首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 817 毫秒
1.
Cows with high lactation persistency tend to produce less milk than expected at the beginning of lactation and more than expected at the end. Best prediction of lactation persistency is calculated as a function of trait-specific standard lactation curves and linear regressions of test-day deviations on days in milk. Because regression coefficients are deviations from a tipping point selected to make yield and lactation persistency phenotypically uncorrelated it should be possible to use 305-d actual yield and lactation persistency to predict yield for lactations with later endpoints. The objectives of this study were to calculate (co)variance components and breeding values for best predictions of lactation persistency of milk (PM), fat (PF), protein (PP), and somatic cell score (PSCS) in breeds other than Holstein, and to demonstrate the calculation of prediction equations for 400-d actual milk yield. Data included lactations from Ayrshire, Brown Swiss, Guernsey (GU), Jersey (JE), and Milking Shorthorn (MS) cows calving since 1997. The number of sires evaluated ranged from 86 (MS) to 3,192 (JE), and mean sire estimated breeding value for PM ranged from 0.001 (Ayrshire) to 0.10 (Brown Swiss); mean estimated breeding value for PSCS ranged from −0.01 (MS) to −0.043 (JE). Heritabilities were generally highest for PM (0.09 to 0.15) and lowest for PSCS (0.03 to 0.06), with PF and PP having intermediate values (0.07 to 0.13). Repeatabilities varied considerably between breeds, ranging from 0.08 (PSCS in GU, JE, and MS) to 0.28 (PM in GU). Genetic correlations of PM, PF, and PP with PSCS were moderate and favorable (negative), indicating that increasing lactation persistency of yield traits is associated with decreases in lactation persistency of SCS, as expected. Genetic correlations among yield and lactation persistency were low to moderate and ranged from −0.55 (PP in GU) to 0.40 (PP in MS). Prediction equations for 400-d milk yield were calculated for each breed by regression of both 305-d yield and 305-d yield and lactation persistency on 400-d yield. Goodness-of-fit was very good for both models, but the addition of lactation persistency to the model significantly improved fit in all cases. Routine genetic evaluations for lactation persistency, as well as the development of prediction equations for several lactation end-points, may provide producers with tools to better manage their herds.  相似文献   

2.
Multivariate factor analysis and principal component analysis were used to decompose the correlation matrix of test-day milk yields of 48,374 lactations of 21,721 Italian Simmental cows. Two common latent factors related to level of production in early lactation and lactation persistency, and 2 principal components associated with the whole lactation yield and persistency were obtained. Factor and principal component scores were treated as new quantitative phenotypes related to prominent features of lactation curve shape. Genetic parameters were estimated by univariate and bivariate animal models. Estimates of heritability were moderately low for both latent factors (0.13 for persistency and yield early in lactation). Heritabilities of the principal component related to total lactation yield and 305-d yield were similar (0.19 and 0.20, respectively). Finally, heritability was quite low for the principal component related to lactation persistency (0.07). Repeatabilities between lactations were about 0.27 for both latent factors, around 0.4 for the first principal component and 305-d yield, and 0.11 for the second principal component. Moderate genetic correlation among common factors (0.26) and their high genetic correlation with total lactation yield (>0.60) suggest that selection can be used to change the shape of lactation curve as well as improve yield. Scores of the second principal component can be used to genetically improve persistency while maintaining constant total lactation yield.  相似文献   

