首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Ozone-enhanced catalytic oxidation of methanol has been conducted at mild temperatures of 100-250 degrees C using a V2O5/ TiO2 catalyst prepared by the sol-gel method. The catalyst was characterized using XRD, surface area measurements, and temperature-programmed desorption of methanol. The oxidation of methanol with ozone in the absence of a catalyst gave about 30% conversion at 100 degrees C. Methanol oxidation over a V2O5/TiO2 catalyst at 100 degrees C gave very little conversion with oxygen, whereas the conversion increased to 80% with ozone. Methanol, having an inlet stream concentration of 15 000 ppmv, can be completely oxidized to CO(x) with an ozone-to-methanol ratio of 1.2, a temperature of 150 degrees C, and a gas hourly space velocity (GHSV) of 60 000 h(-1). The apparent activation energy with ozone was calculated to be ca. 40 kJ/mol, which is much lower than that calculated with oxygen (60 kJ/mol). At low methanol conversion methyl formate was the main product, whereas higher conversions favored oxidation to CO(x). The results imply a consecutive reaction of adsorbed methanol species, favoring selectivity toward methyl formate at lower temperatures and ozone-to-methanol ratios and CO(x) at higher temperatures and ozone-to-methanol ratios. Langmuir-Hinshelwood kinetics was used to model the reaction with and without ozone in the feed. The model parameters were obtained using least-squares fit to a selected set of experimental data, and the model was subsequently compared to all experimental data obtained in this study.  相似文献   

2.
Nonthermal discharge plasma and TiO(2) photocatalysis are two techniques capable of organic pollutants removal in soil. In the present study, a pulsed discharge plasma-TiO(2) catalytic (PDPTC) technique by combining the two means, where catalysis of TiO(2) is driven by the pulsed discharge plasma, is proposed to investigate the remediation of p-nitrophenol (PNP) contaminated soil. The experimental results showed that 88.8% of PNP was removed within 10 min of treatment in PDPTC system and enhancing pulse discharge voltage was favorable for PNP degradation. The mineralization of PNP and intermediates generated during PDPTC treatment was followed by UV-vis spectra, denitrification, total organic carbon (TOC), and CO(x) selectivity analyses. Compared with plasma alone system, the enhancement effects on PNP degradation and mineralization were attributed to more amounts of chemically active species (e.g., O(3) and H(2)O(2)) produced in the PDPTC system. The main intermediates were identified as hydroquinone, benzoquinone, catechol, phenol, benzo[d][1, 2, 3]trioxole, acetic acid, formic acid, NO(2)(-), NO(3)(-), and oxalic acid. The evolution of the main intermediates with treatment time suggested the enhancement effect of the PDPTC system. A possible pathway of PNP degradation in soil in such a system was proposed.  相似文献   

3.
The reductive dissolution of MnO2 by Fe(II) under conditions simulating acid mine drainage (pH 3, 100 mM SO4(2-)) was investigated by utilizing a flow-through reaction cell and synchrotron X-ray absorption spectroscopy. This configuration allows collection of in situ, real-time X-ray absorption near-edge structure (XANES) spectra and bulk solution samples. Analysis of the solution chemistry suggests that the reaction mechanism changed (decreased reaction rate) as MnO2 was reduced and Fe(III) precipitated, primarily as ferrihydrite. Simultaneously, we observed an additional phase, with the local structure of jacobsite (MnFe2O4), in the Mn XANES spectra of reactants and products. The X-ray absorbance of this intermediate phase increased during the experiment, implying an increase in concentration. The presence of this phase, which probably formed as a surface coating, helps to explain the reduced rate of dissolution of manganese(IV) oxide. In natural environments affected by acid mine drainage, the formation of complex intermediate solid phases on mineral surfaces undergoing reductive dissolution may likewise influence the rate of release of metals to solution.  相似文献   

