首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pb(III) sorption to hydrous amorphous SiO2 was studied as a function of pH and ionic strength using XAS to characterize the sorption products formed. Pb sorption increased with increasing pH and decreasing ionic strength. The XAS data indicated that the mechanism of Pb(II) sorption to the SiO2 surface was pH-dependent. At pH < 4.5, a mononuclear inner-sphere Pb sorption complex with ionic character dominated the Pb surface speciation. Between pH 4.5 and pH 5.6, sorption increasingly occurred via the formation of surface-attached covalent polynuclear Pb species, possibly Pb-Pb dimers, and these were the dominant Pb complexes at pH > or = 6.3. Decreasing ionic strength from I = 0.1 to I = 0.005 M NaClO4 significantly increased Pb sorption but did not strongly influence the average local coordination environment of sorbed Pb at given pH, suggesting that the formation of mononuclear and polynuclear Pb complexes at the surface were coupled; possibly, Pb monomers control the formation of Pb polynuclear species by diffusion along the surface, or they act as nucleation centers for additional Pb uptake from solution. This study shows that the effectiveness of SiO2 in retaining Pb(II) is strongly dependent on solution conditions. At low pH, Pb(II) may be effectively remobilized by competition with other cations, whereas sorbed Pb is expected to become less susceptible to desorption with increasing pH. However, unlike for Ni(II) and Co(II), no lead phyllosilicates are formed at these higher pH values; therefore, SiO2 is expected to be a less effective sink for Pb immobilization than for these other metals.  相似文献   

2.
Carbon nanotubes (CNTs) are often modified for different intended potential applications to enhance their aqueous stability or change properties such as surface charge. Such changes may also profoundly impact their environmental behaviors. Herein, we report the effects of modifying (14)C-labeled multiwalled carbon nanotubes (MWCNTs) with polyetheyleneimine (PEI) surface coatings to render them more stable in solution and to give them positive, negative, or neutral surface charges. These carbon nanotubes were used to test their sorption by soils and uptake and elimination behaviors by earthworms. Sorption results indicate nearly linear sorption isotherms for regular MWCNTs and nonlinear isotherms for modified MWCNTs, indicating that the PEI coatings influenced MWCNT interactions with soils. Nevertheless, there were minimal differences in the sorption results among the different soils for each type of nanotube despite differences in the soil organic carbon and cation exchange capacities. Differences in uptake behaviors by earthworms were not apparent among different types of PEI-MWCNTs and MWCNTs with limited absorption into organism tissues consistently observed. Elimination patterns were well fit with an exponential decay model suggesting that the worms can readily eliminate any accumulated MWCNTs.  相似文献   

3.
This paper examines the adsorption of Pb(II) and a natural organic macromolecular compound (humic acid, HA) on polyacrylamide (PAAM) -grafted multiwalled carbon nanotubes (denoted as MWCNTs/PAAM), prepared by an N(2)-plasma-induced grafting technique. The mutual effects of HA/Pb(II) on Pb(II) and HA adsorption on MWCNTs/PAAM, as well as the effects of pH, ionic strength, HA/Pb(II) concentrations, and the addition sequences of HA/Pb(II) were investigated. The results indicated that Pb(II) and HA adsorption were strongly dependent on pH and ionic strength. The presence of HA led to a strong increase in Pb(II) adsorption at low pH and a decrease at high pH, whereas the presence of Pb(II) led to an increase in HA adsorption. The adsorbed HA contributed to modification of adsorbent surface properties and partial complexation of Pb(II) with the adsorbed HA. Different effects of HA/Pb(II) concentrations and addition sequences on Pb(II) and HA adsorption were observed, indicating different adsorption mechanisms. After adsorption of HA on MWCNTs/PAAM, the adsorption capacity for Pb(II) was enhanced at pH 5.0; the adsorption capacity for HA was also enhanced after Pb(II) adsorption on MWCNTs/PAAM. These results are important for estimating and optimizing the removal of metal ions and organic substances by use of MWCNT/PAAM composites.  相似文献   

