首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The objective of this study was to determine the effects of feeding alfalfa hay on chewing activity, rumen fermentation, and milk fat concentration of dairy cows fed wheat-based dried distillers grains with solubles (DDGS) as a partial replacement of barley silage. Thirty lactating Holstein cows (220 ± 51 DIM), 6 of which were ruminally cannulated, were used in a 3 × 3 Latin square design with 21-d periods. Cows were fed a control diet [CON; 50% barley silage and 50% concentrate mix on a dry matter (DM) basis], a diet in which barley silage was replaced with DDGS at 20% of dietary DM (DG), or a diet in which barley silage was replaced with DDGS and alfalfa hay at 20 and 10% of dietary DM, respectively (DG+AH). All diets contained approximately 20% crude protein. Compared with the CON diet, cows fed DG and DG+AH diets respectively had greater DM intake (20.1 vs. 23.1 and 22.7 kg/d); yields of milk (24.5 vs. 27.3 and 28.1 kg/d), milk protein (0.88 vs. 0.99 and 1.01 kg/d), and milk lactose (1.11 vs. 1.24 and 1.29 kg/d); and body weight gain (0.25 vs. 1.17 and 1.23 kg/d). However, compared with cows fed the CON diet, cows fed the DG and DG+AH diets respectively had lower chewing time (38.3 vs. 30.7 and 31.5 min/kg of DM intake), mean rumen pH (6.11 vs. 5.88 and 5.84), and minimum rumen pH (5.28 vs. 5.09 and 5.07) and a greater duration that rumen pH was below 5.8 (7.3 vs. 11.2 and 12.0 h/d). However, these response variables did not differ between cows fed the DG and DG+AH diets. Milk fat concentration differed among the 3 diets (3.92, 3.60, and 3.38% for CON, DG, and DG+AH, respectively), but milk fat yield was not affected by treatment. These results indicate that partially replacing barley silage with DDGS can improve productivity of lactating dairy cows but may decrease chewing time, rumen pH, and milk fat concentration, and that dietary inclusion of alfalfa hay may not alleviate such responses.  相似文献   

2.
The main objective of this study was to develop practical models to assess and predict the adequacy of dietary fiber in high-yielding dairy cows. We used quantitative methods to analyze relevant research data and critically evaluate and determine the responses of ruminal pH and production performance to different variables including physical, chemical, and starch-degrading characteristics of the diet. Further, extensive data were used to model the magnitude of ruminal pH fluctuations and determine the threshold for the development of subacute ruminal acidosis (SARA). Results of this study showed that to minimize the risk of SARA, the following events should be avoided: 1) a daily mean ruminal pH lower than 6.16, and 2) a time period in which ruminal pH is <5.8 for more than 5.24 h/d. As the content of physically effective neutral detergent fiber (peNDF) or the ratio between peNDF and rumen-degradable starch from grains in the diet increased up to 31.2 ± 1.6% [dry matter (DM) basis] or 1.45 ± 0.22, respectively, so did the daily mean ruminal pH, for which a asymptotic plateau was reached at a pH of 6.20 to 6.27. This study also showed that digestibility of fiber in the total tract depends on ruminal pH and outflow rate of digesta from reticulorumen; thereby both variables explained 62% of the variation of fiber digestibility. Feeding diets with peNDF content up to 31.9 ± 1.97% (DM basis) slightly decreased DM intake and actual milk yield; however, 3.5% fat-corrected milk and milk fat yield were increased, resulting in greater milk energy efficiency. In conclusion, a level of about 30 to 33% peNDF in the diet may be considered generally optimal for minimizing the risk of SARA without impairing important production responses in high-yielding dairy cows. In terms of improvement of the accuracy to assessing dietary fiber adequacy, it is suggested that the content of peNDF required to stabilize ruminal pH and maintain milk fat content without compromising milk energy efficiency can be arranged based on grain or starch sources included in the diet, on feed intake level, and on days in milk of the cows.  相似文献   

