首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
This study evaluated the effects of various combinations of fuels and emission control technologies on exhaust emissions from a heavy-duty diesel engine tested on an engine dynamometer. Ten fuels were studied in twenty four combinations of fuel and emission control technology configurations. Emission control systems evaluated were diesel oxidation catalyst (DOC), continuously regenerating diesel particulate filter (CRDPF), and the CRDPF coupled with an exhaust gas recirculation system (EGRT). The effects of fuel type and emission control technology on emissions of benzene, toluene, ethylbenzene, xylene (BTEX), and 1,3-butadiene, elemental carbon and organic carbon (EC/OC), carbonyls, polycyclic aromatic hydrocarbons (PAHs), and nitro-PAHs (n-PAHs) are presented in this paper. Regulated gaseous criteria pollutants of total hydrocarbons (THC), carbon monoxide (CO), oxides of nitrogen (NO(x)) and particulate matter (PM) emissions have been reported elsewhere. In general, individual unregulated emission with a CRDPF or an EGRT system is similar (at very low emission level) or much lower than that operating solely with a DOC and choosing a "best" fuel. The water emulsion PuriNO(x) fuel exhibited higher BTEX, carbonyls and PAHs emissions compared to other ultralow sulfur diesel (ULSD) fuels tested in this study while n-PAH emissions were comparable to that from other ULSD fuels. Naphthalene accounted for greater than 50% of the total PAH emissions in this study and there was no significant increase of n-PAHs with the usage of CRDPF.  相似文献   

2.
Auto-rickshaws in India use different fuels and engine technologies, with varying emissions and implications for air quality and climate change. Chassis dynamometer emission testing was conducted on 30 in-use auto-rickshaws to quantify the impact of switching from gasoline to compressed natural gas (CNG) in spark-ignition engines. Thirteen test vehicles had two-stroke CNG engines (CNG-2S) and 17 had four-stroke CNG engines (CNG-4S), of which 11 were dual-fuel and operable on a back-up gasoline (petrol) system (PET-4S). Fuel-based emission factors were determined for gaseous pollutants (CO(2), CH(4), NO(X), THC, and CO) and fine particulate matter (PM(2.5)). Intervehicle variability was high, and for most pollutants there was no significant difference (95% confidence level) between "old" (1998-2001) and "new" (2007-2009) age-groups within a given fuel-technology class. Mean fuel-based PM(2.5) emission factor (mean (95% confidence interval)) for CNG-2S (14.2 g kg(-1) (6.2-26.7)) was almost 30 times higher than for CNG-4S (0.5 g kg(-1) (0.3-0.9)) and 12 times higher than for PET-4S (1.2 g kg(-1) (0.8-1.7)). Global warming commitment associated with emissions from CNG-2S was more than twice that from CNG-4S or PET-4S, due mostly to CH(4) emissions. Comprehensive measurements and data should drive policy interventions rather than assumptions about the impacts of clean fuels.  相似文献   

3.
Gas- and particle-phase organic compounds present in the tailpipe emissions from an in-use fleet of gasoline-powered automobiles and light-duty trucks were quantified using a two-stage dilution source sampling system. The vehicles were driven through the cold-start Federal Test Procedure (FTP) urban driving cycle on a transient dynamometer. Emission rates of 66 volatile hydrocarbons, 96 semi-volatile and particle-phase organic compounds, 27 carbonyls, and fine particle mass and chemical composition were quantified. Six isoprenoids and two tricyclic terpanes, which are quantified using new source sampling techniques for semi-volatile organic compounds, have been identified as potential tracers for gasoline-powered motor vehicle emissions. A composite of the commercially distributed California Phase II Reformulated Gasoline used in these tests was analyzed by several analytical methods to quantify the gasoline composition, including some organic compounds that are found in the atmosphere as semi-volatile and particle-phase organic compounds. These results allow a direct comparison of the semi-volatile and particle-phase organic compound emissions from gasoline-powered motor vehicles to the gasoline burned by these vehicles. The distribution of n-alkanes and isoprenoids emitted from the catalyst-equipped gasoline-powered vehicles is the same as the distribution of these compounds found in the gasoline used, whereas the distribution of these compounds in the emissions from the noncatalyst vehicles is very different from the distribution in the fuel. In contrast, the distribution of the polycyclic aromatic hydrocarbons and their methylated homologues in the gasoline is significantly different from the distribution of the PAH in the tailpipe emissions from both types of vehicles.  相似文献   