4.
For the long-term performance assessment of nuclear waste repositories, knowledge about the interactions of actinide ions with mineral surfaces such as iron oxides is imperative. The mobility of released radionuclides is strongly dependent on the sorption/desorption processes at these surfaces and on their incorporation into the mineral structure. In this study the interaction of Am(III) with 6-line-ferrihydrite (6LFh) was investigated by EXAFS spectroscopy. At low pH values (pH 5.5), as well at higher pH values (pH 8.0), Am(III) sorbs as a bidentate corner-sharing species onto the surface. Investigations of the interaction of Am(III) with Fh coated silica colloids prove the sorption onto the iron coating and not onto the silica substrate. Hence, the presence of Fh, even as sediment coating, is the dominant sorption surface. Upon heating, Fh is transformed into goethite and hematite as shown by TEM and IR measurements. The results of the fit to the EXAFS data indicate the release of sorbed Am(III) at pH 5.5 during the transformation and likely a partial incorporation of Am into the Fh transformation products at pH 8.0.  相似文献   

5.
Sorption of peat humic acids to multi-walled carbon nanotubes   总被引:3,自引:0,他引:3  
Sorption of humic acids (HAs) from a peat soil by multiwalled carbon nanotubes (MWCNTs) was examined in this work. Sorption rate of HAs to MWCNTs was dominantly controlled by their diffusion from liquid-MWCNT boundary to MWCNT surfaces. Size exclusion chromatography analysis did not detect preferential sorption of HA fractions to MWCNTs at equilibrium, whereas the components with lower molecular weight in some HA fractions (e.g., HA1) would more preferentially be sorbed to MWCNTs at the initial sorption stage. Equilibrium sorption intensity of HAs by MWCNTs was dependent on their surface area and a sum of meso- and macropore volume. The surface area and sum of meso- and macroporosity-normalized sorption coefficient (K(d)) values of a given HA by MWCNTs increased with increasing outer diameter of MWCNTs, because MWCNTs with larger outer diameter were more strongly dispersed by HAs thereby making more sorption sites exposed for HA sorption. Van der Waals interaction between the alkyl components rather than the aromatic ones of HAs with MWCNTs was likely the key driving force for their sorption. This study highlights the sorption rate-controlling step of HAs from a same source to MWCNTs and the major factors affecting their sorption intensity at equilibrium.  相似文献   

6.
The chelating resin was studied to assess its influence on metal availability and mobility in the environment. The association of organic-inorganic colloid-borne trace elements was investigated in this work. The radionuclide 243Am(III) was chosen as the representative and chemical homologue for trivalent lanthanide and actinide ions present in radioactive nuclear waste. The kinetic dissociation behavior of 243Am(III) from humic acid-coated gamma-Al2O3 was studied at pH values of 4.0 +/- 0.1, 5.0 +/- 0.2, and 6.0 +/- 0.2 with a contact time of 2 days after the addition of a chelating cation exchanger resin. The concentrations of the components were: 243Am(III) 3.0 x 10(-7) mol/L, gamma-Al2O3 0.5 g/L, HA 10 mg/L (pH 4.0 +/- 0.1, 5.0 +/- 0.2, and 6.0 +/- 0.2) and 50 mg/L (pH 6.0 +/- 0.2), respectively. The kinetics of dissociation of 243Am(III) after different equilibration time with humic acid-coated gamma-Al2O3 was also investigated at pH 5.0 +/- 0.2. The experiments were carried out in air and at ambient temperature. The results suggest that the fraction of irreversible bonding of radionuclides to HA-coated Al2O3 increases with increasing pH and is independent of aging time. The assumption of two different 243Am(III)-HA-Al2O3 species, with "fast" and "slow" dissociation kinetics, is required to explain the experimental results. 243Am(III) species present on HA-Al2O3 colloids moves from the "fast" to the "slow" dissociating sites with the increase of aging time.  相似文献   

7.
Modeling tetracycline antibiotic sorption to clays   总被引:5,自引:0,他引:5  
Sorption interactions of three high-use tetracycline antibiotics (oxytetracycline, chlortetracycline, tetracycline) with montmorillonite and kaolinite clays were investigated undervaried pH and ionic strength conditions. Sorption edges were best described with a model that included cation exchange plus surface complexation of zwitterion forms of these compounds. Zwitterion sorption was accompanied by proton uptake, was more favorable on acidic clay, and was relatively insensitive to ionic strength effects. Calcium salts promoted oxytetracycline sorption at alkaline pHs likely by a surface-bridging mechanism. Substituent effects among the compounds in the tetracycline class had only minor effects on sorption edges and isotherms under the same solution pH and ionic strength conditions. At low ionic strength, greater sorption to montmorillonite than kaolinite was observed at all pHs tested, even after normalizing for cation exchange capacity. These results indicate that soil and sediment sorption models for tetracyclines, and other pharmaceuticals with similar chemistry, must account for solution speciation and the presence of other competitor ions in soil or sediment pore waters.  相似文献   