3.
4.
Our objectives were to determine if dietary cation-anion difference (DCAD) and source of anions influence periparturient feed intake and milk production of dairy cattle during the transition period. Diets differed in DCAD (cationic or anionic) and anionic supplement. The 4 diets used prepartum were (1) control [DCAD +20 mEq/100 g of dry matter (DM)], (2) Bio-Chlor (DCAD −12 mEq/100 g of DM; Church & Dwight Co. Inc., Princeton, NJ), (3) Fermenten (DCAD −10 mEq/100 g of DM; Church & Dwight Co. Inc.), and (4) salts (DCAD −10 mEq/100 g of DM). Urine pH was lower for cows that consumed an anionic diet prepartum compared with control. Prepartum diet had no effect on prepartum dry matter intake (DMI) of multiparous or primiparous cows. Postpartum DMI and milk yield for multiparous cows fed anionic diets prepartum were greater compared with those fed the control diet. Postpartum DMI and milk yield of primiparous cows were similar for prepartum diets. Feeding prepartum anionic diets did not affect plasma Ca at or near calving. However, cows fed anionic diets began their decline in plasma Ca later than control cows. Postpartum β-hydroxybutyrate and nonesterified fatty acids were lower for primiparous cows fed prepartum anionic diets compared with those fed the control diet. Prepartum and postpartum plasma glucose concentrations were not affected by prepartum diet for all cows. Liver triglyceride differed for parity by day. Parities were similar at 21 d prepartum, but at 0 d and 21 d postpartum, levels were greater for multiparous cows. Results indicate that decreasing the DCAD of the diet during the prepartum period can increase postpartum DMI and milk production of multiparous cows without negatively affecting performance of primiparous cows.  相似文献   

5.
The objective of this study was to determine whether replacing the physically effective neutral detergent fiber (peNDF) of corn silage with sugarcane silage peNDF would affect performance in dairy cows. Twenty-four late-lactation Holstein cows were assigned to eight 3 × 3 Latin squares with 21-d periods. The dietary treatments were (1) 25% peNDF of corn silage, (2) 25% peNDF of sugarcane silage, and (3) 12.5% peNDF of corn silage + 12.5% peNDF of sugarcane silage. The physical effectiveness factors (pef) were assumed to be 1 for corn silage and 1.2 for sugarcane silage, as measured previously by bioassay. Thus, peNDF was calculated as neutral detergent fiber (NDF) × pef. The concentrate ingredients were finely ground corn, soybean meal, pelleted citrus pulp, and mineral-vitamin premix. Dry matter intake (22.5 ± 0.63 kg/d), 3.5% fat-corrected milk yield (28.8 ± 1.13 kg/d), milk composition (fat, protein, lactose, urea, casein, free fatty acids, and somatic cell count), and blood metabolites (glucose, insulin, and nonesterified fatty acids) were unaffected by the treatments. The time spent eating, ruminating, or chewing was also similar among the diets, as was particle-sorting behavior. By contrast, chewing per kilogram of forage NDF intake was higher for the sugarcane silage (137 min/kg) than the corn silage diet (116 min/kg), indicating the greater physical effectiveness of sugarcane fiber. Based on chewing behavior (min/d), the estimated pef of sugarcane silage NDF were 1.28 in the corn silage plus sugarcane silage diet and 1.29 in the sugarcane silage diet. Formulating dairy rations of equal peNDF content allows similar performance if corn and sugarcane silages are exchanged.  相似文献   

