首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
The changing pattern of granulosa cell expression of inhibin/activin subunits and follistatin during follicle development and their differential regulation by extrinsic and intraovarian factors supports evidence from functional studies, mostly in vitro, that these proteins have important roles in folliculogenesis, oocyte maturation and corpus luteum function. Gonadal inhibins function as negative feedback hormones to regulate the synthesis and secretion of pituitary FSH, a key determinant of follicle development, but there is little supportive evidence for a peripheral endocrine role for ovary-derived activins or follistatin in this regard. However, activins and follistatin are expressed in numerous other tissues, including anterior pituitary, and they are firmly implicated as local intrapituitary regulators of FSH secretion. Intraovarian actions of granulosa cell-derived activins include the promotion of granulosa cell proliferation and upregulation of FSH receptors, P450arom, oestrogen synthesis, granulosa cell LH receptors and enhancement of oocyte maturation. Through its activin-binding role, follistatin can reverse each of these activin-induced responses. In addition to their endocrine feedback role, granulosa-derived inhibins can sensitize theca cells to LH, thereby enhancing the production of androgens, an essential requirement for follicular oestrogen synthesis. Activins can oppose this effect and suppress thecal androgen production. Granulosa cells overproduce inhibin a subunit precursor relative to betaA/betaB subunit precursors and evidence indicates that different parts of the inhibin a subunit precursor have intrinsic biological activities distinct from inhibin alphabetaA/B dimer, and serve as additional local modulators of follicle and corpus luteum function.  相似文献   

2.
Paracrine and autocrine regulation is well established in many organs including the gonads, but the notion of communication among pituitary cells is a relatively new concept. The FSH-beta and GnRH-receptor genes are up-regulated by pituitary activin and down-regulated by pituitary follistatin, and circulating inhibin disrupts this local regulation by functioning as an endogenous competitor of the activin receptor. Activin and follistatin production by folliculostellate cells may play a central role in these responses. alpha-Subunit expression is maintained at high levels in the absence of GnRH through unknown mechanisms. There is evidence that the intra-pituitary regulation of FSH-beta and GnRH-receptor gene expression may activate pubertal maturation in male rats. Finally, there are marked differences in follistatin expression and its regulation by GnRH and androgens in male primates and rats that appear to explain species differences in the differential secretion of FSH and LH, although the physiological significance of these differences is not yet known.  相似文献   

3.
Previous work has shown that activin A is expressed selectively within the theca rather than the granulosa layer of preovulatory chicken follicles. In the present study, this finding was verified and the potential paracrine actions of activin A on basal and gonadotrophin-induced secretion of inhibin A, inhibin B and progesterone by granulosa cells from the three largest preovulatory follicles (F1-F3) were investigated. Treatment with activin A (0, 0.25, 2.5 and 25 ng ml(-1)) alone increased inhibin A secretion markedly in a follicle- and time-dependent manner, with the greatest response (up to 15-fold increase; P < 0.0001) in F1 follicles after 3 days of treatment. In contrast, activin A alone had no effect on progesterone output at any time. Cells from F3 follicles were more responsive to FSH than were F1 cells in terms of both inhibin A (P < 0.02) and progesterone (P < 0.01) secretion. Furthermore, activin A greatly enhanced FSH-induced secretion of both inhibin A (up to tenfold; P < 0.0001) and progesterone (up to sixfold; P < 0.0001). In terms of LH-induced inhibin A and progesterone secretion, cells from F1, F2 and F3 follicles showed similar responses. Co-treatment with activin A enhanced LH-induced secretion of inhibin A markedly (up to ninefold; P < 0.0001) but had only a marginal effect on LH-induced progesterone secretion (up to twofold; P < 0.001). The presence of activin receptor subtypes IA, IB, IIA and IIB in cultured granulosa cells from F1, F2 and F3 follicles was demonstrated using immunocytochemistry. These findings support the hypothesis that activin A secreted by the theca layers of avian preovulatory follicles exerts a local paracrine action on granulosa cells to modulate 'basal' inhibin A secretion and to upregulate gonadotrophin-induced secretion of both inhibin A and progesterone. However, the extent to which this local role of activin A contributes to the generation of the preovulatory LH-progesterone surge remains to be established.  相似文献   