8.
Antimony is an element of growing interest for a variety of industrial applications, even though Sb compounds are classified as priority pollutants by the Environmental Protection Agency of the United States. Iron (Fe) hydroxides appear to be important sorbents for Sb in soils and sediments, but mineral surfaces can also catalyze oxidation processes and may thus mobilize Sb. The aim of this study was to investigate whether goethite immobilizes Sb by sorption or whether Sb(III) adsorbed on goethite is oxidized and then released. The sorption of both Sb(III) and Sb(V) on goethite was studied in 0.01 and 0.1 M KClO4 M solutions as a function of pH and Sb concentration. To monitor oxidation processes Sb species were measured in solution and in the solid phase. The results show that both Sb(III) and Sb(V) form inner-sphere surface complexes at the goethite surface. Antimony(III) strongly adsorbs on goethite over a wide pH range (3-12), whereas maximum Sb(V) adsorption is found below pH 7. At higher ionic strength, the desorption of Sb(V) is shifted to lower pH values, most likely due to the formation of ion pairs KSb(OH)6 degrees. The sorption data of Sb(V) can be fitted by the modified triple-layer surface complexation model. Within 7 days, Sb(III) adsorbed on goethite is partly oxidized at pH 3, 5.9 and 9.7. The weak pH-dependence of the rate coefficients suggests that adsorbed Sb(III) is oxidized by 02 and that the coordination of Sb(III) to the surface increases the electron density of the Sb atom, which enhances the oxidation process. At pH values below pH 7, the oxidation of Sb(III) did not mobilize Sb within 35 days, while 30% of adsorbed Sb(III) was released into the solution at pH 9.9 within the same time. The adsorption of Sb(III) on Fe hydroxides over a wide pH range may be a major pathway for the oxidation and release of Sb(V).  相似文献   

9.
A composite sorbent (GAC-QPVP) was prepared by coating poly(4-vinylpyridine) onto a granular activated carbon, followed by cross-linking and quaternization processes. The sorbent was characterized by scanning electron microscopy, point of zero charge measurement, and BET analysis. Batch experiments with variable pH, ionic strength, and concentrations of Cr(VI), sorbent, and competing anions were conducted to evaluate the selective sorption of Cr(VI) from aqueous solutions. The results showed that Cr(VI) sorption rates could be described by a reversible second-order kinetics, and equilibrium uptake of Cr(VI) increased with decreasing pH, decreasing ionic strength, and increasing sorbent concentration. The estimated maximum equilibrium uptake of chromium was 53.7 mg/g at pH = 2.25, 30.7 mg/g at pH = 3.65, and 18.9 mg/g at pH = 6.03, much higher than the maximum capacity of PVP-coated silica gel, an adsorbent for Cr examined previously. When compared with the untreated granular activated carbon, sorption onto GAC-QPVP resulted in much less Cr(VI) reduction and subsequent release of Cr(III). The effect of phosphate, sulfate, and nitrate was minor on the selective sorption of Cr(VI). An ion exchange model that was linked with aqueous speciation chemistry described Cr(VI) sorption reasonably well as a function of pH, ionic strength, and Cr(VI) concentration. Model simulations suggested that sorbed Cr(VI) was partially reduced to Cr(III) on the sorbent when pH was less than 4. The presence of Cr(III) on the sorbent was confirmed by the X-ray photoelectron spectroscopic analysis. Overall, the study has demonstrated that GAC-QPVP can effectively remove Cr(VI) from aqueous solutions under a wide range of experimental conditions, without significant Cr(III) release associated with the virgin GAC treatment.  相似文献   

10.
In this study, batch sorption experiments and X-ray adsorption spectroscopy (XAS) were utilized to investigate selenate sorption onto Shewanella putrefaciens 200R. Selenate sorption was studied as a function of pH (ranging from 3 to 7), ionic strength (ranging from 0.1 to 0.001 M), and initial selenate concentration (ranging from 10 to 5000 microM) in the absence of external electron donors. The results show that the extent of selenate sorption is strongly dependent on pH and ionic strength, with maximum sorption occurring at low pH (pH = 3) and low ionic strength (0.001 M NaCl) conditions. The strong dependence of Se sorption with ionic strength suggests the formation of outersphere complexes with the cell wall functional groups. Langmuir isotherm plots yielded log Kads values from 2.74 to 3.02. Desorption experiments demonstrated thatthe binding of selenate onto S. putrefaciens was not completely reversible. XANES analysis of the cells after sorption experiments revealed the presence of elemental selenium, indicating that S. putrefaciens has a capacity to reduce Se(VI) to Se(0) in the absence of external electron donors. We conclude that Se sorption onto S. putrefaciens cell walls is the result of the combination of outer-sphere complexation and cell surface reduction. This sorption process leads to a complex reservoir of bound Se which is not entirely reversible.  相似文献   

