首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
为开发设计具有高电化学性能的碳纳米纤维电极,采用静电纺丝技术、戊二醛交联和高温炭化制备聚丙烯腈/高直链淀粉(PAN/HAS)基碳纳米纤维,并对其形貌、元素组成、石墨化晶体结构和比表面积进行了研究。结果表明:经过戊二醛交联后的碳纳米纤维呈现连通结构,并具有优异的石墨晶体和多级孔结构、较大的比表面积(647 m2/g)和较高的总孔体积(0.60 cm3/g);将其制备成电极,在三电极体系下,当电流密度为1 A/g时比电容为255 F/g,当电流密度为20 A/g时比电容保持率高达71%;经过10 000次充放电循环后,电极比电容的保持率高达99.8%,显示出优异的循环耐久性。  相似文献   

2.
为制备具有较高孔隙率的聚丙烯腈(PAN)活性中空碳纳米纤维(AHCNF),以自行制备的PAN为原料,经同轴静电纺丝、预氧化、炭化、活化后制备得到AHCNF,借助X射线光电子能谱仪、扫描电子显微镜、比表面积测试仪研究了致孔剂对其形态与孔结构的影响。结果表明:制备的PAN共聚物环化温度较低,环化放热较缓和,有利于预氧化的进行;炭化过程将PAN表面的碳氧单键转化为碳氧双键,而活化过程将碳氧双键进一步转化为酯基;添加致孔剂和未添加致孔剂得到的PAN活性中空碳纳米纤维横截面呈明显的中空结构,纤维壁较为致密;添加致孔剂后,活性中空碳纳米纤维的总比表面积从55.719 m2/g增加到532.639 m2/g,孔容从0.070 cm3/g增加到0.312 cm3/g,介孔平均孔径从3.408 nm增加到4.309 nm,收率从27.14%降低到9.44%。  相似文献   

3.
为制备具有高比表面积和分级多孔结构的碳材料来提高其用于电极的电荷存储能力,采用静电纺丝技术将钴金属有机骨架材料(ZIF-67)与聚丙烯腈(PAN)/聚甲基丙烯酸甲酯(PMMA)混合制备复合纳米纤维膜,然后对其进行高温炭化处理得到钴基分级多孔复合碳材料,表征了其结构和电化学性能,探究了ZIF-67负载量对复合碳材料结构和性能的影响。结果表明:负载ZIF-67的复合碳材料相对于单一碳材料具有较高的比表面积和丰富的中孔结构,当ZIF-67相对于PMMA的负载量为10%时,复合碳材料比表面积为259.814 m2/g,中孔占比为68.8%,在1 A/g电流密度下的比电容可达151 F/g,是未负载ZIF-67的PAN/PMMA碳材料的3倍,且在2 000次循环后,比电容保持率仍为84.8%。  相似文献   

4.
为改善硅/碳纳米纤维的形貌结构并提升其储能性能,将球磨均匀的Si/TiO2粉末和聚丙烯腈(PAN)通过静电纺丝制得Si/TiO2/PAN纳米纤维膜,然后分别在氩气和氢气氛围中炭化得到Si/TiO2复合碳纳米纤维;优化了Si与TiO2的最佳配比与最适炭化温度,分析了纤维形貌、分子结构、元素分布对复合碳纳米纤维储能性能的影响。结果表明:在Si和TiO2质量比为1∶2以及900 ℃炭化条件下,Si/TiO2复合碳纳米纤维具有良好的导电性,其纤维结构与形成的TiO2无序框架可有效缓解Si的体积膨胀和团聚,并显著提高锂离子电池的容量与循环稳定性;在0.2 mA/g电流密度下进行120次循环后,在氩气和氢气条件下炭化制备的复合碳纳米纤维的放电比容量分别为942和1 212 mA·h/g,在氢气条件下炭化制备的复合碳纳米纤维拥有更加优异的倍率性能。  相似文献   

5.
王子希  胡毅 《纺织学报》2020,41(11):10-18
针对锂硫电池循环过程中容量衰减快的问题,采用水热法制备ZnCo2O4纳米颗粒,然后与聚丙烯腈(PAN)混合,通过静电纺丝法制备复合纳米纤维并进行炭化处理得到复合多孔碳纳米纤维。借助扫描电子显微镜、透射电子显微镜、X射线光电子能谱仪、拉曼光谱仪、比表面积测试仪表征复合多孔碳纳米纤维的微观结构和物化性能,优化得到最佳制备工艺;并将其作为正极硫载体测试电化学性能。结果表明:基于ZnCo2O4制备的复合多孔碳纳米纤维存在大量孔孔相连的通道,比表面积高达210.85 m2/g;组装成的锂硫电池具有典型的充放电平台以及明显的氧化还原峰,其初始放电比容量为759.2 mA·h/g,50圈充放电循环后,仍具有74.0%的可逆比容量,相比于不掺杂ZnCo2O4的静电纺丝碳纳米纤维具有更高的比容量,更好的倍率性能。  相似文献   