4.
Fallopian tubes from ten premenopausal women were collected and examined for the presence of inhibin, activin and its type IIA and IIB receptors (ActRIIA and ActRIIB) in the endosalpinx. Immunocytochemistry demonstrated clear staining for the betaA, betaB subunits and ActRIIA and ActRIIB that increased in intensity from the isthmus to the ampulla. No staining for the alpha subunit was observed. Whilst the staining of the betaA subunit and ActRIIA was seen in almost every epithelial cell, staining for the betaB subunit and ActRIIB was more variable. In situ hybridization and RT-PCR confirmed the presence of mRNA for the betaA, betaB subunits and ActRIIA and ActRIIB. These results indicated that the epithelium of the uterine tube is able to synthesize activin but not inhibin and has receptors for activin. Activins may thus act as paracrine regulators of tubal epithelial cell function, and embryonic activity may also bind to epithelial receptor and initiate intracellular processes that alter epithelial cell secretions.  相似文献   

5.
Little is known about the role of activin B during folliculogenesis. This study investigated the expression levels of activin/inhibin subunits (βA, βB, and α), steroid enzyme, and gonadotrophin receptors in theca (TC) and granulosa cells (GC) by QPCR and activin A and B and inhibin A protein levels in follicular fluid (FF) of developing sheep follicles during estrus and anestrus. The effect of activin B on androgen production from primary TC cultures in vitro was also assessed. During folliculogenesis, in anestrus and estrus, FF activin B concentrations and thecal and GC activin βB mRNA levels decreased as follicle diameter increased from 1-3 to >6 mm regardless of estrogenic status. Estrogenic preovulatory follicles had reduced concentrations of FF activins B and A, and TC and GCs expressed higher levels of activin βA mRNA at 3-4 mm, and TCs more inhibin α mRNA at >4 mm stages of development compared with nonestrogenic follicles. Activin B decreased androstenedione production from primary TCs in vitro, an effect blocked by inhibin A. Thus, sheep follicles 1-3 mm in diameter contained high FF levels of activin B, which decreased as the follicle size increased, and, like activin A, suppressed thecal androgen production in vitro, an effect blocked by inhibin. Furthermore, the theca of large estrogenic follicles expressed high levels of inhibin α and activin βA mRNA suggesting local thecal derived inhibin A production. This would inhibit the negative effects of thecal activins B and A ensuring maximum androgen production for enhanced estradiol production by the preovulatory follicle(s).  相似文献   

6.
Maternal-fetal communications are critical for the establishment of pregnancy. Embryonic growth and differentiation factors produced by the oviduct and uterus play essential roles during the pre- and early post-implantation phases. Although several studies indicate roles for activin in embryonic development, gene-knockout studies have failed to identify a critical role in mammalian embryogenesis. We hypothesized that activin is produced by maternal tissues during the establishment of pregnancy, and thus maternally derived activin could compensate for the absence of embryonic activin in null homozygotes during critical developmental stages. We investigated the expression of inhibin alpha, activin betaA, and betaB subunits in the mouse oviduct and uterus during the estrous cycle and early pregnancy, and in the early conceptus. Inhibin alpha subunit was weakly expressed, while activin betaA and betaB subunits were strongly expressed in oviduct and uterus at estrous, and dramatically upregulated in the uterus on each day of pregnancy between days 3.5 and 8.5 post coitum. Prior to implantation, activin betaA and betaB subunits were immunolocalized to oviductal and uterine epithelial cells; following implantation they were expressed in the stroma, in a wave preceding decidualization. Later in pregnancy, activin betaA and betaB subunits were present in decidua basalis, trophoblast giant cells, and labyrinth zone of the developing placenta. Expression of activin betaA subunit was also detected in blastocysts and early post-implantation embryos. These data are consistent with a role for maternally derived activins in the support of the pre-implantation embryo, and during gastrulation and embryogenesis.  相似文献   