3.
Genetic parameters of milk, fat, and protein yields were estimated in the first 3 lactations for registered Tunisian Holsteins. Data included 140,187; 97,404; and 62,221 test-day production records collected on 22,538; 15,257; and 9,722 first-, second-, and third-parity cows, respectively. Records were of cows calving from 1992 to 2004 in 96 herds. (Co)variance components were estimated by Bayesian methods and a 3-trait-3-lactation random regression model. Gibbs sampling was used to obtain posterior distributions. The model included herd × test date, age × season of calving × stage of lactation [classes of 25 days in milk (DIM)], production sector × stage of lactation (classes of 5 DIM) as fixed effects, and random regression coefficients for additive genetic, permanent environmental, and herd-year of calving effects, which were defined as modified constant, linear, and quadratic Legendre coefficients. Heritability estimates for 305-d milk, fat and protein yields were moderate (0.12 to 0.18) and in the same range of parameters estimated in management systems with low to medium production levels. Heritabilities of test-day milk and protein yields for selected DIM were higher in the middle than at the beginning or the end of lactation. Inversely, heritabilities of fat yield were high at the peripheries of lactation. Genetic correlations among 305-d yield traits ranged from 0.50 to 0.86. The largest genetic correlation was observed between the first and second lactation, potentially due to the limited expression of genetic potential of superior cows in later lactations. Results suggested a lack of adaptation under the local management and climatic conditions. Results should be useful to implement a BLUP evaluation for the Tunisian cow population; however, results also indicated that further research focused on data quality might be needed.  相似文献   

4.
(Co)variance components for milk, fat, and protein yield of 8075 first-parity Danish Holsteins (DH) were estimated in random regression models by REML. For all analyses, the fixed part of the model was held constant, whereas four different functions were applied to model the additive genetic effect and the permanent environment effect. Homogeneous residual variance was assumed throughout lactation. Univariate models were compared using a minimum of -2 ln(restricted likelihood) as the criterion for best fit. Heritabilities as a function of time were calculated from the estimated curve parameters from univariate analyses. Independent of the function applied and the trait in question, heritabilities were lowest in the beginning of the lactation. Heritabilities for persistency of fat yield were slightly higher than heritabilities for persistency of milk and protein yield. Genetic correlations between persistency and 305-d production were higher for protein and milk yield than for fat yield. Bivariate analyses between the production traits were carried out in sire models using the models with the best 3-parameter curve fit in the univariate analyses. Correlations between traits were calculated from covariance components for curve parameters estimated in bivariate analyses. Genetic correlations between milk and protein yield were higher than between milk and fat yield.  相似文献   

5.
Monthly somatic cell count data were collected between February 1977 and February 1982 for Holstein cows in 928 herds enrolled on the Quebec Dairy Herd Analysis Service. The geometric mean of the log monthly cell counts was calculated for each lactation. Official lactation records for 305-day milk, fat, and protein yields, and fat and protein percents were obtained for same cows. There were 18,189 cows in first lactation representing 257 sires, 13,225 in second lactation representing 206 sires, and 8,683 in third lactation representing 151 sires. Heritabilities of yield traits and protein percent increased across three lactations. Heritability of fat percent was similar in first and third lactations but decreased slightly in second lactations. Heritability of lactation cell count was small, being least in second lactations. Genetic correlations between lactation cell count and yield traits were positive in first lactations, small and negative in second lactations, and small and positive in third lactations. Genetic correlations between lactation cell count and fat and protein contents were small in the three lactations. Phenotypic correlations between lactation cell count and production traits were small in each of the three lactations. Genetic correlations between yield traits in early lactation and lactation cell count in a subsequent lactation were positive. The genetic correlation between protein percent in an early lactation and cell count in a later lactation was large between first and second lactations, decreased between second and third lactation, and small between first and third lactations. Genetic correlations were small and negative for fat percent.  相似文献   

6.
The calving intervals of Holstein cows in many countries have been increasing in length over recent years. Many reports of lactation characteristics refer only to a standard 305-d lactation. This paper attempts to describe the characteristics of lactations of different lengths using a large database of nationally recorded data. Three different lactation lengths were studied: 305 d (the traditional annual calving interval), 370 d (the current UK national average), and 440 d (equivalent to an 18-mo calving interval). Test-day milk yield; fat, protein, and lactose composition; and somatic cell counts were analyzed. Characteristics of each of 29,838 lactations were calculated using a biological model of lactation and were analyzed to identify which factors affected them. Maximum secretion potential was the only trait not affected by lactation length. Day of peak yield, peak yield, persistency, and total milk yield all increased with lactation length, whereas relative cell death rate and the rate of milk increase in early lactation both decreased as lactation length increased. For most weeks of lactation, the 3 lactation-length groups differed from each other in most traits, following the order of their lengths; for example, milk yield was always higher for lactations of 440 d and lower for those of 305 d. The post-peak trends in all traits were found to continue in longer lactations. Thus, daily milk production and lactose percentage continued to decrease as lactations became longer, whereas fat percentage, protein percentage, and somatic cell count continued to increase. Pregnancy was found to affect all traits, leading to an accentuation of these trends in late lactation. However, the effect of pregnancy depended on the yield at about the fourth month of pregnancy. Lactations of 305, 370, and 440 d all had different characteristics and not solely due to increasing length.  相似文献   

