologna at 3.6 degrees C.  相似文献   

3.
An experiment was conducted to determine the effects of the dark, firm, and dry (DFD) condition of beef on growth of the foodborne pathogens Escherichia coli O157:H7, Salmonella Typhimurium DT104, and Listeria monocytogenes Scott A in ground beef. Longissimus muscles from a DFD carcass (pH = 6.45) and normal carcass (N; pH = 5.64) were ground and samples obtained (100 and 0% DFD, respectively). Equal amounts of the 0 and 100% DFD ground samples were mixed to obtain 50% DFD samples. Inoculated 0, 50, and 100% DFD samples were packaged into oxygen-permeable overwrap and stored at 10 degrees C for E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes Scott A or at 22 degrees C for E. coli O157:H7. Growth characteristics of E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes Scott A did not differ (P > 0.05) between 0 and 100% DFD. Results indicated that the DFD beef used in this study was no more susceptible to growth of E. coli O157:H7, Salmonella Typhimurium, or L. monocytogenes Scott A than N beef.  相似文献   

4.
Cells of Lactobacillus delbrueckii subsp. lactis RM2-5 were added to various meat model systems that had been inoculated with Escherichia coli O157:H7 or Salmonella Typhimurium to determine whether these lactobacilli were antagonistic to the pathogens during storage at 5 degrees C. Experiments in which L. delbrueckii subsp. lactis RM2-5 was directly applied to the surfaces of beefsteaks resulted in significant (P < 0.05) reductions in the growth of psychrotrophs and coliforms plus a slight decrease in the numbers of E. coli O157:H7 over time relative to those for control samples to which no lactobacilli had been added. Experiments involving the direct application of L. delbrueckii subsp. lactis RM2-5 to the surfaces of freshly slaughtered beef and pork carcass samples inoculated with either E. coli O157:H7 or Salmonella Typhimurium showed significant (P < 0.05) declines in numbers of the pathogens as well as a reduction in the growth of psychrotrophs during storage at 5 degrees C for 6 days. The results of the experiments suggest that lactobacillus cultures have potential for use in an intervention technology for the control of foodborne pathogens, especially on the surfaces of beef and pork carcasses. The results of this study also suggest that an extension of the shelf life of meat can result from the decreased growth of psychrotrophic spoilage organisms.  相似文献   

5.
This work aimed to assess the growth and survival of four foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus) in beer. The effects of ethanol, pH, and storage temperature were investigated for the gram-negative pathogens (E. coli O157:H7 and Salmonella Typhimurium), whereas the presence of hops ensured that the gram-positive pathogens (L. monocytogenes and S. aureus) were rapidly inactivated in alcohol-free beer. The pathogens E. coli O157:H7 and Salmonella Typhimurium could not grow in the mid-strength or full-strength beers, although they could survive for more than 30 days in the mid-strength beer when held at 4°C. These pathogens grew rapidly in the alcohol-free beer; however, growth was prevented when the pH of the alcohol-free beer was lowered from the "as received" value of 4.3 to 4.0. Pathogen survival in all beers was prolonged at lowered storage temperatures.  相似文献   

6.
Escherichia coli O157:H7 and Salmonella on cattle hides at slaughter are the main source of beef carcass contamination by these foodborne pathogens during processing. Hypobromous acid (HOBr) has been approved for various applications in meat processing, but the efficacy of HOBr as a hide antimicrobial has not been determined. In this study, the antimicrobial properties of HOBr were determined by spraying cattle hides at either of two concentrations, 220 or 500 ppm. Treatment of hides with 220 ppm of HOBr reduced the prevalence of E. coli O157:H7 on hides from 25.3 to 10.1% (P < 0.05) and reduced the prevalence of Salmonella from 28.3 to 7.1% (P < 0.05). Treatment of hides with 500 ppm of HOBr reduced (P < 0.05) the prevalence of E. coli O157:H7 on hides from 21.2 to 10.1% and the prevalence of Salmonella from 33.3 to 8.1%. The application of 220 ppm of HOBr reduced (P < 0.05) aerobic plate counts, total coliform counts, and E. coli counts on hides by 2.2 log CFU/ 100 cm(2). The use of 500 ppm of HOBr resulted in reductions (P < 0.05) of aerobic plate counts, total coliform counts, and E. coli counts by 3.3, 3.7, and 3.8 log CFU/100 cm(2), respectively, demonstrating that the use of higher concentrations of HOBr on hides resulted in additional antimicrobial activity. These results indicate that the adoption of a HOBr hide wash will reduce hide concentrations of spoilage bacteria and pathogen prevalence, resulting in a lower risk of carcass contamination.  相似文献   

