首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Eight Murciano-Granadina dairy goats in late lactation were exposed to different ambient conditions, using metabolic cages in a climatic chamber. The experimental design was a crossover (2 periods of 35 d and 4 goats each) and conditions were (1) thermal neutral (TN; 15 to 20°C day-night) and (2) heat stress (HS; 12-h day at 37°C and 12-h night at 30.5°C). Humidity was maintained at 40% and light-dark was constant (12–12 h). The forage:concentrate ratio was adjusted daily for maintaining similar value in TN and HS goats (70:30). Water was freely available at ambient temperature. Rectal temperature and respiratory rate (0800, 1200 and 1700 h) and milk yield were recorded daily, whereas milk composition, nonesterified fatty acids and haptoglobin in blood were analyzed weekly. At d 25, additional blood samples were taken for analysis of metabolites and indicators of the acid-base balance. Digestibility coefficients and N balance were determined (d 31 to 35) and body weight was recorded (d 35). Compared with TN goats, HS goats experienced greater rectal temperature (+0.58°C), respiratory rate (+48 breaths/min), water intake (+77%) and water evaporation (+207%). Intake of HS goats rapidly declined until d 7 (−40%), partially recovered from d 7 to 19, and steadied thereafter (−14%). No changes in digestibility or N balance were detected. Blood nonesterified fatty acids and haptoglobin peaked at d 7 in HS goats but did not vary thereafter. Although milk yield did not vary by treatment, milk of HS goats contained −12.5% protein and −11.5% casein than TN goats. Panting reduced concentration and pressure of CO2 in the blood of HS goats, but they were able to maintain their blood pH similar to the TN group by lowering HCO3 and increasing Cl concentrations in their blood. In conclusion, HS dairy goats showed dramatic physiological changes during the first week of treatment and partially recovered thereafter. They were able to maintain milk yield by losing body mass, but milk protein content and protein yield were depressed. Further research is needed to assess the response of dairy goats to HS at earlier stages of lactation.  相似文献   

2.
The objective of this study was to explore the possibility of reducing the number of weather stations for studies on genetics of heat tolerance in dairy cattle. The similarity of information from 21 Georgia weather stations was analyzed by cluster analysis. Two major clusters have been found, separating Georgia along the NE and SW line. One weather station was selected for each of the clusters based on the minimal distance to all the remaining weather stations and on completeness of the weather information. The production dataset consisted of 114,751 first-parity test-day records for milk on 14,297 Holsteins from 120 herds in Georgia. Analyses using a model for daily milk yield with temperature-humidity index classes and several other fixed effects showed no increase in error sum of squares when using only two weather stations. The threshold of heat stress was different for each of the two regions but the rate of decline after the threshold was similar. After accounting for different thresholds, the genetic component of heat tolerance for milk was higher with the two-station model. Genetic studies on or evaluation for heat tolerance based on information from a few carefully selected weather stations can be as accurate as those based on information from numerous such stations.  相似文献   

3.
Effect of biotin on milk performance of dairy cattle: a meta-analysis   总被引:1,自引:0,他引:1  
A meta-analysis of the effect of biotin on production outcomes of dairy cattle was conducted following a literature review. A total of 11 studies from 9 papers, with information on the milk production and composition data from a total number of 238 cows were extracted and analyzed using meta-analysis software in Stata. Estimated size of effect of biotin was calculated for dry matter intake (DMI), milk production, and composition. Heterogeneity was not significant for all of the parameters (the highest I2 = 12%). Therefore, fixed effects models were used for analysis. With the addition of biotin to lactating dairy cattle, DMI and milk production increased by 0.87 and 1.66 kg/d. No significant effect on percentage of milk fat and milk protein was observed. Additionally, Begg's test indicated no evidence of substantial publication bias for all variables. The influence analysis shows that the removal of any study did not change the direction or significance of the point estimates. It can be concluded that the use of biotin supplements increases DMI and milk yield in lactating dairy cows.  相似文献   