6.
以聚丙烯腈(PAN)和醋酸锌(Zn(CH3COO)2.2H2O)为溶质,N-N二甲基甲酰胺(DMF)为溶剂,采用静电纺丝法成功制备PAN/醋酸锌纳米纤维毡,并探讨醋酸锌含量(相对于PAN)对纳米纤维毡形貌和直径的影响。对PAN/醋酸锌纳米纤维毡进行预氧化、活化、碳化处理,制备得到碳纳米多孔纤维,并对其得率、孔径分布、比表面积及吸附性能进行研究。实验结果显示:预氧化温度的升高使碳纳米多孔纤维的吸附指标先增后减;在600℃~1 000℃的碳化温度范围内,碳化温度的升高使碳纳米多孔纤维的吸附性能均呈现上升趋势,且在1 000℃时达到最大。  相似文献   

7.
以乙酸木质素、聚氧化乙烯、乙酰丙酮铁和聚乙烯吡咯烷酮为原料,通过静电纺丝以及随后的碳化过程制备得到木质素基多孔纳米碳纤维,将其用作超级电容器电极材料。多孔碳电极在0.5A/g的电流密度下的比电容值为67.05F/g,比未添加开孔剂的木质素基碳纤维电极提高了88%。多孔碳电极还具有良好的循环性能,在0.5A/g的电流密度下循环1000次后的保留电容为初始的92%。此外,木质素基多孔纳米碳纤维由于开孔效果比表面积增加,微孔和介孔的增加促进了电解液离子的转移和吸附,增强了材料的电化学性能。制备的木质素基多孔纳米碳纤维表现出来的性能使它们具有作为能源存储的可能性。  相似文献   

8.
覃小红  赵从涛 《国际纺织导报》2009,37(12):44-44,46-48
用静电纺的方法制得聚丙烯腈(PAN)纳米纤维,在250℃对PAN纳米纤维毡进行预氧化,然后在不同温度下进行炭化得到碳纳米纤维。利用X光衍射和拉曼光谱分析碳纳米纤维的内部结构,用四探针法测碳纳米纤维毡的导电率。研究表明:随着炭化温度的提高,微晶尺寸(Lc)和石墨摩尔分数(La)逐渐增大,碳纳米纤维毡的导电性也逐渐增大。石墨摩尔分数(La)与电导率呈很好的线性关系。  相似文献   

9.
酚醛纤维经过炭化和氢氧化钾活化两个步骤制得酚醛基活性炭纤维(PACF),通过改变炭化温度,分析不同炭化温度下制得的PACF比表面积和孔道结构分布,并探究孔道结构与CO_2吸附性能之间的关系。结果表明:当炭化温度为700℃时,酚醛基活性炭纤维的比表面积达到最大值1372.26m~2/g,此时总孔容量也达到最大值0.559cm~3/g,CO_2吸附量可以高达120.5855mg/g。  相似文献   

10.
探讨一种用于高性能锂离子电池负极材料的制备及性能。通过配制乙酰丙酮铁的聚丙烯腈/聚甲基丙烯酸甲酯(PAN/PMMA)混合溶液用作前驱液,利用静电纺丝技术制备多孔碳/四氧化三铁纳米纤维。结果表明:多孔碳/四氧化三铁纳米纤维呈现多孔的结构和凹凸不平的形貌,Fe_3O_4纳米粒子均匀地镶嵌在碳基质中;在电流密度为100 mA/g时,多孔碳/四氧化三铁材料电极首次放电比容量高达1 380 mAh/g,经过100次循环后,稳定比容量为641 mAh/g;这种电极材料表现出优良的倍率性能,在电流密度为5 000 mA/g时,其可逆比容量仍维持在330 mAh/g。认为:这种多孔碳/四氧化三铁复合物作为高性能锂电池负极材料具有广泛的应用前景。  相似文献   

11.
以DMF为溶剂,利用静电纺丝法制备了PAN/Co(OAc)2/CNTs复合纳米纤维,并通过高温碳化及活化的方法得到多孔碳基复合纳米纤维。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、ASAP 2020及Solartron 1470分别研究了纤维的表面形貌、碳基复合纳米纤维的物相、比表面积和材料的电化学性能。研究结果表明:多孔碳材料为C/Co/CNTs复合纳米纤维;前驱体复合纳米纤维表面较为光滑,高温处理处部分纤维出现断裂;碳基复合纳米纤维的比表面积和孔体积分别为771m2/g和0.347cm3/g;在电流密度为1.0A/g时复合纳米纤维的比容量可达210F/g,电流为0.5mA时能量密度为3.1Wh/Kg,电流为5 mA时功率密度为2337W/Kg  相似文献   