11.
Due to their ubiquity and chemical reactivity, aluminosilicate clays play an important role in actinide retardation and colloid-facilitated transport in the environment. In this work, Pu(V) and Np(V) sorption to Na-montmorillonite was examined as a function of ionic strength, pH, and time. Np(V) sorption equilibrium was reached within 2 h. Sorption was relatively weak and showed a pH and ionic strength dependence. An approximate NpO(2)(+) → Na(+) Vanselow ion exchange coefficient (Kv) was determined on the basis of Np(V) sorption in 0.01 and 1.0 M NaCl solutions at pH < 5 (Kv ~ 0.3). In contrast to Np(V), Pu(V) sorption equilibrium was not achieved on the time-scale of weeks. Pu(V) sorption was much stronger than Np(V), and sorption rates exhibited both a pH and ionic strength dependence. Differences in Np(V) and Pu(V) sorption behavior are indicative of surface-mediated transformation of Pu(V) to Pu(IV) which has been reported for a number of redox-active and redox-inactive minerals. A model of the pH and ionic strength dependence of Pu(V) sorption rates suggests that H(+) exchangeable cations facilitate Pu(V) reduction. While surface complexation may play a dominant role in Pu sorption and colloid-facilitated transport under alkaline conditions, results from this study suggest that Pu(V) ion exchange and surface-mediated reduction to Pu(IV) can immobilize Pu or enhance its colloid-facilitated transport in the environment at neutral to mildly acidic pHs.  相似文献   

12.
A novel procedure based on multi-walled carbon nanotubes (MWCNTs)/silica reinforced hollow fibre solid-phase microextraction combined with gas chromatography–mass spectrometry has been developed to analyse trace phthalate acid esters in beverage and alcoholic samples. Because of their excellent adsorption capability towards hydrophobic compounds, functionalized MWCNTs, acting as solid-phase sorbent, were co-deposited with silica particles in the pores of polypropylene hollow fibre through a layer-by-layer self-assembly technique. The parameters influencing the extraction efficiency, such as pH values and ionic strength of sample solution, extraction time, temperature and desorption solvent were optimised. Recoveries for phthalates at spiking levels in different matrices were satisfactory (between 68% and 115%). Moreover, the results were further confirmed by comparing them with those obtained using a solvent extraction method according to the national standard of China.  相似文献   

13.
Graphene has attracted multidisciplinary study because of its unique physicochemical properties. Herein, few-layered graphene oxide nanosheets were synthesized from graphite using the modified Hummers method, and were used as sorbents for the removal of Cd(II) and Co(II) ions from large volumes of aqueous solutions. The effects of pH, ionic strength, and humic acid on Cd(II) and Co(II) sorption were investigated. The results indicated that Cd(II) and Co(II) sorption on graphene oxide nanosheets was strongly dependent on pH and weakly dependent on ionic strength. The abundant oxygen-containing functional groups on the surfaces of graphene oxide nanosheets played an important role on Cd(II) and Co(II) sorption. The presence of humic acid reduced Cd(II) and Co(II) sorption on graphene oxide nanosheets at pH < 8. The maximum sorption capacities (C(smax)) of Cd(II) and Co(II) on graphene oxide nanosheets at pH 6.0 ± 0.1 and T = 303 K were about 106.3 and 68.2 mg/g, respectively, higher than any currently reported. The thermodynamic parameters calculated from temperature-dependent sorption isotherms suggested that Cd(II) and Co(II) sorptions on graphene oxide nanosheets were endothermic and spontaneous processes. The graphene oxide nanosheets may be suitable materials in heavy metal ion pollution cleanup if they are synthesized in large scale and at low price in near future.  相似文献   