7.
Studies were conducted to determine the best concentration and exposure time for treatment of alfalfa seeds with levulinic acid plus sodium dodecyl sulfate (SDS) to inactivate Escherichia coli O157:H7 and Salmonella without adversely affecting seed germination. Alfalfa seeds inoculated with a five-strain mixture of E. coli O157:H7 or Salmonella Typhimurium were dried in a laminar flow hood at 21°C for up to 72 h. Inoculated alfalfa seeds dried for 4 h then treated for 5 min at 21°C with 0.5% levulinic acid and 0.05% SDS reduced the population of E. coli O157:H7 and Salmonella Typhimurium by 5.6 and 6.4 log CFU/g, respectively. On seeds dried for 72 h, treatment with 0.5% levulinic acid and 0.05% SDS for 20 min at 21°C reduced E. coli O157:H7 and Salmonella Typhimurium populations by 4 log CFU/g. Germination rates of alfalfa seeds treated with 0.5% levulinic acid plus 0.05% SDS for up to 1 h at 21°C were compared with a treatment of 20,000 ppm of calcium hypochlorite or tap water only. Treatment of alfalfa seeds with 0.5% levulinic acid plus 0.05% SDS for 5 min at 21°C resulted in a >3.0-log inactivation of E. coli O157:H7 and Salmonella.  相似文献   

8.
Alfalfa seeds were inoculated with a three-strain cocktail of Escherichia coli O157:H7, Salmonella enterica subsp. enterica serovar Typhimurium DT104, or Listeria monocytogenes by immersion to contain approximately 6 to 8 log CFU/g and then treated with a fatty acid-based sanitizer containing 250 ppm of peroxyacid, 1,000 ppm of caprylic and capric acids (Emery 658), 1,000 ppm of lactic acid, and 500 ppm of glycerol monolaurate at a reference concentration of 1X. Inoculated seeds were immersed at sanitizer concentrations of 5X, 10X, and 15X for 1, 3, 5, and 10 min and then assessed for pathogen survivors by direct plating. The lowest concentration that decreased all three pathogens by >5 log was 15. After a 3-min exposure to the 15X concentration, populations of E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes decreased by >5.45, >5.62, and >6.92 log, respectively, with no sublethal injury and no significant loss in seed germination rate or final sprout yield. The components of this 15x concentration (treatment A) were assessed independently and in various combinations to optimize antimicrobial activity. With inoculated seeds, treatment C (15,000 ppm of Emery 658, 15,000 ppm of lactic acid, and 7,500 ppm of glycerol monolaurate) decreased Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes by 6.23 and 5.57 log, 4.77 and 6.29 log, and 3.86 and 4.21 log after 3 and 5 min of exposure, respectively. Treatment D (15,000 ppm of Emery 658 and 15,000 ppm of lactic acid) reduced Salmonella Typhimurium by >6.90 log regardless of exposure time and E. coli )157:H7 and L. monocytogenes by 4.60 and >5.18 log and 3.55 and 3.14 log after 3 and 5 min, respectively. No significant differences (P > 0.05) were found between treatments A, C, and D. Overall, treatment D, which contained Emery 658 and lactic acid as active ingredients, reduced E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes populations by 3.55 to >6.90 log and may provide a viable alternative to the recommended 20,000 ppm of chlorine for sanitizing alfalfa seeds.  相似文献   