7.
Inhibins and activins have roles in the regulation of cell proliferation and differentiation in a variety of tissues. This study investigated the distribution of the three inhibin/activin subunits (alpha, betaA and betaB) and their receptors in the human testis between week 13 and week 19 of gestation using RT-PCR and immunohistochemistry. mRNA for all three subunits and for the activin type II receptors ActRIIA and ActRIIB was detected at all stages of gestation examined. Sertoli cells showed intense immunostaining for the alpha subunit and some staining for the betaB subunit, whereas only the betaB subunit was detected in gonocytes. No betaA subunit staining was detected within the tubules. All three subunits were localized to interstitial Leydig cells. Cells of the rete testis and the epididymal epithelium also showed immunostaining for betaB; however, staining for the other subunits was weak or absent. Peritubular cells showed intense immunostaining for the beta-glycan inhibin receptor, which was also localized to interstitial cells, but was not detected within the tubular compartment, rete testis or epididymal epithelium. ActRIIA was detected in gonocytes and in interstitial cells; ActRIIB was distributed widely. These data indicate that fetal Leydig and Sertoli cells have the potential to produce both activins and inhibins, whereas gonocytes may produce only activin B. The distribution of activin and inhibin receptors implies that the intratubular compartment and developing duct system are sites of action of activin B but not inhibin at this stage of development, whereas both activins and inhibins may be involved in the development and function of the peritubular and interstitial cells.  相似文献   

8.
Previous studies have shown that changes in the plasma concentrations of immunoreactive inhibin measured by radioimmunoassay occur in parallel with growth and regression of the testes during a reproductive cycle in adult Soay rams induced by exposure to an artificial lighting regimen of alternating 16 week periods of long days and short days. With the development of new two-site ELISAs for sheep inhibin A and inhibin B, we have re-examined the relationship between FSH and dimeric, biologically active inhibin in the reproductive cycle in adult Soay rams. No signal was generated by sheep testicular extract, ram or ewe plasma, or sheep ovarian follicular fluid in the inhibin B ELISA. In contrast, ram plasma contained significant activity in the inhibin A ELISA, which diluted in parallel to the inhibin A standard, and was abolished by preincubation of ram plasma with monoclonal antibodies specific for the betaA, but not the betaB, subunit. These results indicate that the ram is the first adult male mammalian species identified to date in which the testes produce and secrete dimeric inhibin A and not inhibin B. Northern blot analysis and immunocytochemistry confirmed the presence of alpha, betaA and betaB inhibin/activin subunit mRNA and protein in the testes of adult rams. Changes in plasma inhibin A concentrations occurred in parallel with the growth and regression of the testes during the long day: short day: long day lighting regimen in adult Soay rams, confirming our previous observations with immunoreactive inhibin. During the growth phase of the testes in the first 8 weeks of exposure to short days there was a positive correlation between plasma FSH and inhibin A concentrations, indicating that during this phase the secretion of inhibin A is stimulated by FSH and that inhibin A did not act as a negative feedback hormone on FSH secretion. From week 8.5 to week 16.0 of exposure to short days, there was a negative correlation between FSH and testosterone concentrations, but not inhibin, indicating that when inhibin concentrations are high, testosterone acts as the negative regulator of FSH secretion. Thus, in intact adult rams, when the testes are fully active it appears that inhibin A may sensitize the pituitary to the negative feedback effects of testosterone, at which time they act synergistically to maintain plasma concentrations of FSH.  相似文献   