4.
We identified 13 historical measurements of polycyclic aromatic hydrocarbons (PAHs) in U.S. vehicular traffic tunnels that were either directly presented as tailpipe emission factors in microg per vehicle-kilometer or convertible to such a form. Tunnel measurements capture fleet cruise emissions. Emission factors for benzo[a]pyrene (BaP) for a tunnel fleet operating under cruise conditions were highest prior to the 1980s and fell from more than 30-microg per vehicle-km to approximately 2-microg/km in the 1990s, an approximately 15-fold decline. Total annual U.S. (cruise) emissions of BaP dropped by a lesser factor, because total annual km driven increased by a factor of 2.7 during the period. Other PAH compounds measured in tunnels over the 40-year period (e.g., benzo[ghi]perylene, coronene) showed comparable reduction factors in emissions. PAH declines were comparable to those measured in tunnels for carbon monoxide, volatile organic compounds, and particulate organic carbon. The historical PAH "source terms" determined from the data are relevant to quantifying the benefits of emissions control technology and can be used in epidemiological studies evaluating the health effects of exposure, such as those undertaken with breast cancer in New York State.  相似文献   

5.
Samples of fine particulate matter were collected in a roadway tunnel near Houston, TX over a period of 4 days during two separate sampling periods: one sampling period from 1200 to 1400 local time and another sampling period from 1600 to 1800 local time. During the two sampling periods, the tunnel traffic contained roughly equivalent numbers of heavy-duty diesel trucks. However, during the late afternoon sampling period, the tunnel contained twice as many light-duty gasoline-powered vehicles. The effect of this shift in the vehicle fleet affects the overall emission index (grams pollutant emitted per kilogram carbon in fuel) for fine particles and fine particulate elemental carbon. Additionally, this shift in the fraction of diesel vehicles in the tunnel is used to determine if the chemical mass balancing techniques used to track emissions from gasoline-powered and diesel-powered emissions accurately separates these two emission categories. The results show that the chemical mass balancing calculations apportion roughly equal amounts of the particulate matter measured to diesel vehicles between the two periods and attribute almost twice as much particulate matter in the late afternoon sampling period to gasoline vehicles. Both of these results are consistent with the traffic volume of gasoline and diesel vehicles in the tunnel in the two separate periods and validate the ability for chemical mass balancing techniques to separate these two primary sources of fine particles.  相似文献   

6.
Passenger transport affects climate through various mechanisms involving both long-lived and short-lived climate forcers. Because diesel cars generally emit less CO(2) than gasoline cars, CO(2) emission taxes for vehicle registrations and fuels enhance the consumer preference for diesel cars over gasoline cars. However, with the non-CO(2) components, which have been changed and will be changed under the previous and upcoming vehicle emission standards, what does the shift from gasoline to diesel cars mean for the climate mitigation? By using a simple climate model, we demonstrate that, under the earlier emissions standards (EURO 3 and 4), a diesel car causes a larger warming up to a decade after the emissions than a similar gasoline car due to the higher emissions of black carbon and NO(X) (enhancing the O(3) production). Beyond a decade, the warming caused by a diesel car becomes, however, weaker because of the lower CO(2) emissions. As the latter emissions standards (EURO 5 and 6) are phased in, the short-term warming due to a diesel car becomes smaller primarily due to the lower black carbon emissions. Thus, although results are subject to restrictive assumptions and uncertainties, the switch from gasoline to diesel cars encouraged by CO(2) taxes does not contradict with the climate mitigation focusing on long-term consequences.  相似文献   

7.
Quinone emissions from gasoline and diesel motor vehicles   总被引:2,自引:0,他引:2  
Gas- and particle-phase emissions from gasoline and diesel vehicles operated on chassis dynamometers were collected using annular denuders, quartz filters, and PUF substrates. Quinone species were measured using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization in conjunction with gas chromatography-mass spectrometry and high-performance liquid chromatography-mass spectrometry. Nine quinones were observed, ranging from C6 to C16. New species identified in motor vehicle exhaust include methyl-1,4-benzoquinone, 2-methyl-1,4-naphthoquinone (MNQN), and aceanthrenequinone. Gas-phase motor vehicle emissions of quinones are also reported for the first time. Six gas-phase quinones were quantified with emission rates of 2-28 000 microg L(-1) fuel consumed. The most abundant gas-phase quinones were 1,4-benzoquinone (BON) and MNQN. The gas-phase fraction was > or = 69% of quinone mass for light-duty gasoline emissions, and > or = 84% for heavy-duty diesel emissions. Eight particle-phase quinones were observed between 2 and 1600 microg L(-1), with BQN the most abundant species followed by 9,10-phenanthrenequinone and 1,2-naphthoquinone. Current particle-phase quinone measurements agree well with the few available previous results. Further research is needed concerning the gas-particle partitioning behavior of quinones in ambient and combustion source conditions.  相似文献   