6.
Dried distillers grains with solubles (DDGS) has been commonly used as a dietary protein source for lactating dairy cows. However, there is a paucity of data evaluating the use of DDGS as a partial replacement of forage or grain. The objective of this study was to determine the effects of partially replacing barley silage or barley grain with corn/wheat-based DDGS on dry matter intake (DMI), chewing activity, rumen fermentation, and milk production. Six ruminally cannulated lactating Holstein cows were used in a replicated 3 × 3 Latin square design with 21-d periods. Cows were fed the control diet (CON: 45% barley silage, 5% alfalfa hay, and 50% concentrate mix), a low forage (LF) diet or a low grain (LG) diet, in which barley silage or barley grain was replaced by DDGS at 20% of dietary dry matter, respectively. All diets were formulated to contain 18% crude protein and fed as total mixed rations. Compared with CON, cows fed the LF diet had greater DMI (26.0 vs. 22.4 kg/d), yields of milk (36.4 vs. 33.0 kg/d), milk protein (1.18 vs. 1.05 kg/d), and milk lactose (1.63 vs. 1.46 kg/d), but milk fat yield was not affected. The LF diet decreased chewing time compared with the CON diet (29.7 vs. 39.1 min/kg of DMI), but did not affect rumen pH and duration of rumen pH below 5.8. Compared with CON, feeding the LG diet tended to increase minimum and maximum rumen pH, but did not affect DMI, milk yield, and milk composition in this study. These results indicate that a partial replacement of barley silage with DDGS can improve the productivity of lactating dairy cows without negatively affecting rumen fermentation and milk fat production. Barley grain can also be partially replaced by DDGS in diets for lactating dairy cows without causing negative effects on productivity.  相似文献   

7.
Two experiments (Exp. 1 and 2) were conducted using a 4 × 4 Latin square design with 2 replications (n = 8) to evaluate effects of feeding Holstein dairy cows a total mixed ration containing 50 or 60% of ration dry matter (DM) from forages with or without supplementation of monensin. In Exp. 1, alfalfa silage (AS) was used as the major forage (55% forage DM), and corn silage (CS; 45% forage DM) was used to make up the rest of the forage portion of diets (55AS:45CS). In Exp. 2, CS was used as the major forage (70% forage DM) and alfalfa hay (AH; 30% forage DM) was used to make up the rest of the forage portion of diets (70CS:30AH). Experimental diets were arranged in a 2 × 2 factorial with 50 or 60% ration DM from forages and monensin supplemented at 0 or 300 mg/cow daily. In Exp. 1 (55AS:45CS), feeding 60% forage diets decreased DM intake (DMI; 27.3 vs. 29.6 kg/d) but maintained the same levels of milk (45.8 vs. 47.0 kg/d) compared with 50% forage diets. The efficiency of converting feed to milk or 3.5% fat-corrected milk was greater for cows fed 60% compared with 50% forage diets (1.7 vs. 1.6 kg milk or 3.5% fat-corrected milk/kg of DMI, respectively). Increasing dietary forage level from 50 to 60% of ration DM increased milk fat percentage (3.4 to 3.5%); however, adding monensin to the 60% forage diet inhibited the increase in milk fat percentage. Feeding 60% forage diets decreased feed cost, but this decrease ($0.5/head per day) in feed cost did not affect income over feed cost. Feeding 60% forage diets decreased fecal excretion of DM (10.6 to 9.6 kg/d) and nitrogen (N; 354 to 324 g/d) and improved apparent digestibility of neutral detergent fiber from 43 to 49% and apparent efficiency of feed N utilization from 32.3 to 35.9% compared with 50% forage diets. In Exp. 2 (70CS:30AH), feeding 60% forage diets decreased DMI from 29.6 to 28.2 kg but maintained the same level of milk (41.1 vs. 40.8 kg/d) and therefore increased the efficiency of converting feed to milk (1.46 vs. 1.38 kg milk/kg DMI) compared with 50% forage diets. Daily feed cost for feeding 60% forage diets was $0.3/head lower than for the 50% forage diets. Fecal excretion of DM (10.3 vs. 11.5 kg/d) was lower and fecal excretion of N (299 vs. 328 g/d) tended to be lower for 60% compared with 50% forage diets. Results from these 2 experiments suggest that a 60% forage diet consisting of either AS or CS as the major forage can be fed to high producing Holstein dairy cows without affecting milk production while improving or maintaining the efficiency of converting feed to milk and the apparent efficiency of utilization of feed N. Cows receiving a 60% forage diet had a similar or improved digestibility of nutrients with a similar or reduced fecal excretion of nutrients. Effects of monensin under the conditions of the current experiments were minimal.  相似文献   