9.
The effects of lactoferrin (LF) alone or with various chelating agents on the growth of 5 strains of Escherichia coli O157:H7 and 7 meat starter cultures were evaluated. E.coli O157:H7 and starter cultures were grown at 13 or 26 degrees C in Lauria (LB) or All Purpose Tween (APT) broths, respectively, with both broths being supplemented with 2.9% NaCl. LF alone prevented the growth of E. coli O157:H7 strains 0627 and 0628 but other strains grew. The antimicrobial effectiveness of LF was enhanced by EDTA but LF alone did not affect the growth of meat starter cultures in broth. However, when LF plus EDTA and sodium bicarbonate (SB) were used the growth of all meat starter cultures except Lactobacillus curvatus was reduced. During dry sausage manufacture with L. curvatus and Staphylococcus carnosus starter cultures the effects of LF, unencapsulated or microencapsulated in paste-like and dried powder forms, in sausage batters with or without EDTA and SB, on the viability of E. coli O157:H7 were examined. The reduction of E. coli O157:H7 during sausage manufacture was significantly enhanced (p<0.05) by all LF treatments. The largest reduction (4.2 log units) was obtained with unencapsulated LF. However, some of the apparent reduction in E.coli O157:H7 numbers with all treatments was due to cell injury rather than lethality, since significantly greater numbers were recovered on APT agar overlaid with the selective medium cefixime-tellurite Sorbitol McConkey agar (ct-SMAC) than on ct-SMAC alone. The narrow spectrum of LF activity and induction of injury rather than inactivation of E. coli O157:H7 limit the effectiveness of this agent against the pathogen in fermented meats.  相似文献   

10.
Effects of 10% xylitol (a five-carbon sugar alcohol) on adhesion of Escherichia coli O157:H7 and Salmonella Typhimurium to meat surfaces were examined with three approaches. First, beef outside round was inoculated with rifampin-resistant E. coli O157:H7 and Salmonella Typhimurium dispersed in xylitol or peptone solution. Samples were rinsed with water or not rinsed in a 2 x 2 factorial arrangement. No interaction existed between inoculum and rinsing treatments (P > 0.84). Incubation in xylitol had minimal impact on pathogen adhesion (P > 0.76); however, rinsing reduced pathogen cell counts (P < 0.01). Second, meat samples were treated with water, xylitol, or no rinse; inoculated with pathogens dispersed in peptone solution (8.6 log CFU/ml for each pathogen); and then treated with water, xylitol, or no rinse in a 3 x 3 factorial arrangement. No interactions were observed (P > 0.50). Postinoculation rinsing reduced pathogen loads (P < 0.01) without difference between water and xylitol (P > 0.64). Third, carcass surfaces inoculated with pathogens (5.5 log CFU/cm2) were treated with 35 degrees C water wash, 2.5% L-lactic acid spray, 10% xylitol spray, lactic acid plus xylitol, or hot water plus xylitol. Lactic acid treatments reduced Salmonella Typhimurium at 0 h (P < 0.01) and 24 h (P < 0.02). Hot water treatments tended to reduce Salmonella Typhimurium at 0 h (P < 0.07). Xylitol did not reduce pathogens (P > 0.62) or increase effectiveness of other treatments. Xylitol does not influence E. coli O157:H7 and Salmonella Typhimurium adhesion to meat surfaces.  相似文献   

11.
Escherichia coli O157:H7 and Salmonella Typhimurium DT104 are important foodborne pathogens affecting the beef and dairy industries and strategies are sought to rid these organisms from cattle at slaughter. Both pathogens possess respiratory nitrate reductase that also reduces chlorate to the lethal chlorite ion. Because most anaerobes lack respiratory nitrate reductase, we hypothesized that chlorate may selectively kill E. coli O157:H7 and Salmonella Typhimurium DT104 but not potentially beneficial anaerobes. In support of this hypothesis, we found that concentrations of E. coli O157:H7 and Salmonella Typhimurium DT104 were reduced from approximately 1,000,000 colony forming units (CFU) to below our level of detection (< or = 10 CFU) following in vitro incubation (24 h) in buffered ruminal contents (pH 6.8) containing 5 mM added chlorate. In contrast, chlorate had little effect on the most probable number (mean +/- SD) of total culturable anaerobes (ranging from 9.9 +/- 0.72 to 10.7 +/- 0.01 log10 cells/ml). Thus, chlorate was bactericidal to E. coli O157:H7 and Salmonella Typhimurium DT104 but not to potentially beneficial bacteria. The bactericidal effect of chlorate was concentration dependent (less at 1.25 mM) and markedly affected by pH (more bactericidal at pH 6.8 than pH 5.6).  相似文献   