4.
Manganese oxides typically exist as mixtures with other metal oxides in soil-water environments; however, information is only available on their redox activity as single oxides. To bridge this gap, we examined three binary oxide mixtures containing MnO(2) and a secondary metal oxide (Al(2)O(3), SiO(2) or TiO(2)). The goal was to understand how these secondary oxides affect the oxidative reactivity of MnO(2). SEM images suggest significant heteroaggregation between Al(2)O(3) and MnO(2) and to a lesser extent between SiO(2)/TiO(2) and MnO(2). Using triclosan and chlorophene as probe compounds, pseudofirst-order kinetic results showed that Al(2)O(3) had the strongest inhibitory effect on MnO(2) reactivity, followed by SiO(2) and then TiO(2). Al(3+) ion or soluble SiO(2) had comparable inhibitory effects as Al(2)O(3) or SiO(2), indicating the dominant inhibitory mechanism was surface complexation/precipitation of Al/Si species on MnO(2) surfaces. TiO(2) inhibited MnO(2) reactivity only when a limited amount of triclosan was present. Due to strong adsorption and slow desorption of triclosan by TiO(2), precursor-complex formation between triclosan and MnO(2) was much slower and likely became the new rate-limiting step (as opposed to electron transfer in all other cases). These mechanisms can also explain the observed adsorption behavior of triclosan by the binary oxide mixtures and single oxides.  相似文献   

5.
Some reactive volatile organic compounds (VOCs) are prone to degradation during sampling in an ozone-rich environment. A wide variety of different chemicals have been used to remove the ozone prior to sampling, but the possibility of interference by such chemicals with the sampled VOCs has not been thoroughly examined. In the present investigation, the retention/degradation of four terpenes (alpha-pinene, beta-pinene, 3-carene, and limonene) and isoprene together with some of their oxidation products (alpha-pinene oxide, nopinone, 4-acetyl-1-methylcyclohexene (AMCH), methylglyoxal, and methacrolein) has been studied, using various ozone-removing chemicals in an attempt to evaluate their potential as ozone scrubbers in the sampling of ambient air. The chemicals included in this first screening and their ozone-removing capacity are as follows: KI, MnO2, and Na2SO3 removed ozone for more than 24 h when exposed to 73-78 ppb (150-160 microg/m3) at a sampling flow rate of 500 mL/min. Silanized poly(1,4-phenylene sulfide) (PFS) removed ozone for 5 h, unsilanized PFS removed ozone for 1 h and 50 min, and Na2S2O3 removed ozone for 20 min. The recovery of the selected compounds with the different scrubbers was >95% for all compounds for KI; >95% for the terpenes oxidation products; >90% for the terpenes and isoprene for PFS; >90% for the terpenes and isoprene for MnO2 on copper nets, Na2SO3, and Na2S2O3; and <90% for the terpenes and isoprene for carulite (a commercial mixture between MnO2, CuO, and Al2O3), CuO, and indigo carmine.  相似文献   

6.
A novel bentonite clay-based Fe-nanocomposite (Fe-B) was successfully developed as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of an azo-dye Orange II. X-ray diffraction (XRD) analysis clearly reveals that the Fe-B nanocomposite catalyst mainly consists of Fe2O3 (hematite) and SiO2 (quartz) crystallites, and the Fe concentration of the Fe-B catalyst determined by X-reflective fluorescence (XRF) is 31.8 wt %. The catalytic activity of the Fe-B was evaluated in the discoloration and mineralization of Orange II in the presence of H2O2 and UVC light (254 nm). It was found that the optimal Fe-B catalyst dosage is around 1.0 g/L, and the efficiency of discoloration and mineralization of Orange II increases as initial Orange II concentration decreases or reaction temperature increases. In addition, at optimal conditions (10 mM H2O2, 1.0 g of Fe-B/L, 1 x 8W UVC, and pH = 3.0), complete discoloration and mineralization of 0.2 mM Orange II can be achieved in less than 60 and 120 min, respectively. The result strongly indicates that the Fe-B nanocomposite catalyst exhibits a high catalytic activity not only in the photo-Fenton discoloration of Orange II but also in the mineralization of Orange II. The reaction kinetics analysis illustrates that the photo-Fenton discoloration of Orange II in the first 15 min obeys the pseudo-first-order kinetics. The reaction activation energy calculated was 9.94 kJ/mol, indicating that the photo-Fenton discoloration of Orange II is not very sensitive to reaction temperature.  相似文献   