7.
With random regression models, genetic parameters of test-day milk production records of dairy cattle can be estimated directly from the data. However, several researchers that used this method have reported unrealistically high variances at the borders of the lactation trajectory and low genetic correlations between beginning and end of lactation. Recently, it has been proposed to include herd-specific regression curves in the random regression model. The objective was to study the effect of including random herd curves on estimated genetic parameters. Genetic parameters were estimated with 2 models; both included random regressions for the additive genetic and permanent environmental effect, whereas the second model also included a random regression effect for herd x 2-yr period of calving. All random regressions were modeled with fourth-order Legendre polynomials. Bayesian techniques with Gibbs sampling were used to estimate all parameters. The data set comprised 857,255 test-day milk, fat, and protein records from lactations 1, 2, and 3 of 43,990 Holstein cows from 544 herds. Genetic variances estimated by the second model were lower in the first 100 d and at the end of the lactation, especially in lactations 2 and 3. Genetic correlations between d 50 and the end of lactation were around 0.25 higher in the second model and were consistent with studies where lactation stages are modeled as different traits. Subsequently, estimated heritabilities for persistency were up to 0.14 lower in the second model. It is suggested to include herd curves in a random regression model when estimating genetic parameters of test-day production traits in dairy cattle.  相似文献   

8.
The main objective of this study was to estimate genetic relationships between lactation persistency and reproductive performance in first lactation. Relationships with day in milk at peak milk yield and estimated 305-d milk yield were also investigated. The data set contained 33,312 first-lactation Canadian Holsteins with first-parity reproductive, persistency, and productive information. Reproductive performance traits included age at first insemination, nonreturn rate at 56 d after first insemination as a virgin heifer and as a first-lactation cow, calving difficulty at first calving and calving interval between first and second calving. Lactation persistency was defined as the Wilmink b parameter for milk yield and was calculated by fitting lactation curves to test day records using a multiple-trait prediction procedure. An 8-trait genetic analysis was performed using the Variance Component Estimation package (VCE 5) via Gibbs sampling to estimate genetic parameters for all traits. Heritabilities of persistency, day in milk at peak milk yield and estimated 305-d milk yield were 0.18, 0.09 and 0.45, respectively. Heritabilities of reproduction were low and ranged from 0.03 to 0.19. The highest heritability was for age at first insemination. Heifer reproductive traits were lowly genetically correlated, whereas cow reproductive traits were moderately correlated. Heifers younger than average when first inseminated and/or conceived successfully at first insemination tended to have a more persistent first lactation. First lactation was more persistent if heifers had difficulty calving (r(g) = 0.43), or conceived successfully at first insemination in first lactation (r(g) = 0.32) or had a longer interval between first and second calving (r(g) = 0.17). Estimates of genetic correlations of reproductive performance with estimated 305-d milk yield were different in magnitude, but similar in sign to those with persistency (0.02 to 0.51).  相似文献   