4.
Daily milk yield over the course of the lactation follows a curvilinear pattern, so a suitable function is required to model this curve. In this study, 7 functions (Wood, Wilmink, Ali and Schaeffer, cubic splines, and 3 Legendre polynomials) were used to model the lactation curve at the phenotypic level, using both daily observations and data from commonly used recording schemes. The number of observations per lactation varied from 4 to 11. Several criteria based on the analysis of the real error were used to compare models. The performance of models showed few discrepancies in the comparison criteria when daily or 4-weekly (with first test at days in milk 8) data by lactation were used. The performance of the Wood, Wilmink, and Ali and Schaeffer models were highly affected by the reduction of the sample dimension. The results of this work support the idea that the performance of these models depends on the sample properties but also shows considerable variation within the sampling groups.  相似文献   

5.
Major advances associated with environmental effects on dairy cattle   总被引:1,自引:0,他引:1  
It has long been known that season of the year has major impacts on dairy animal performance measures including growth, reproduction, and lactation. Additionally, as average production per cow has doubled, the metabolic heat output per animal has increased substantially rendering animals more susceptible to heat stress. This, in turn, has altered cooling and housing requirements for cattle. Substantial progress has been made in the last quarter-century in delineating the mechanisms by which thermal stress and photoperiod influence performance of dairy animals. Acclimation to thermal stress is now identified as a homeorhetic process under endocrine control. The process of acclimation occurs in 2 phases (acute and chronic) and involves changes in secretion rate of hormones as well as receptor populations in target tissues. The time required to complete both phases is weeks rather than days. The opportunity may exist to modify endocrine status of animals and improve their resistance to heat and cold stress. New estimates of genotype × environment interactions support use of recently available molecular and genomics tools to identify the genetic basis of heat-stress sensitivity and tolerance. Improved understanding of environmental effects on nutrient requirements has resulted in diets for dairy animals during different weather conditions. Demonstration that estrus behavior is adversely affected by heat stress has led to increased use of timed insemination schemes during the warm summer months to improve conception rates by discarding the need to detect estrus. Studies evaluating the effects of heat stress on embryonic survival support use of cooling during the immediate postbreeding period and use of embryo transfer to improve pregnancy rates. Successful cooling strategies for lactating dairy cows are based on maximizing available routes of heat exchange, convection, conduction, radiation, and evaporation. Areas in dairy operations in which cooling systems have been used to enhance cow comfort, improve milk production, reproductive efficiency, and profit include both housing and milking facilities. Currently, air movement (fans), wetting (soaking) the cow's body surface, high pressure mist (evaporation) to cool the air in the cows’ environment, and facilities designed to minimize the transfer of solar radiation are used for heat abatement. Finally, improved understanding of photoperiod effects on cattle has allowed producers to maximize beneficial effects of photoperiod length while minimizing negative effects.  相似文献   

6.
Accurate knowledge of lactation curves has an important relevance to management and research of dairy production systems. A number of equations have been proposed to describe the lactation curve, the most widely applied being the gamma equation. The objective of this work was to compare and evaluate candidate functions for their predictive ability in describing lactation curves from central Mexican dairy cows reared under 2 contrasting management systems. Five equations were considered: Gaines (exponential decay), Wood (gamma equation), Rook (Michaelis-Menten ×exponential), and 2 more mechanistic ones (Dijkstra and Pollott). A database consisting of 701 and 1283 records of cows in small-scale and intensive systems, respectively, was used in the analysis. Before analysis, the database was divided into 6 groups representing first, second, and third and higher parity cows in both systems. In all cases except second and above parity cows in small-scale systems, all models improved on the Gaines equation. The Wood equation explained much of the variation, but its parameters do not have direct biological interpretation. Although the Rook equation fitted the data well, some of the parameter estimates were not significant. The Dijkstra equation consistently gave better predictions, and its parameters were usually statistically significant and lend themselves to physiological interpretation. As such, the differences between systems and parity could be explained due to variations in theoretical initial milk production at parturition, specific rates of secretory cell proliferation and death, and rate of decay, all of which are parameters in the model. The Pollott equation, although containing the most biology, was found to be over-parameterized and resulted in nonsignificant parameter estimates. For central Mexican dairy cows, the Dijkstra equation was the best option to use in describing the lactation curve.  相似文献   