7.
The cerium supported palladium oxide (PdO/CeO(2)) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO(2) during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO(2) of the catalyst forming surface complexes, and 2) O(3) was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O(2)), and O(2) gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO(2) in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter.  相似文献   

8.
Catalytic N2O decomposition has been studied over metal-substituted hexaaluminates with the general formula ABAl11O19, where A = La, Ba, and B = Mn, Fe, Ni. The materials were prepared by coprecipitation via the carbonate route followed by calcination at 1473 K for 10 h. Inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 adsorption techniques were used to characterize the catalysts. The activity in direct N20 decomposition was evaluated by means of temperature-programmed reaction and steady-state experiments. Fe- and Mn-containing hexaaluminates present the highest activities. The Ni-containing catalysts are significantly less active, comparable to the hexaaluminates without metal substitution. The catalytic activity was practically not influenced by the A cation (La or Ba) in the structure. The Fe- and Mn-substituted hexaaluminates exhibit high activity and stability for N2O decomposition in mixtures simulating the outlet of the Pt-Rh gauzes in ammonia oxidation reactors, containing N2O, NO, O2, and H2O. These materials are promising for high-temperature abatement of this powerful greenhouse gas in the chemical industry, particularly in nitric acid and caprolactam production.  相似文献   

9.
研究了溶胶凝胶法得到的LaMn1-xCuxO3(x=0、0.1、0.2)催化剂在木质素湿法氧化为芳香醛反应中的活性差异,旨在探讨出Cu2+取代后LaMnO3催化剂的物理性质的变化与其催化活性的关联变化机理。XRD、XPS、TPR证实了Cu2+能进入LaMnO3格结点位置,且能导致Mn4+的含量以及表面吸附氧物种含量提高。该催化剂用于木质素的湿法氧化结果证明,其催化活性随着Cu2+含量的增加而增强。催化剂催化活性变化的原因归结于Cu2+取代后引起Mn4+的含量以及表面吸附氧物种含量的变化。这也说明只要提高LaMn1-xCuxO3(0x1)的Cu2+的含量,就能提高其在木质素湿法氧化为芳香醛反应中的催化活性。  相似文献   

10.
The sorption reactions of arsenate (As(V)) and arsenite (As(III)) on RuO2 x xH2O were examined using macroscopic and spectroscopic techniques. Constant solid:solution isotherms were constructed from batch sorption experiments and sorption kinetics assessed at pH 7. X-ray absorption near edge spectroscopy (XANES) was employed to elucidate the solid-state speciation of sorbed As. At all pH values studied (pH 4-8), RuO2 x xH2O showed a high affinity for As regardless of the initial As species present. Sorption was higher at all pH values when the initial As species was As(III). Oxidation of As(III) (250 mg/L solution) to As(V) was virtually complete (98-100%) within 5 s. XANES results showed the presence of only As(V) on the RuO2 x xH2O regardless of the initial As oxidation state. There was no change in the As oxidation state on the solid phase for 4 weeks in both oxic and anoxic environments. It is speculated that changes in the RuO2 x xH2O structure, due to oxidation reactions, caused the higher total As sorption capacity when As(III) was the initial species. The As sorption capacity of RuO2 x xH2O is greater than that of other metal oxides reviewed in this study. The ability of RuO2 x xH2O to rapidly oxidize As(III) is much greater than other oxides, such as MnO2.  相似文献   

11.
X-ray photoelectron spectroscopy (XPS) was applied to investigate Mn(II) removal by MnO(x)(s)-coated media under experimental conditions similar to the engineered environment of drinking water treatment plants in the absence and presence of chlorine. Macroscopic and spectroscopic results suggest that Mn(II) removal at pH 6.3 and pH 7.2 in the absence of chlorine was mainly due to adsorption onto the MnO(x)(s) surface coating, while removal in the presence of chlorine was due to a combination of initial surface adsorption followed by subsequent surface-catalyzed oxidation. However, Mn(III) was identified by XPS analyses of the Mn 3p photoline for experiments performed in the absence of chlorine at pH 6.3 and pH 7.2, suggesting that surface-catalyzed Mn oxidation also occurred at these conditions. Results obtained at pH 8.2 at 8 and 0.5 mg·L(-1) dissolved oxygen in the absence of chlorine suggest that Mn(II) removal was mainly due to initial adsorption followed by surface-catalyzed oxidation. XPS analyses suggest that Mn(IV) was the predominant species in experiments operated in the presence of chlorine. This study confirms that the use of chlorine combined with the catalytic action of MnO(x)(s) oxides is effective for Mn(II) removal from drinking water filtration systems.  相似文献   