9.
Cows with high persistency tend to produce less milk than expected at the beginning of lactation and more than expected at the end. Best prediction of persistency was calculated as a function of a trait-specific standard lactation curve and a linear regression of test-day deviations on days in milk. Regression coefficients were deviations from a balance point to make yield and persistency phenotypically uncorrelated. The objectives of this study were to calculate (co)variance components and breeding values for best predictions of persistency of milk (PM), fat (PF), protein (PP), and SCS (PSCS) in Holstein cows. Data included 8,682,138 lactations from 4,375,938 cows calving since 1997, and 39,354 sires were evaluated. Sire estimated breeding values (EBV) for PM, PF, and PP were similar and ranged from −0.70 to 0.75 for PM; EBV for PSCS ranged from −0.37 to 0.28. Regressions of sire EBV on birth year were near zero (<0.003) but positive for PM, PF, and PP, and negative for PSCS. Genetic correlations of PM, PF, and PP with PSCS were moderate and favorable, indicating that increasing SCS decreases yield traits, as expected. Genetic correlations among yield and persistency were low to moderate and ranged from −0.09 (PSCS) to 0.18 (PF). This definition of persistency may be more useful than those used in test-day models, which are often correlated with yield. Routine genetic evaluations for persistency are feasible and may allow for improved predictions of yield traits. As calving intervals increase, persistency may have greater value.  相似文献   

10.
Experience with a test-day model   总被引:3,自引:0,他引:3  
The Canadian Test-Day Model is a 12-trait random regression animal model in which traits are milk, fat, and protein test-day yields, and somatic cell scores on test days within each of first three lactations. Test-day records from later lactations are not used. Random regressions (genetic and permanent environmental) were based on Wilmink's three parameter function that includes an intercept, regression on days in milk, and regression on an exponential function to the power -0.05 times days in milk. The model was applied to over 22 million test-day records of over 1.4 million cows in seven dairy breeds for cows first calving since 1988. A theoretical comparison of test-day model to 305-d complete lactation animal model is given. Each animal in an analysis receives 36 additive genetic solutions (12 traits by three regression coefficients), and these are combined to give one estimated breeding value (EBV) for each of milk, fat, and protein yields, average daily somatic cell score and milk yield persistency (for bulls only). Correlation of yield EBV with previous 305-d lactation model EBV for bulls was 0.97 and for cows was 0.93 (Holsteins). A question is whether EBV for yield traits for each lactation should be combined into one overall EBV, and if so, what method to combine them. Implementation required development of new methods for approximation of reliabilities of EBV, inclusion of cows without test day records in analysis, but which were still alive and had progeny with test-day records, adjustments for heterogeneous herd-test date variances, and international comparisons. Efforts to inform the dairy industry about changes in EBV due to the model and recovering information needed to explain changes in specific animals' EBV are significant challenges. The Canadian dairy industry will require a year or more to become comfortable with the test-day model and to realize the impact it could have on selection decisions.  相似文献   

11.
Record of Performance and Dairy Herd Improvement Corporation production records of Ontario Holstein cows were merged with breeding receipts of three Ontario AI units from September 1981 through December 1985. Relationships between fertility and production in the first three lactations were investigated for 97,368 daughters of 3806 sires in 22,768 herd-hear-seasons of calving. Fertility traits were days from calving to first insemination, number of inseminations per conception, and days open. Production traits were age and month of calving adjusted 305-d milk and fat yields and fat percentage. Multiple-trait maximum likelihood was used to estimate variances and covariances. Heritabilities for the first three lactations were .18, .18, and .19 for milk yield; .20, .19, and .19 for fat yield; and .58, .52, and .48 for fat percentage. Heritabilities of fertility traits ranged from .03 to .06. Genetic and phenotypic correlations between fertility and production traits in all three lactations were essentially 0. Genetic correlations between different lactation production traits ranged from .2 to .65. Repeatabilities of fertility traits ranged from .05 to .16 in different lactations. Repeatabilities for production traits in different lactations ranged from .51 to .77. Genetic and phenotypic correlations between fertility and production in the subsequent lactation and between production and subsequent lactation fertility were also very low or zero.  相似文献   