12.
Triclosan is a nonionic, broad-spectrum, antimicrobial agent that has been incorporated into a variety of personal hygiene products, including hand soaps, deodorants, shower gels, mouthwashes, and toothpastes. In this study, plastic containing 1,500 ppm of triclosan was evaluated in plate overlay assays and meat experiments as a means of reducing populations of bacteria. Plate overlay assays indicated that the triclosan-incorporated plastic (TIP) inhibited the following organisms: Brochothrix thermosphacta ATCC 11509, Salmonella Typhimurium ATCC 14028, Staphylococcus aureus ATCC 12598, Bacillus subtilis ATCC 6051, Shigella flexneri ATCC 12022, Escherichia coli ATCC 25922, and several strains of E. coli O157:H7. In meat experiment 1, irradiated, lean beef surfaces inoculated with B. thermosphacta, Salmonella Typhimurium, E. coli O157:H7, or B. subtilis were covered with TIP, vacuum packaged, and stored for 24 h at 4 degrees C. Of the organisms tested, only populations of B. thermosphacta were slightly reduced. In meat experiment 2, prerigor beef surfaces were inoculated with E. coli O157: H7, Salmonella Typhimurium, or B. thermosphacta incubated at 4 degrees C for 24 h, wrapped in TIP or control plastic, vacuum packaged, and stored at 4 degrees C for up to 14 days. There was a slight reduction in the population of the organisms after initial application with TIP. However, bacterial populations following long-term, refrigerated (4 degrees C), vacuum-packaged storage up to 14 days were not statistically (P< or =0.05) or numerically different than controls. In meat experiment 3, even TIP-wrapped, vacuum-packaged beef samples that were temperature abused at 12 degrees C did not exhibit significant (P< or =0.05) or sustainable reductions after 14 days of 4 degrees C storage. Another study indicated that populations of E. coli O157:H7 or B. thermosphacta added directly to TIP were not affected after 2 h of refrigerated storage or that the antimicrobial activity could be extracted from the plastic. Additional experiments suggest that presence of fatty acids or adipose may diminish the antimicrobial activity of TIP on meat surfaces. This study demonstrates that while antimicrobial activity is detected against bacterial cultures in antimicrobial plate assays, plastic containing 1,500 ppm of triclosan does not effectively reduce bacterial populations on refrigerated, vacuum-packaged meat surfaces.  相似文献   

13.
A study was conducted to determine if slaughter interventions currently used by the meat industry are effective against Salmonella Typhimurium definitive type 104 (DT 104) and two non-O157:H7 enterohemorrhagic Escherichia coli (EHEC). Three separate experiments were conducted by inoculating prerigor beef surfaces with a bovine fecal slurry containing Salmonella Typhimurium and Salmonella Typhimurium DT 104 (experiment 1), E. coli O157:H7 and E. coli O111:H8 (experiment 2), or E. coli O157:H7 and E. coli O26:H11 (experiment 3) and spray washing with water, hot water (72 degrees C), 2% acetic acid, 2% lactic acid, or 10% trisodium phosphate (15 s, 125 +/- 5 psi, 35 +/- 2 degrees C). Remaining bacterial populations were determined immediately after treatments (day 0), after 2 days of aerobic storage at 4 degrees C, and after 7, 21, and 35 days of vacuum-packaged storage at 4 degrees C. In addition to enumeration, confirmation of pathogen serotypes was performed for all treatments on all days. Of the interventions investigated, spray treatments with trisodium phosphate were the most effective, resulting in pathogen reductions of >3 log10 CFU/cm2, followed by 2% lactic acid and 2% acetic acid (>2 log10 CFU/cm2). Results also indicated that interventions used to reduce Salmonella Typhimurium on beef surfaces were equally effective against Salmonella Typhimurium DT 104 immediately after treatment and again after long-term, refrigerated, vacuum-packaged storage. Similarly, E. coli O111:H8 and E. coli O26:H11 associated with beef surfaces were reduced by the interventions to approximately the same extent as E. coli O157:H7 immediately after treatment and again after long-term, refrigerated, vacuum-packaged storage. It was also demonstrated that phenotypic characterization may not be sufficient to identify EHECs and that the organisms should be further confirmed with antibody- or genetic-based techniques. Based on these findings, interventions used by the meat industry to reduce Salmonella spp. and E. coli O157:H7 appear to be effective against DT 104 and other EHEC.  相似文献   

14.
This study was concerned with the possible consequences of reducing the nitrite concentration of a fermented sausage environment on the survival of the pathogen E. coli O157:H45, a verotoxin-negative relative of E. coli O157:H7. A liquid medium, FM, was constructed with a liquid phase, a(w) and pH similar to fermented sausage. Survival of E. coli O157:H45 in FM depended on both pH and nitrite concentration. In trials in which the pH was decreased by growing Pediococcus acidilactici in FM, survival of E. coli O157:H45 was clearly dependent on nitrite concentration; at least 100 ppm nitrite was required to inhibit growth and the number of survivors after 2 days with 200 ppm nitrite was 1000-fold less than in the absence of nitrite. In laboratory-scale sausage fermented with P. acidilactici, E. coli O157:H45 failed to grow in the absence of nitrite and the numbers slowly declined over 14 days. However, the rate of decline was much faster with nitrite present even at 50 ppm; at 200 ppm nitrite, the E. coli O157:H45 population declined 100 times faster than in the absence of nitrite.  相似文献   