7.
Effect of heat stress on production of Mediterranean dairy sheep   总被引:2,自引:0,他引:2  
A study on heat stress in Mediterranean dairy sheep was undertaken with the objective to examine the relationship between milk production and heat stress, to estimate the additive genetic variances of milk production traits and heat tolerance, and to investigate the possibility of future selection for increased heat tolerance. Production data included 59,661 test-day records belonging to 6624 lactations of 4428 lactating ewes from 17 flocks collected from 1994 through 2003. The traits investigated were daily milk yield, fat and protein percentage, and daily yield of fat-plus-protein. The pedigree file consisted of 5306 animals; in addition to the 4428 animals with records, 188 male and 690 female ancestors were included. Heat stress was modeled by using data from a weather station. Apart from the effects of the weather conditions of the milk recording test-day, the effects of the preceding 1, 2, and 3 d were determined. Because longer periods of heat stress might have a more severe effect than shorter periods, 2-, 3-, and 4-d periods were also considered, by averaging the weather data measurements. Fixed regression analyses were based on models that included effects of flock nested within year of test-day, DIM (days in milk) class x parity class, and several types of weather indicators. The preferred model using the temperature-humidity index (THI) gave a smoother pattern than did the model with temperature x humidity interaction. Both daily milk and fat-plus-protein yield appeared to decrease at THI > or = 23, in all periods considered. Based on the 4-d period, yield decreased for each unit increase of THI above 23 [-62.8 g/unit (-4.2%) for daily milk yield and -8.9 g/unit (-4.9%) for daily fat-plus-protein yield]. Fat and protein percentages appeared to be unaffected by heat stress. A test-day repeatability model was applied for estimation of genetic parameters. The genetic correlations between the general additive effect and the additive effect of heat tolerance were negative (approximately -0.8) for both daily milk and fat-plus-protein yields in all periods considered. Therefore, milk yield is antagonistic with heat tolerance, and selection only for increased milk production will reduce heat tolerance.  相似文献   

8.
《Journal of dairy science》2023,106(7):4738-4758
The health, longevity, and performance of dairy cattle can be adversely affected by heat stress. This study evaluated the in-barn condition [i.e., temperature, relative humidity, and resulting temperature-humidity index (THI)] at 9 dairy barns with various climates and farm design-management combinations. Hourly and daily indoor and outdoor conditions were compared at each farm, including both mechanically and naturally ventilated barns. On-site conditions were compared with on-farm outdoor conditions, meteorological stations up to 125 km away, and NASA Power data. Canadian dairy cattle face periods of extreme cold and periods of high THI, dependent on the regional climate and season. The northernmost location (53°N) experienced about 75% fewer hours of THI >68 compared with the southernmost location (42°N). Milking parlors had higher THI than the rest of the barn during milking times. The THI conditions inside dairy barns were well correlated with THI conditions measured outside the barns. Naturally ventilated barns with metal roofs and without sprinklers fit a linear relationship (hourly and daily means) with a slope <1, indicating that in-barn THI exceeded outdoor THI more at lower THI and reached equality at higher THI. Mechanically ventilated barns fit nonlinear relationships, which showed the in-barn THI exceeded outdoor THI more at lower THI (e.g., 55–65) and approached equality at higher THI. In-barn THI exceedance was greater in the evening and overnight due to factors such as decreased wind speed and latent heat retention. Eight regression equations were developed (4 hourly, 4 daily) to predict in-barn conditions based on outdoor conditions, considering different barn designs and management systems. Correlations between in-barn and outdoor THI were best when using the on-site weather data from the study, but publicly available weather data from stations within 50 km provided reasonable estimates. Climate stations 75 to 125 km away and NASA Power ensemble data gave poorer fit statistics. For studies involving many dairy barns, the use of NASA Power data with equations for estimating average in-barn conditions in a population is likely appropriate especially when public stations have incomplete data. Results from this study show the importance of adapting recommendation on heat stress to the barn design and guide the selection of appropriate weather data depending on the aim of the study.  相似文献   