12.
为研究石墨烯和不同预氧化条件对碳纳米纤维结构的影响,采用静电纺丝法制备了聚丙烯腈(PNA)/ 石墨烯纳米纤维,然后通过预氧化和炭化处理获得碳纳米纤维。借助傅里叶红外变换光谱仪、X 射线衍射仪、差示扫描量热仪、激光显微拉曼光谱仪和扫描电子显微镜研究预氧化丝和碳纳米纤维的结构变化。结果表明:预氧化处理过程中,PNA分子发生脱氢、环化和氧化反应,最终形成稳定的梯形结构;随着预氧化温度的升高,PNA 纤维的相对环化率、芳构化指数和环化度逐渐提高;石墨烯的加入提高了碳纳米纤维的石墨化程度,对脱氢、环化反应有一定的抑制作用,从而降低碳纳米纤维的断裂程度;当预氧化温度为260 ℃时,新的纤维结构已基本形成。  相似文献   

13.
以丙烯腈为原料自制聚丙烯腈(PAN)粉末,静电纺丝法制备PAN纳米纤维,采用溶胶-凝胶法负载TiO2,制备TiO2/PAN碳化纳米纤维膜.通过SEM、DG-DTG及元素分析等方法对纳米纤维进行表征.研究结果表明,用PAN质量分数为3%的纺丝液进行静电纺丝,在预氧化温度280℃及碳化温度550℃条件下可制得直径100~1...  相似文献   

14.
为提高酚醛基纳米活性碳纤维的吸附性能,首先采用乙酸锌、硫酸双催化合成高邻位酚醛树脂,然后配制酚醛/聚乙烯醇缩丁醛(PVB)混合溶液,采用静电纺丝、固化、炭化和活化工艺制备得到柔性高邻位酚醛基纳米活性碳纤维,借助傅里叶变换红外光谱仪、扫描电子显微镜、热重分析仪、比表面积及孔径分析仪对其结构和性能进行测试与分析。结果表明:静电纺丝制备的酚醛初生纤维在溶液固化后,酚环对位取代增加,纤维内发生了分子间交联,但PVB有一定的醇解,使酚醛纤维在炭化过程中低温稳定性下降,而高温残碳率升高,炭化后制备得到多孔碳纤维;活化后得到的高邻位酚醛基纳米活性碳纤维比表面积为1 409 m2/g,其对亚甲基蓝及碘的吸附量分别达到837和2 641 mg/g。  相似文献   

15.
为制备可实用聚丙烯腈(PAN)中空碳纳米纤维,考察了同轴静电场施加方式、芯层组分及芯层针头直径对PAN碳纳米纤维中空结构的稳定形成及其炭化收率的影响。实验结果表明:芯层组分会影响PAN纳米纤维壳芯结构及其碳纳米纤维中空结构的形成,静电场施加方式和芯层针头直径的影响不大。扫描电子显微镜观察结果显示,以聚甲基丙烯酸甲酯(PMMA)溶液或甲基硅油为芯层的PAN碳纳米纤维横截面呈明显的中空结构,以聚乙烯吡咯烷酮(PVP)溶液或空气为芯层时则呈实芯结构。以PMMA溶液为芯层时,由于芯层与壳层PAN具有相同的溶剂二甲基甲酰胺却又互不相溶,因而PAN纳米纤维能稳定形成壳芯结构且壳芯界面相容性好,炭化后的PAN中空碳纳米纤维表面形态最好,中空结构较为规则,炭化收率为28%~31%。  相似文献   

16.
为改善锡/碳(Sn/C)纳米纤维形貌结构并使其获得优异的锂电性能,采用醋酸锡为前驱体,聚丙烯腈为碳源,通过静电纺丝技术制备了Sn/C前驱体纳米纤维,并通过不同顺序的炭化工艺和深冷处理工艺对Sn/C前驱体纳米纤维进行形貌再造,制备了具有多孔结构与皮芯结构的Sn/C纳米纤维,最后通过形貌表征、比表面积以及晶型结构测试了纳米纤维的结构和性能。结果表明:Sn/C纳米纤维的多孔和特殊形貌的碳包覆结构,有效防止了Sn颗粒的团聚,缓解了充放电时电极材料的体积膨胀,同时减少了容量损失,增强了电极材料的导电性和结构稳定性;经过先深冷处理再炭化处理,具有多孔结构的Sn/C纳米纤维表现出最稳定的电化学性能,循环100圈后的质量比容量保持率高达93.9%。  相似文献   

17.
阳智  刘呈坤  吴红  毛雪 《纺织学报》2021,42(7):54-61
为实现木质素作为一种可再生、易降解的环保原材料在制备碳纤维领域的应用,通过静电纺丝、预氧化和炭化工艺制备了木质素/聚丙烯腈基碳纤维。借助旋转流变仪、电导率仪、扫描电子显微镜、傅里叶变换红外光谱仪、X射线光电子能谱仪和比表面积测试仪研究了木质素的添加对纺丝溶液的性质、预氧丝和碳纤维结构与性能的影响。结果表明:在保证溶液可纺性和纤维成纤性的基础上,木质素与聚丙烯腈的质量比可提高到90∶10,最大程度地实现了木质素的高值化利用;添加木质素后,预氧丝具有耐热稳定的梯形结构,制备的碳纤维比表面积从50.49增大到849.89 m2/g,在电池和超级电容器等能源领域具有重要的潜在应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号