15.
ABSTRACT:  This study evaluated whether autoinducer-2 (AI-2) activity would be associated with biofilm formation by Salmonella and Escherichia coli O157:H7 strains on food contact surfaces. In study I, a Salmonella Typhimurium DT104 strain and an E . coli O157:H7 strain, both AI-2 positive, were individually inoculated into 50 mL of Luria–Bertani (LB) or LB + 0.5% glucose (LBG) broth, without or with stainless steel or polypropylene ( Salmonella ) coupons. At 0, 14 ( Salmonella ), 24, 48, and 72 h of storage (25 °C), cells in suspension and detached cells from the coupons, obtained by vortexing, were enumerated on tryptic soy agar. In study II, a Salmonella Thompson AI-2-positive strain and an AI-2-negative strain, and an E . coli O157:H7 AI-2-positive strain and an AI-2-negative strain were inoculated into LB broth with stainless steel coupons. Cells were enumerated as in study I. In both studies, AI-2 activity was determined in cell-free supernatants. Cell numbers of S . Typhimurium DT104 on biofilms were higher ( P < 0.05) in LB than those in LBG, while the E . coli O157:H7 strain showed no difference ( P ≥ 0.05) in biofilm cell counts between LB and LBG after storage for 72 h. Both S . Typhimurium DT104 and E . coli O157:H7 strains produced higher ( P < 0.05) AI-2 activity in LBG than LB cell suspensions. Cell counts of AI-2-positive and-negative S . Thompson and E . coli O157:H7 strains were not different ( P ≥ 0.05) within suspensions or coupons (study II). The results indicated that, under the conditions of this study, AI-2 activity of the pathogen strains tested may not have a major influence on biofilm formation on food contact surfaces, which was similar between AI-2-positive and -negative strains.  相似文献   

16.
Li Y  Zhuang S  Mustapha A 《Meat science》2005,71(2):402-406
Escherichia coli O157:H7, Salmonella and Shigella might contaminate similar types of meat products and cause deadly diseases in humans. Traditional microbiological analyses to detect these pathogens are labor-intensive and time-consuming. The objective of this study was to apply a multiplex PCR for simultaneous detection of the pathogenic bacteria in certain raw and ready-to-eat meat matrices. The tested samples had aerobic plate counts ranging from non-detectable, in chicken nuggets and salami, to 8.36log(10)CFU/g in ground pork. The pH of homogenates spanned from 6.86, in ground beef, to 7.17 in salami. Following a 24-h enrichment, the multiplex PCR assay could concurrently detect the three pathogens at 0.2log(10)CFU/g in ground beef, roast beef, beef frankfurters, chicken nuggets, salami and turkey ham, and 1.2log(10)CFU/g in ground pork. This multiplex PCR offers an efficient microbiological tool for presumptive detection of E. coli O157:H7, Salmonella and Shigella in meat.  相似文献   

17.
The effects of (E,Z)-2,6-nonadienal (NDE) and (E)-2-nonenal (NE) on Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium were investigated. A suspension of each organism of 6 to 9 log CFU/ml was incubated for 1 h at 37 degrees C in brain heart infusion solution that contained 0 to 500 or 1,000 ppm of NDE or NE. Depending on concentration, exposure to either NDE or NE caused a reduction in CFU of each organism. Treatment with 250 and 500 ppm NDE completely eliminated viable B. cereus and Salmonella Typhimurium cells, respectively. L. monocytogenes was the most resistant to NDE, showing only about a 2-log reduction from exposure to 500 ppm for 1 h. Conversely, this concentration of NDE caused a 5.8-log reduction in E. coli O157:H7 cells. NE was also effective in inactivating organisms listed above. A higher concentration of NE, 1,000 ppm, was required to kill E. coli O157:H7, L. monocytogenes, or Salmonella Typhimurium compared with NDE. In conclusion, both NDE and NE demonstrated an apparent bactericidal activity against these pathogens.  相似文献   