12.
La(1-x)Sr(x)MnO3 (x = 0, 0.2, 0.5, 0.8) nanoparticles were synthesized and their chemiluminescence (CL) and catalytic properties of CO oxidation were determined. We mainly investigated the influences of filter band length, flow rate of gas, test temperature, catalyst compositions, and particle size on CL intensities and catalytic activities of the catalysts. The catalysts were characterized by means of XRD, TEM, N2 adsorption isotherm, CO-TPD, and O2-TPD, etc. It was found that the strong CL response signals occurred over these perovskites nanoparticles; and that CL properties of the catalysts were well correlated with the reaction activities. These nanoparticles can be used to fabricate a stable gas detector due to a high activity and stability of perovskite structure. CL mode could be a rapid and effective method for the selection of new catalysts from thousands of materials, as well as for the detection of environmental deleterious gases.  相似文献   

13.
CeO(2)/TiO(2) and CeO(2)-WO(3)/TiO(2) catalysts prepared by impregnation method assisted with ultrasonic energy were investigated on the selective catalytic reduction (SCR) of NO(x) (NO and NO(2)) by NH(3). The catalytic activity of 10% CeO(2)/TiO(2) (CeTi) was greatly enhanced by the addition of 6% WO(3) in the broad temperature range of 200-500 °C, the promotion mechanism was proposed on basis of the results of in situ diffuse reflectance infrared transform spectroscopy (DRIFT). When NH(3) was introduced into both catalysts preadsorbed with NO + O(2), SCR would not proceed except for the reaction between NO(2) and ammonia. For CeO(2)/TiO(2) catalysts, coordinated NH(3) linked to Lewis acid sites were the main adsorbed ammonia species. When NO + O(2) was introduced, all the ammonia species consumed rapidly, indicating that these species could react with NO(x) effectively. Two different reaction routes, L-H mechanism at low temperature (<200 °C) and E-R mechanism at high temperatures (>200 °C), were presented for SCR reaction over CeO(2)/TiO(2) catalyst. For CeO(2)-WO(3)/TiO(2) catalysts, the Lewis acid sites on Ce(4+) state could be converted to Br?nsted acid sites due to the unsaturated coordination of Ce(n+) and W(n+) ions. When NO + O(2) was introduced, the reaction proceeded more quickly than that on CeO(2)/TiO(2). The reaction route mainly followed E-R mechanism in the temperature range investigated (150-350 °C) over CeO(2)-WO(3)/TiO(2) catalysts. Tungstation was beneficial for the formation of Ce(3+), which would influence the active sites of the catalyst and further change the mechanisms of SCR reaction. In this way, the cooperation of tungstation and the presence of Ce(3+) state resulted in the better activity of CeO(2)-WO(3)/TiO(2) compared to that of CeO(2)/TiO(2).  相似文献   

14.
Formaldehyde is regarded as the major indoor pollutant emitted from widely used building and decorative materials in airtight buildings, which should be eliminated under indoor environmental conditions. We report here catalytic oxidation process of formaldehyde over mesoporous Co(3)O(4), Co(3)O(4)-CeO(2), Au/Co(3)O(4), and Au/Co(3)O(4)-CeO(2) catalysts and their excellent catalytic performances at room temperature. These catalysts were prepared by a "nanocasting" method with the mesostructure generated from SBA-15 silica with 2D structure. The adsorbed surface species in the formaldehyde oxidation process are analyzed, and some key steps in the oxidation pathway, active sites, and intermediate species are proposed. Among the detected species, some kinds of formate species formed on the catalysts were indentified as intermediates, which further transformed into bicarbonate or carbonate and which decomposed to carbon dioxide. The role of the mesoporous Co(3)O(4) and the gold nanoparticles in the mechanism are also revealed.  相似文献   