8.
Concerns regarding global warming have increased the pressure on automobile manufacturers to decrease emissions of CO2 from vehicles. Diesel vehicles have higher fuel economy and lower CO2 emissions than their gasoline counterparts. Increased penetration of diesel powered vehicles into the market is a possible transition strategy toward a more sustainable transportation system. To facilitate discussions regarding the relative merits of diesel vehicles it is important to have a clear understanding of their CO2 emission benefits. Based on European diesel and gasoline certification data, this report quantifies such CO2 reduction opportunities for cars and light duty trucks in today's vehicles and those in the year 2015. Overall, on a well-to-wheels per vehicle per mile basis, the CO2 reduction opportunity for today's vehicles is approximately 24-33%. We anticipate that the gap between diesel and gasoline well-to-wheel vehicle CO2 emissions will decrease to approximately 14-27% by the year 2015.  相似文献   

9.
The objective of this study was to operate a novel, field-scale, aerobic bioreactor and assess its performance in the ex situ treatment of groundwater contaminated with gasoline from a leaking underground storage tank in Pascoag, RI. The groundwater contained elevated concentrations of MTBE (methyl tert-butyl ether), TBA (tert-butyl alcohol), TBF (tert-butyl formate), BTEX (benzene, toluene, ethyl benzene, and xylene isomers), and other gasoline additives (tert-amyl methyl ether, di-isopropyl ether, tert-amyl alcohol, methanol, and acetone). The bioreactor was a gravity-flow membrane-based system called a Biomass Concentrator Reactor (BCR) designed to retain all biomass within the reactor. It was operated for six months at an influent flow rate that ultimately reached 5 gpm. The goal was to achieve a removal of all contaminants to <5 microg/L, which is the California Drinking Water advisory for MTBE. The concentration of TBA, an MTBE biodegradation byproduct, was consistently lower than that of MTBE. The other daughter compound detected in the influent, TBF, was degraded to concentrations below the detection limit of 0.02 microg/L. BTEX were consistently degraded to significantly lower levels in the effluent throughout the duration of the study (<1 microg/L). A similar high removal efficiency of the other gasoline oxygenates present in the groundwater (TAME, DIPE, and TAA) was also achieved. Dissolved organic carbon analysis demonstrated the ability of the bioreactor to produce high quality effluents with nonpurgeable organic carbon (NPOC) averaging approximately 50% lowerthan the NPOC concentrations in the influent contaminated groundwater.  相似文献   

10.
Besides aliphatic gasoline, ethanol-blended gasoline intended for use in small utility engines was recently introduced on the Swedish market. For small utility engines, little data is available showing the effects of these fuels on exhaust emissions, especially concerning aldehydes and ketones (carbonyls). The objective of the present investigation was to study carbonyl emissions and regulated emissions from a two-stroke chain saw engine using ethanol, gasoline, and ethanol-blended gasoline as fuel (0%, 15%, 50%, 85%, and 100% ethanol). The effects of the ethanol-blending level and mechanical changes of the relative air/fuel ratio, lambda, on exhaust emissions was investigated, both for aliphatic and regular gasoline. Formaldehyde, acetaldehyde, and aromatic aldehydes were the most abundant carbonyls in the exhaust. Acetaldehyde dominated for all ethanol-blended fuels (1.2-12 g/kWh, depending on the fuel and lambda), and formaldehyde dominated for gasoline (0.74-2.3 g/kWh, depending on the type of gasoline and lambda). The main effects of ethanol blending were increased acetaldehyde emissions (30-44 times for pure ethanol), reduced emissions of all other carbonyls exceptformaldehyde and acrolein (which showed a more complex relation to the ethanol content), reduced carbon monoxide (CO) and ntirogen oxide (NO) emissions, and increased hydrocarbon (HC) and nitrogen dixodie (NO2) emissions. The main effects of increasing lambda were increased emissions of carbonyls and nitrogen oxides (NOx) and reduced CO and HC emissions. When the two types of gasoline are considered, benzaldehyde and tolualdehyde could be directly related to the gasoline content of aromatics or olefins, but also acrolein, propanal, crotonaldehyde, and methyl ethyl ketone mainly originated from aromatics or olefins, while the main source for formaldehyde, acetaldehyde, acetone, methacrolein, and butanal was saturated aliphatic hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号