12.
The objective of this study was to investigate phenotypic and genetic relationships of common health disorders in dairy cows with milk (PMY) and fat (PFY) yield persistencies. Health and production data from 398 commercial dairy herds were used. Disease traits were defined in binary form for individual lactations considering mastitis only during the first 100 d in milk (MAST1), only after 100 d in milk (MAST2), and at any stage of lactation (MAST), and reproductive disorders (REPRO), metabolic disorders (METAB), and lameness (LAME). The persistencies were defined to be uncorrelated with 305-d yields. Impact of the diseases on PMY and PFY were investigated separately in first (FL) and later (LL) lactations. Phenotypic associations of PMY and PFY with likelihood of diseases in current and subsequent lactations were examined using odds ratios from a logistic regression model. Linear-threshold sire-maternal grandsire models were used to estimate genetic correlations of displaced abomasums (DA), ketosis (KET), metritis (MET), MAST, MAST1, and MAST2 with PMY and PFY across parities. Metabolic diseases and REPRO had significantly positive relationships with PMY and PFY in both FL and LL. Significantly greater PMY and PFY were associated with MAST1 in LL. Significantly lower PMY and PFY were related to MAST2 in both FL and LL, whereas cows affected by MAST had significantly less persistent lactations. Incidence of MAST and MAST2 decreased with increasing PMY and PFY in the present and previous lactation. Heritability of disease incidences were 0.03 (DA), 0.01 (KET), 0.10 (MAST), 0.02 to 0.05 (MAST1), 0.02 (MAST2), and 0.04 to 0.10 (MET). Displaced abomasum, KET, MAST, MAST1, and MET had unfavorable genetic correlations of 0.35, 0.46, 0.17, 0.02, and 0.27 with PMY, and 0.16, 0.21, 0.07, 0.06, and 0.12 with PFY, respectively. Favorable genetic correlations were found for MAST2 with PMY (−0.24) and PFY (−0.04). Results suggest that diseases in early lactation increase persistency of milk and fat yield. Selection for greater lactation persistency must consider these antagonistic relationships.  相似文献   

13.
Selecting for lactation curve and milk yield in dairy cattle   总被引:3,自引:0,他引:3  
Knowledge of genetic relationships between characteristics of lactation curves and lactation yields is essential for joint selection for both. An equation, yt = atbexp(-ct), was chosen to depict individual lactation curves for 5,927 first lactations by Holsteins in 557 herds in Michigan Dairy Herd Improvement where yt is daily milk yield at day t in lactation, a is yield at time zero, b is ascent to peak, and c is decline after peak. Genetic correlations for 305-day milk yield with initial production (a), ascent to peak (b), descent after peak (c), and peak yield were -.37, .40, 0, and .91. From empirical results from applied selection indexes, selecting for both increase of ascent to peak and peak yield did not decrease 305-day milk substantially. Rankings of sires on these indexes were similar to their rankings on milk yield alone. Attempts to decrease peak yield and increase persistency decreased milk yield greatly.  相似文献   

14.
Bivariate models (censored linear-linear and censored threshold-linear) were used to estimate genetic parameters for production and fertility traits in the Spanish Holstein population. Records on 71,217 lactations from 41,515 cows were used: 30 and 36% of lactations were censored for days open (DO) and number of inseminations to conception (INS), respectively. Heritability estimates for production traits (milk, fat, protein) ranged between 0.18 and 0.25. Heritability of days to first service (DFS) and DO was 0.05; heritability of INS on the liability scale was 0.04. Genetic correlations between fertility traits were 0.41, 0.71, and 0.87 for DFS-INS, DO-INS, and DO-DFS, respectively. Days open had a larger genetic correlation (ranging from 0.63 to 0.76) with production traits than did DFS (0.47 to 0.59) or INS (0.16 to 0.23). Greater antagonism between production and DO may be due to voluntary management decisions for high-yielding cows, resulting in longer lactation lengths. Inseminations to conception appeared to be less correlated with milk production than were the other 2 female fertility traits. Including INS in a total merit index would be expected to increase genetic gain in terms of profit, but profit would decrease if either DO or DO and DFS were included in the index. Thus, INS is the trait to be preferred when selecting for female fertility. The genetic correlation between actual milk yield and 305-d standardized milk yield was 0.96 in the present study, suggesting that some reranking of sires could occur. Because the target of attaining a 12-mo calving interval, as implied by a 305-d standardized lactation length, is changing in the dairy industry, routine genetic evaluation of actual total lactation milk yield should be considered.  相似文献   