15.
巴西Minas Gerais彩色电气石的宝石矿物学特征   总被引:1,自引:1,他引:0  
利用电子探针、X射线光电子能谱仪、紫外-可见光光度计和傅里叶变换红外光谱仪对产自巴西MinasGerais地区、不同颜色的彩色电气石样品进行了宝石矿物学特征研究。电子探针测试结果显示,该电气石样品中Al2O3和Na2O的质量分数较高,FeO的质量分数相对较低,且含有一定量的MnO和Cr2O3;X射线光电子能谱分析初步证实该样品为锂电气石;结合化学成分与紫外-可见光透过光谱的分析结果认为,微量元素Fe^2+,Fe^3+,Mn^3+,Ti^4+和Cr^2+是巴西Minas Gerais彩色电气石样品致色的主要因素之一;红外吸收光谱测试结果显示,该样品在1200~1450cm。范围内存在强的B-O基团致伸缩振动带,含有BO3原子团;其在3000-3750cm。范围内具有H2O和羟基离子致双峰伸缩谱带。比较不同颜色电气石样品的红外吸收光谱发现,其光谱频带数及位置与电气石中的类质同象和化学成分有关。  相似文献   

16.
Fe0 was calcined in air at 200 degrees C and showed enhanced activity in three cycling runs for the degradation of acid red B (ARB) in the presence of H2O2 under UVA irradiation. Subsequently, the catalyst's activity was maintained effectively after 10 successive cycling experiments. Moreover, the catalyst was found to be highly effective for the degradation of nonbiodegradable azodyes ARB, reactive brilliant red X-3B, reactive red K-2G, cationic red X-GRL, and cationic blue X-GRL at neutral pH values. On the basis of characterization by X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectra, the surface layer of the catalyst was mainly composed of alpha-FeOOH and gamma-Fe2O3, and the core was Fe0 (FeOxH2x-3/ Fe0). Fe,OxH2x3/Fe0 was very easily recovered from the reaction system by magnetic separation. The degradation of azodyes came from the synergistic effect of the catalysis of galvanic cells and the oxidation of heterogeneous photo-Fenton reaction on the basis of all information obtained under different experimental conditions. By the total organic carbon and GC-MS analysis, the degradation process of ARB was shown to proceed with decolorization and naphthalene ring openings into CO2 and small organic acid.  相似文献   

17.
A representative polyoxometalate, alpha-12-tungstophosphatic acid (PW12(3-), POM), is loaded on the surface of TiO2 particles used as a cocatalyst to gain further insights into the underlying reaction mechanism and to estimate the feasibility of using the new POM/TiO2 cocatalyst in the photocatalytic degradation of 2,4-dichlorophenol (DCP) in aqueous media. Loading the PW12(3-) species on the surface of TiO2 enhances charge separation in the UV-illuminated TiO2, thereby accelerating the hydroxylation of the initial DCP substrate but not the mineralization of DCP, which is somewhat suppressed in the presence of the polyoxometalate. An increase in the load of POM increases the concentration of aromatic intermediates, and more toxic intermediates, such as 2,6-dichlorodibenzo-p-dioxin, 2,4,6-trichlorophenol, are detected in the PW12(3-)/TiO2 system. By contrast, cleavage of the whole conjugated structure of DCP predominates in TiO2 only dispersions. Strong ESR signals for the superoxide radical anionic species, O2*- (HO2* radicals in acidic media; pH < 5), are detected in TiO2 only dispersions; signals of O2*- are much weaker in the TiO2/ POM composite system under otherwise identical conditions. Experimental results infers that enhancement of charge separation in TiO2 photocatalysis does not always result in improvement of the efficiency of mineralization of organic substrates, and the reaction between organic radical cations and the formed superoxide radical anions may be responsible forthe mineralization of the chlorophenol.  相似文献   