18.
Pasteurized apple juice with nisin (0, 25, 50, 100, and 200 ppm, wt/vol) and cinnamon (0 and 0.3%, wt/vol) was inoculated with Salmonella Typhimurium and Escherichia coli O157:H7 at 10(4) CFU/ml and stored at 5 and 20 degrees C. Counts on tryptic soy agar (TSA), selective medium (xylose Lysine desoxycholate agar for Salmonella Typhimurium, and MacConkey sorbitol agar for E. coli O157:H7), and thin agar layer (TAL) were determined at 1 h and 1, 3, 7, and 14 days. The TAL method (selective medium overlaid with TSA) was used for recovery of sublethally injured cells. The pathogens were gradually inactivated by the acidic pH of apple juice. Nisin and cinnamon greatly contributed to the inactivation. The killing effect was more marked at 20 degrees C, with counts in all treated samples being undetectable by direct plating in 3 days for Salmonella Typhimurium and 7 days for E. coli O157:H7. Thus, several factors influenced the decrease in counts: low pH, addition of nisin and cinnamon, and storage temperature. The TAL method was as effective as TSA in recovering injured cells of the pathogens. The combination of nisin and cinnamon accelerates death of Salmonella Typhimurium and E. coli O157:H7 in apple juice and so enhances the safety of the product.  相似文献   

19.
Hot water (HW; 82.2 degrees C, 180 degreesF) is used for sanitation of meat cutting implements in most slaughter facilities, but validation of actual practices against meat-borne bacterial pathogens and spoilage flora is lacking. Observed implement immersions in HW in two large pork processing plants were found to typically be < or = 1 s. Impact of these practices on bacteria on metal surfaces was assessed in the laboratory, and alternative treatments were investigated. Knives were inoculated with raw pork residues and Escherichia coli O157:H7, Salmonella Typhimurium DT104, Clostridium perfringens, and Lactobacillus spp. and were sampled before and after 1- or 15-s dips of blades in HW, warm water (48.9 degrees C), or warm sanitizers (neutral or acid quaternary ammonium compounds [QAC] at 400 ppm, or peroxyacetic acid at 700 ppm H2O2 and 165 ppm peroxyacetic acid). Simultaneous scrubbing and 15-s dipping in HW or acid QAC was also evaluated. Reductions on knives dipped for 1 s were usually < 1 log and were not significantly different (P > 0.05) between treatments. Reductions of E. coli O157:H7 after 15 s in HW, neutral QAC, acid QAC, or peroxyacetic acid were 3.02, 2.38, 3.04, and 1.52 log, respectively. Reductions of other bacteria due to HW were not significantly different from sanitizers and were significantly greater than warm water for all bacteria except C. perfringens. Combined scrubbing and 15-s dipping in HW resulted in a 2.91- and 2.25-log reduction of E. coli O157:H7 and Salmonella Typhimurium DT104, respectively, whereas reduction caused by acid QAC was significantly less at about 1.7 log each. Brief dip treatments of contaminated knives have limited efficacy, but longer immersions cause greater reductions that were not enhanced by scrubbing. QAC is a suitable alternative to HW in this application.  相似文献   

20.
The efficacy of cetylpyridinium chloride (CPC) immersion to reduce the numbers of three pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7) on three different fresh-cut vegetables (broccoli, cauliflower, and radishes) was studied. The fresh-cut vegetables were inoculated with one of the three pathogenic bacteria at a concentration of 10(5) CFU/ml for 1 h at room temperature and then treated with 0.1 or 0.5% CPC immersion for 1 min. Both Salmonella Typhimurium and E. coli O157:H7 plates were incubated from 48 to 72 h at 37 degrees C, and L. monocytogenes plates were incubated from 72 to 96 h before being counted. The results of three experiments showed that for the average of the three vegetables treated with 0.1 and 0.5% CPC, L. monocytogenes was reduced by 2.85 and 3.70 log CFU/g, Salmonella Typhimurium by 2.37 and 3.15 log CFU/g, and E. coli O157:H7 by 1.01 and 1.56 log CFU/g, respectively, in comparison with the vegetables treated with water only. The 0.5% CPC treatment was significantly different (P < 0.05) from the 0.1% CPC treatment on reduction of L. monocytogenes, Salmonella Typhimurium, and E. coli O157:H7. The CPC residual on the treated vegetables and their washing solutions were evaluated by using high-performance liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号