9.
After in vitro maturation, fertilization and development, the percentage of fertilized eggs developing to the blastocyst stage is usually lower in calves compared with cows. It is unknown whether this low ability to develop in vitro is inherent to calf oocytes or is caused by altered follicular maturation. The latter possibility was explored in the present study using two markers of follicle function: in vitro steroidogenesis by intact follicles and aromatase activity of follicular walls. Calf follicles > 9 mm in diameter had a low ability to produce oestradiol (ten times reduction compared with cows) despite a testosterone output by theca cells which was similar to that observed in cows. This finding is in agreement with the low aromatase activity of granulosa cells of calf follicles measured by tritiated water release assay. Qualitative and quantitative differences between calf and cow follicular fluids were assessed using western blotting (inhibin and activin, heat shock protein 90, Müllerian inhibiting substance) and assays (inhibin and activin) to determine whether this defective aromatase could be produced by alterations in the amounts of follicular proteins modulating aromatase (inhibin and activin, heat shock protein 90, Müllerian inhibiting substance). Western blotting of follicular fluid proteins demonstrated three main bands (59, 57 and < 30 kDa) and one minor band (34 kDa) with the anti-alpha inhibin antibody, whereas a single 18 kDa band was detected when an anti-beta inhibin antibody was used. Calf follicular fluid contained similar amounts of all main inhibin forms (alpha and beta) but a 34 kDa alpha inhibin form was missing. The amounts of dimeric inhibin were similar between cows and calves but small follicles from calves contained more activin. Single bands at 70 kDa (Müllerian inhibiting substance) and 90 kDa (heat shock protein 90) were detected by western blotting. Müllerian inhibiting substance was missing from calf follicular fluid and heat shock protein 90 was present in smaller amounts in calf versus cow follicular fluid. None of the above differences could explain the defective aromatase of calf follicles. Two-dimensional separation of the [35S]-labelled proteins secreted by follicular walls originating from calf or cow follicles matched for size and follicle health was performed and 151 spots were observed on the master gel, which summarized all the spots present at least once. Fifteen spots were present in calves and not in cows. Quantitative differences were also detected with three spots containing more proteins in cows than in calves. Whether some of these proteins can alter maturation of follicles or oocytes requires further investigation.  相似文献   

10.
Estrogen receptor 1 and 2 (ESR1 and 2) mediate estrogen (E) action on gonadotrope function. While much is known about the effects of ESR1 on the gonadotrope, there is still some controversy regarding the effects of ESR2. To investigate the role of ESR2 in the gonadotrope, 45-day-old female mice of two different genotypes were used: wild type (WT) and pituitary (gonadotropes and thyrotropes)-specific Esr1 knockout (KO). All mice were ovariectomized (OVX) and 15 days later injected over 3 days with 2.5 μg 17β-estradiol (E(2)), 0.2 mg of the selective ESR1 or 2 agonists, propylpyrazole triol and diarylpropionitrile, respectively, or 0.1 ml oil. The day after treatment, anterior pituitary glands were dissected out for evaluation of gonadotrope ultrastructural morphology and pituitary immunohistochemical expression of progesterone receptor (Pgr (Pr)). Blood was collected and serum LH levels were assessed. Activation of ESR1 in WT mice resulted in the following: i) uterine ballooning and vaginal cornification, ii) negative feedback on LH secretion, iii) increased number of homogeneous (functional) gonadotropes, and iv) pituitary Pgr expression (35.9±2.0% of pituitary cells). Activation of ESR1 in KO mice induced normal uterine, vaginal, and LH secretion responses, but failed to increase the number of functional gonadotropes, and induced significantly lower Pgr expression (21.0±3.0% of pituitary cells) than in WT mice. Whilst activation of ESR2 had no significant effects in WT mice, it doubled the number of functional gonadotropes exhibited by KO mice injected with oil. It is concluded that E(2) exerted its action in KO mouse gonadotropes via ESR2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号