18.
The soot combustion with NO(x) and/or O(2) on potassium-supported Mg-Al hydrotalcite mixed oxides under tight contact condition was studied using temperature-programmed oxidation (TPO), isothermal reaction and in situ FTIR techniques. The presence of NO(x) in O(2) favors the soot combustion at lower temperatures (<300 °C). However, a little suppression was observed at higher temperatures (>300 °C), which was accompanied by a substantial NO(x) reduction. The ketene (C═C═O) and isocyanate (NCO(-)) species were determined as the reaction intermediates. In NO(x) + O(2), NO(2) directly interacts with the free carbon sites (C═C*) through two parallel reactions: (1) NO(2) + C═C* → C═C═O + NO; (2) NO(2) + C═C* → NCO(-) + CO(2). The two reactions can proceed easily, which accounts for the promotion effect of NO(x) on soot combustion at lower temperatures. The further oxidation of NCO(-) by NO(2) or O(2) is responsible for the simultaneous reduction of NO(x). However, the reactions between NO(2) and C═C* are limited by the amount of free carbon sites, which can be provided by the oxidation of soot by O(2) at higher temperatures. The interaction of NO(x) and catalyst results in the formation of nitrates and nitrites, which poisoned the active K sites.  相似文献   

19.
The initial phase of ozone decomposition in natural water (t < 20 s) is poorly understood. It has recently been shown to result in very high transient HO* concentrations and, thereby, plays an essential role during processes such as bromate formation or contaminants oxidation. Phenols and amines are ubiquitous moieties of natural organic matter. Naturally occurring concentrations of primary, secondary, and tertiary amines, amino acids, and phenol were added to surface water, and ozone decomposition as well as HO* generation were measured starting 350 milliseconds after ozone addition. Six seconds into the process, 5 microM of dimethylamine and phenol had generated integral of HO* dt = 1 x 10(-10) M*s and 1.8 x 10(-10) M*s, respectively. With 10 microM dimethylamine and 1.5 mg O3/L, R(ct), (integral of HO*dt/ integral of O3dt) reached 10(-6), which is larger than in advanced oxidation processes (AOP) such as O3/H2O2. Experiments in the presence of HO*-scavengers indicated that a significant fraction of phenol-induced ozone decomposition and HO* generation results from a direct electron transfer to ozone. For dimethylamine, the main mechanism of HO* generation is direct formation of O2*- which reacts selectively with O3 to form O3*-. Pretreatment of phenol-containing water with HOCl or HOBr did not decrease HO* generation, while the same treatment of dimethylamine-containing water considerably reduced HO* generation.  相似文献   

20.
Ozonation is very effective in eliminating micropollutants that react fast with ozone (k > 10(3) M(-1) s(-1)), but there are also ozone-refractory (k < 10 M(-1) s(-1)) micropollutants such as X-ray contrast media, organic phosphates, and others. Yet, they are degraded upon ozonation to some extent, and this is due to (?)OH radicals generated in the reaction of ozone with organic matter in wastewater (DOM, determined as DOC). The elimination of tri-n-butyl phosphate (TnBP) and tris-2-chloroisopropyl phosphate (TCPP), added to wastewater in trace amounts, was studied as a function of the ozone dose and found to follow first-order kinetics. TnBP and TCPP concentrations are halved at ozone to DOC ratios of ~0.25 and ~1.0, respectively. The (?)OH rate constant of TCPP was estimated at (7 ± 2) × 10(8) M(-1) s(-1) by pulse radiolysis. Addition of 1 mg H(2)O(2)/L for increasing the (?)OH yield had very little effect. This is due to the low rate of reaction of H(2)O(2) with ozone at wastewater conditions (pH 8) that competes unfavorably with the reaction of ozone with wastewater DOC. Simulations based on the reported (No?the et al., ES&T 2009, 43, 5990-5995) (?)OH yield (13%) and (?)OH scavenger capacity of wastewater (3.2 × 10(4) (mgC/L)(-1) s(-1)) confirm the experimental data. Based on a typically applied molar ratio of ozone and H(2)O(2) of 2, the contribution of H(2)O(2) addition on the (?)OH yield is shown to become important only at high ozone doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号