9.
The objective of this prospective field study was to evaluate the effects of extending the lactation period on various reproductive measurements of high-yielding Holstein cows. On 40 d in milk (DIM), cows were gynecologically examined (transrectal palpation, sonography, vaginoscopy). Cows without signs of clinical endometritis were blocked by parity and were randomly allocated to 1 of 3 experimental groups with a voluntary waiting period (VWP) of 40, 120, and 180 d, respectively (G40, n = 135; G120, n = 141; G180, n = 139). Cows of G120 and G180 were reexamined at the end of the VWP. If natural estrus was detected within 46 d after the end of the VWP, an artificial insemination was performed. If no estrus was detected, the respective cows were synchronized by applying the classical Ovsynch protocol. We found no difference in the proportion of cows in which estrus was detected between 40 to 86 DIM or in the days to first estrus between the 3 groups. Estrus detection in this period was lower in cows with body condition score <3 on 90 DIM compared with body condition score ≥3 (61.5 vs. 76.0%) and in cows with high energy-corrected milk production (ECM) on 92 DIM [58.6 vs. 70.1%, for cows with higher and lower than the median (39.9 kg) ECM, respectively]. The proportion of cows that estrus was detected within 46 d after the VWP was greater in G120 (88.9%) and G180 (90.8%) compared with G40 (70.4%). These effects were more apparent in cows with high ECM. The rate of estrus detection and of becoming pregnant in this period was greater for G120 (hazard ratio = 2.2 and 1.6, respectively) and for G180 (hazard ratio = 2.4 and 1.8) compared with G40. Cows in both groups with extended lactation had greater overall first service conception rates (G120 = 48.9%; G180 = 49.6%) and a lower number of services per pregnant cow (G120 = 1.56 ± 0.1; G180 = 1.51 ± 0.1) compared with G40 (36.6%; 1.77 ± 0.1). We observed no difference in pregnancy loss or in the proportion of cows culled up to 305 d of lactation between the 3 groups. The number of Ovsynch protocols per 1,000,000 kg of ECM was reduced by 75% in G180 and by 74% in G120 compared with G40 (5.9 vs. 7.1 vs. 25.1). In conclusion, extending the lactation of dairy cows can improve main reproductive measurements in high-yielding cows.  相似文献   

10.
Twenty-four lactating and 13 nonlactating Alpine goats were used to determine effects of stage of lactation and dietary concentrate level on energy utilization. Diets comprising 60 or 20% concentrate (60%C and 20%C, respectively) were consumed ad libitum by lactating animals and at a level of intake near maintenance by nonlactating animals. Measurement periods were d 25 to 31 (early), 87 to 94 (mid), and 176 to 183 (late) of lactation. Eleven observations were made in early and mid lactation for each diet, and 8 and 7 were made in late lactation for the 60%C and 20%C diets, respectively. Efficiency of metabolizable energy (ME) use for maintenance (66.9, 71.4, and 61.1% for early, mid, and late lactation, respectively) and the maintenance ME requirement (479, 449, and 521 kJ/kg of BW0.75 for early, mid, and late lactation, respectively) determined with nonlactating animals differed among stages of lactation. The efficiency of ME use for maintenance was similar between diets, but the maintenance requirement tended to be greater for the 60%C than for the 20%C diet (504 vs. 463 kJ/kg of BW0.75). The latter difference may have involved greater ME intake for the 60%C diet, resulting in a slightly greater difference between ME intake and total heat energy for the 60%C compared with the 20%C diet (11 vs. −8 kJ/kg of BW0.75). Intake of ME by lactating goats was greater for the 60%C than for the 20%C diet (18.6 vs. 16.3 MJ/d). Recovered energy in lactation from mobilized tissue tended to be greater for the 60%C than for the 20%C diet (8.44 vs. 6.55 MJ/d) and differed among stages of lactation (2.60, 1.59, and 1.13 MJ/d in early, mid, and late lactation, respectively). Recovered energy in tissue gain was similar among stages of lactation and between diets and was not different from 0. Efficiency of use of dietary ME for lactation differed among stages of lactation (59.5, 51.9, and 65.4% for early, mid, and late lactation, respectively) and tended to be greater for the 60%C than for the 20%C diet (64.2 vs. 54.9%). The efficiency of use of dietary ME for maintenance and lactation was similar among stages of lactation and was greater for the 60%C compared with the 20%C diet (64.3 vs. 60.9%). Predicted milk yield from National Research Council requirements was reasonably accurate. In conclusion, using data of nonlactating goats to study energy utilization for maintenance in lactation has limitations. Efficiency of energy use by lactating dairy goats consuming diets high in concentrate appears greater than that by goats consuming diets low in concentrate. Despite differences in nutrient requirement expressions, observations of this study support National Research Council recommendations of energy requirements of lactating dairy goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号