14.
Contaminant-soil interaction studies have indicated that physical conformation of organic matter atthe solid-aqueous interface is important in governing hydrophobic organic compound (HOC) sorption. To testthis, organo-clay complexes were constructed by coating montmorillonite and kaolinite with peat humic acid (PHA) in Na+ or Ca2+ dominated solutions with varying pH and ionic strength values. The solution conditions encouraged the dissolved PHA to adopt a "coiled" or "stretched" conformation prior to interacting with the clay mineral surface. Both kaolinite and montmorillonite organo-clay complexes exhibited higher phenanthrene sorption (Koc values) with decreasing pH, indicating that the coiled configuration provided more favorable sorption conditions. Evidence from 1H high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) indicated that polymethylene groups were prevalent at the surface of the organo-clay complexes and may enhance sorptive interactions. Preferential sorption of polymethylene groups on kaolinite and aromatic compounds on montmorillonite may also contribute to the difference in phenanthrene sorption by PHA associated with these two types of clay. This study demonstrates the importance of solution conditions in the sorption of nonionic, hydrophobic organic contaminants and also provides evidence for the indirect role of clay minerals in sorption of contaminants at the soil-water interface.  相似文献   

15.
Because of the hundreds of nuclear weapon tests conducted on the Nevada Test Site (NTS) during the Cold War, the migration of radionuclides and contaminants is a potential concern. The mobility of these compounds and our ability to remediate contaminated sites are controlled by sorption and desorption processes, which depend frequently on the nature of the contaminant, the mineralogy of the site, and the geochemical conditions. The sorption and desorption behavior of strontium (Sr) and lead (Pb), two metal cations with different chemistries, commonly found on nuclear test sites were studied. Strontium showed pH-independent and ionic-strength-dependent sorption, consistent with ion exchange processes at permanent charge sorption sites. The sorption uptake of Sr increased with decreasing ionic strength of background solution. Strontium desorption from the adsorbents was enhanced by increased background electrolyte concentration and was a function of background electrolyte composition. The fractional uptake of Pb was higher, compared to that of Sr, and was only pH dependent at the highest ionic strength used (1.0 M). This pH-dependent sorption behavior, consistent with formation of surface complexes at amphoteric surface hydroxyl sites or formation of surface precipitates, could explain the decreased Pb desorption, compared to that of Sr, especially at increased background electrolyte concentrations. Under conditions typical for the groundwater at the NTS (I = 0.003 M, pH = 8.0), both Pb and Sr are expected to bind strongly on tuffs with composition similar to the zeolitized tuffs used in this study. Any increase in the dissolved ion concentration of the groundwater, however, may result in, at least partial, release of Sr and enhanced Sr mobility.  相似文献   

16.
This study explores the sorption potential of Osage Orange (Maclura Pomifera) for the removal of Cr(VI) ion. The influence of contact time, solution pH, initial metal concentration, amount of biosorbent and ionic strength on the removal of Cr(VI) ion was studied. The biosorption of Cr(VI) with pulp and peel was investigated in a batch arrangement. The initial and equilibrium concentrations of Cr(VI) ions in aqueous phase were determined by spectrophotometry. The sorption process was pH and concentration dependent. The sorption of Cr(VI) ions increased with a decreasing pH until pH 2. The increase in initial Cr(VI) ions concentration in aqueous phase increased the sorption. The sorption data fitted well with the Langmuir sorption model within the concentration range studied. The observed maximum biosorption capacity by Langmuir sorption model at pH of 2 for M. Pomifera pulp was 0.92 mmol of Cr(VI)/g and for M. Pomifera peel was 0.55 mmol of Cr(VI)/g.  相似文献   

17.
Carbon nanotubes (CNTs), because of their wide application, will inevitably enter aquatic systems, but the fate and transport of their suspensions in the environment are largely unknown. Clay minerals are expected to interact with CNT suspensions, affecting their fate and bioavailability. This study investigated the influence of clay minerals (kaolinite and montmorillonite) on the stability of surfactant (SDBS, CTAB, and TX100) facilitated multiwalled CNT (MWCNT) suspensions. Adsorption of the surfactants by MWCNTs and clay minerals was also examined. This is a first study on the interaction between clay minerals and surfactant-CNT suspensions. Sorption of SDBS by clay minerals and MWCNTs followed the order MWCNTs > montmorillonite approximately kaolinite; but sorption of CTAB and TX100 followed the order montmorillonite > MWCNTs > kaolinite. For SDBS suspended MWCNTs, introduction of montmorillonite and kaolinite could not change their stability; for CTAB suspended MWCNTs, both montmorillonite and kaolinite greatly deposited the suspended MWCNTs; for TX100 suspended MWCNTs, montmorillonite could partially deposit the suspended MWCNTs, whereas kaolinite showed minimal effect. Two mechanisms of clay minerals affecting MWCNT suspensions are (1) removal of surfactants by clay minerals from solution and MWCNT surface and (2) bridging between clay mineral and MWCNTs by surfactant.  相似文献   