15.
Multiple-trait random regression animal models with simultaneous and recursive links between phenotypes for milk yield and somatic cell score (SCS) on the same test day were fitted to Canadian Holstein data. All models included fixed herd test-day effects and fixed regressions within region-age at calving-season of calving classes, and animal additive genetic and permanent environmental regressions with random coefficients. Regressions were Legendre polynomials of order 4 on a scale from 5 to 305 d in milk (DIM). Bayesian methods via Gibbs sampling were used for the estimation of model parameters. Heterogeneity of structural coefficients was modeled across (the first 3 lactations) and within (4 DIM intervals) lactation. Model comparisons in terms of Bayes factors indicated the superiority of simultaneous models over the standard multiple-trait model and recursive parameterizations. A moderate heterogeneous (both across- and within-lactation) negative effect of SCS on milk yield (from −0.36 for 116 to 265 DIM in lactation 1 to −0.81 for 5 to 45 DIM in lactation 3) and a smaller positive reciprocal effect of SCS on milk yield (from 0.007 for 5 to 45 DIM in lactation 2 to 0.023 for 46 to 115 DIM in lactation 3) were estimated in the most plausible specification. No noticeable differences among models were detected for genetic and environmental variances and genetic parameters for the first 2 regression coefficients. The curves of genetic and permanent environmental variances, heritabilities, and genetic and phenotypic correlations between milk yield and SCS on a daily basis were different for different models. Rankings of bulls and cows for 305-d milk yield, average daily SCS, and milk lactation persistency remained the same among models. No apparent benefits are expected from fitting causal phenotypic relationships between milk yield and SCS on the same test day in the random regression test-day model for genetic evaluation purposes.  相似文献   

16.
Test-day (TD) milk yield records of first-lactation Holstein cows in Luxembourg and Tunisia were analyzed using within-and between-country random regression TD models. Edited data used for within-country analysis included 661,453 and 281,913 TD records in Luxembourg and Tunisia, respectively. The joint data included 730,810 TD records of 87,734 cows and 231 common sires. Both data sets covered calving years 1995 to 2006. Fourth-order Legendre polynomials for random effects and a Gibbs sampling method were used to estimate variance components of lactation curve parameters in separate and joint analyses. Genetic variances of the first 3 coefficients from Luxembourg data were 46 to 69% larger than corresponding estimates from the Tunisian data. Inversely, the Tunisian permanent environment variances for the same coefficients were 52 to 65% larger than the Luxembourg ones. Posterior mean heritabilities of 305-d milk yield and persistency, defined as estimated breeding values (EBV) at 280 days in milk-EBV at 80 days in milk, from between-country analysis were 0.42 and 0.12 and 0.19 and 0.08 in Luxembourg and Tunisia, respectively. Heritability estimates for the same traits from within-country analyses, mainly from the Tunisian data, were lower than those from the joint analysis. Genetic correlations for 305-d milk yield and persistency between countries were 0.60 and 0.36. Product moment and rank correlations between EBV of common sires for 305-d milk yield and persistency from within-country analyses were 0.38 and 0.41 and 0.27 and 0.26, respectively. Differences between genetic variances found in both countries reflect different milk production levels. Moreover, low genetic and rank correlations suggest different ranking of sires in the 2 environments, which implies the existence of a genotype × environment interaction for milk yield in Holsteins.  相似文献   