18.
As greater quantities of carbon nanotubes (CNTs) enter the environment, they will have an increasingly important effect on the availability and transport of aqueous contaminants. As a consequence of purification, deliberate surface functionalization, and/or exposure to oxidizing agents after release to the environment, CNTs often contain surface oxides (i.e., oxygen containing functional groups). To probe the influence that surface oxides exert on CNT sorption properties, multiwalled CNTs (MWCNTs) with varying oxygen concentrations were studied with respect to their sorption properties toward naphthalene. For pristine (as-received) MWCNTs, the sorption capacity was intermediate between that of a natural char and a granular activated carbon. Sorption data also reveal that a linear relationship exists between the oxygen content of MWCNTs and their maximum adsorption capacity for naphthalene, with 10% surface oxygen concentration resulting in a roughly 70% decrease in maximum adsorption capacity. The relative distribution of sorption energies, as characterized by Freundlich isotherm exponents was, however, unaffected by oxidation. Thus, the data are consistent with the idea that incorporated surface oxides create polar regions that reduce the surface area available for naphthalene sorption. These results highlight the important role of surface chemistry in controlling the environmental properties of CNTs.  相似文献   

19.
The mobility of actinides in natural water may be enhanced by colloid-mediated transport. In this context the reversibility of actinide colloid interaction is a key factor. Iron is an element that can generate colloids under conditions found in natural waters. In this paper, the impact of hematite and the low-crystalline precursor 2-line ferrihydrite on colloid-mediated transport of americium(III) is investigated. Am(III)-containing iron colloids are generated from two different approaches, namely contact between the two in aqueous solution or coprecipitation of Am(III) during iron colloid generation. Dissolved organic carbon (DOC), especially humic substances, has a strong influence on the stability of inorganic colloids. In addition, humic substances interfere in the distribution and kinetics of exchange between groundwater and sediments. Four groundwaters from the Gorleben aquifer system are used with DOC concentrations varying between 0.9 and 81.6 mgC/L together with Pleistocene Aeolian quartz sand from this site. Batch and column experiments are conducted under near-natural conditions (Ar + 1% CO2). To study the influence of kinetics, contact times up to one month are studied. The dynamic light-scattering investigations show that the colloidal stability of the 2-line ferrihydrite increases with increasing DOC concentration. The low-crystalline iron colloids have a marginal influence on the Am(III) transport due to reversibility of americium sorption. Contrary to this, the crystalline hematite generated from coprecipitation of Am(III) leads to an increase of unretarded colloid-mediated Am(III) transport up to a factor of almost five. Chemical characterization of these hematite colloids shows that Am(III) is structurally entrapped in the hematite. The distribution of Am(III) and 2-line ferrihydrite between groundwater and sand sediment remained in disequilibrium even after one month. This shows that the kinetics of Am(III) distribution between the different phases (bulk solution/colloidal form/ sediment) is a key issue.  相似文献   

20.
Arsenic derived from natural sources occurs in groundwater in many countries, affecting the health of millions of people. The combined effects of As(V) reduction and diagenesis of iron oxide minerals on arsenic mobility are investigated in this study by comparing As(V) and As(III) sorption onto amorphous iron oxide (HFO), goethite, and magnetite at varying solution compositions. Experimental data are modeled with a diffuse double layer surface complexation model, and the extracted model parameters are used to examine the consistency of our results with those previously reported. Sorption of As(V) onto HFO and goethite is more favorable than that of As(III) below pH 5-6, whereas, above pH 7-8, As(II) has a higher affinity for the solids. The pH at which As(V) and As(III) are equally sorbed depends on the solid-to-solution ratio and type and specific surface area of the minerals and is shifted to lower pH values in the presence of phosphate, which competes for sorption sites. The sorption data indicate that, under most of the chemical conditions investigated in this study, reduction of As(V) in the presence of HFO or goethite would have only minor effects on or even decrease its mobility in the environment at near-neutral pH conditions. As(V) and As(III) sorption isotherms indicate similar surface site densities on the three oxides. Intrinsic surface complexation constants for As(V) are higher for goethite than HFO, whereas As(III) binding is similar for both of these oxides and also for magnetite. However, decrease in specific surface area and hence sorption site density that accompanies transformation of amorphous iron oxides to more crystalline phases could increase arsenic mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号