17.
The objective of this study was to assess the phenotypic and genetic variability of production traits and milk fatty acid (FA) contents throughout lactation. Genetic parameters for milk, fat, and protein yields, fat and protein contents, and 19 groups and individual FA contents in milk were estimated for first-parity Holstein cows in the Walloon Region of Belgium using single-trait, test-day animal models and random regressions. Data included 130,285 records from 26,166 cows in 531 herds. Heritabilities indicated that de novo synthesized FA were under stronger genetic control than FA originating from the diet and from body fat mobilization. Estimates for saturated short- and medium-chain individual FA ranged from 0.35 for C4:0 to 0.44 for C8:0, whereas those for monounsaturated long-chain individual FA were lower (around 0.18). Moreover, de novo synthesized FA were more heritable in mid to late lactation. Approximate daily genetic correlations among traits were calculated as correlations between daily breeding values for days in milk between 5 and 305. Averaged daily genetic correlations between milk yield and FA contents did not vary strongly among FA (around −0.35) but they varied strongly across days in milk, especially in early lactation. Results indicate that cows selected for high milk yield in early lactation would have lower de novo synthesized FA contents in milk but a slightly higher content of C18:1 cis-9, indicating that such cows might mobilize body fat reserves. Genetic correlations among FA emphasized the combination of FA according to their origin: contents in milk of de novo FA were highly correlated with each other (from 0.64 to 0.99). Results also showed that genetic correlations between C18:1 cis-9 and other FA varied strongly during the first 100 d in milk and reinforced the statement that the release of long-chain FA inhibits FA synthesis in the mammary gland while the cow is in negative energy balance. Finally, results showed that the FA profile in milk changed during the lactation phenotypically and genetically, emphasizing the relationship between the physiological status of cow and milk composition.  相似文献   

18.
Data from 3,200 Holstein cows from 3 commercial dairy farms in Germany were used to estimate heritabilities and breeding values for liability to udder diseases (UD), fertility diseases (FD), metabolic diseases (MD), and claw and leg diseases (CLD) using single-trait threshold sire models. A total of 92,722 medical treatments recorded from 1998 to 2003 were included in the analysis. Approximate genetic correlations between persistency of milk yield, fat yield, protein yield, and persistency of milk energy yield and liability to the health traits were calculated based on correlations between EBV. Posterior means of heritability of liability ranged from 0.05 to 0.08 for UD, from 0.04 to 0.07 for FD, from 0.08 to 0.12 for MD, and from 0.04 to 0.07 for CLD. Approximate genetic correlations of the disease traits with the persistency traits were favorable, except for MD in all lactations, which were unfavorable, and UD, which were around zero. Highest correlations in the range of 0.13 to 0.46 were found between the different persistency traits and CLD.  相似文献   

19.
Estimates of genetic correlations were .17 between first lactation milk yield and concurrent calving interval, .10 between second lactation milk yield and first calving interval, and .82 between first and second milk yields. Corresponding phenotypic correlations were .27, .16, and .58. Heritability estimates were .27 and .25 for first and second lactations and .15 for calving interval. Estimates were averages of two samples of 15 New York State herds averaging 144 AI-sired Holstein cows and 30 sires. Milk yields were 305-d, mature equivalent. Calving interval was days between first and second freshening. First milk records without a second freshening were included. Multiple-trait animal model included separate herd-year-season effects for first and second milk yields and calving interval. Numerator relationships among animals within herd, except for daughter-dam relationships, were included. The REML with the expectation-maximization algorithm was used to estimate (co)variance matrices among genetic values and environmental effects for the three traits. Results indicate a need to adjust milk records for the phenotypic effects of current and previous calving interval. The genetic association, however, between fertility and milk yield appears small. Genetic improvement of 450 kg of milk yield may result in 2 added d to first calving interval.  相似文献   

20.
Lactation measures of somatic cell concentration and total SCC production were developed. Data were separated into three parity groups. Within parity, five data sets were created: four subsets by herd-year average SCC, and one with all records. Records on lactation SCC, total SCC production, and 305-d milk were analyzed by a sire model separately in each subset within parity. Variance components estimates were by REML. For SCC and total SCC production, heritability estimates averaged .12 and were lowest in the highest level of herd-year average SCC. Estimates of genetic correlation between SCC and total SCC production were over .95; between SCC and 305-d milk were around .25 in first and -.15 in later parities; between total SCC and 305-d milk were around .50 in first and .15 in later parities. Product-moment correlations between sire effects in different levels of herd-year average SCC were obtained. Ratios of product-moment correlations to their expected value were above .80 for all traits in all parities. High ratios indicated little genotype by environment interaction. A sire by herd interaction was fitted in the model and accounted for less than 2% of total phenotypic variance for SCC and total SCC production, and 4% for 305-d milk. Estimates of genetic correlation of first with later parities were .71 to .86 for all traits. Between second and third parity genetic correlation estimates were around unity for all traits. Records from all parities should be used for sire evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号