8.
The objective of this study was to investigate the effects of physically effective neutral detergent fiber (peNDF) content of dairy cow diets containing barley silage as the sole forage source on feed intake, chewing activity, and ruminal pH. The experiment was designed as a replicated 3 × 3 Latin square using 6 lactating dairy cows with ruminal cannulas. Cows were offered 1 of 3 diets (high, medium, and low peNDF) obtained using barley silage that varied in particle length: long (theoretical cut length of 9.5 mm), medium (equal proportions of long and fine silages), and fine (theoretical cut length of 4.8 mm). The peNDF contents were determined using the Penn State Particle Separator and were 13.8, 11.8, and 10.5%, for the high, medium, and low diets, respectively. The physical effectiveness factors (defined as proportion retained on 19- and 8-mm screens) for the long and fine silages were 0.84 and 0.68, respectively. Increased forage particle size increased intake of peNDF but did not affect intake of DM and NDF. Ruminating and total chewing time were linearly increased with increasing dietary peNDF. Mean ruminal pH, area between the curve and a horizontal line drawn at pH 5.8 or 5.5, and time that pH was below 5.8 or 5.5 were not affected by peNDF content. Intake of peNDF was not correlated to any chewing activity but proportion of long particles on the 19-mm sieve tended to be correlated to ruminating chews (r = 0.36) and ruminating time (r = 0.36). These results indicate that increasing the peNDF content of diets increases chewing time. However, increased chewing time does not always improve ruminal pH status. Increasing chewing time and thus increasing salivary secretion may not fully overcome the effects of feed digestion and the production of fermentation acids that lower rumen pH. The results suggest that dietary peNDF and fermentable OM intake are critical in regulating rumen pH. Dietary particle size, expressed as peNDF, was a reliable indication of chewing activity.  相似文献   

9.
Alfalfa silages varying in theoretical chop length and diets high and low in forage proportion were used to evaluate whether increasing the physically effective (pe) neutral detergent fiber (NDF) content of dairy cow diets reduces the risk of acidosis. The experiment was designed as a replicated 4 × 4 Latin square using 8 ruminally cannulated lactating dairy cows. Treatments were arranged in a 2 × 2 factorial design; 2 forage particle lengths (FPL) of alfalfa silage (short and long) were combined with low (35:65) and high (60:40) forage:concentrate (F:C) ratios [dry matter (DM) basis]. Dietary peNDF content (DM basis) was determined from the sum of the proportion of dietary DM retained on either the 2 sieves (8 and 19 mm) or the 3 sieves (1.18, 8, and 19 mm) of the Penn State Particle Separator multiplied by the NDF content of the diet. The dietary peNDF contents ranged from 9.6 to 19.8% using 2 sieves, or from 28.6 to 34.0% using 3 sieves. Intake of peNDF was increased by increasing both the F:C ratio and the FPL of the diets. However, F:C ratio and FPL affected chewing activity differently; increasing F:C ratio increased chewing time but increasing FPL only increased chewing when a high-forage diet was fed. Mean ruminal pH was increased by 0.5 and 0.2 units with increasing F:C ratio and FPL, respectively. Cows fed the low F:C diet had > 10 or 7 h daily in which ruminal pH was below 5.8 or 5.5, respectively, compared with 1.2 and 0.1 h for cows fed the high F:C ratio diet. Increased F:C ratio reduced ruminal VFA concentration from 135 to 121 mM but increased the acetate:propionate ratio from 1.82 to 3.13. Dietary peNDF content when measured using 2 sieves was positively correlated to chewing time (r = 0.61) and mean ruminal pH (r = 0.73), and negatively correlated to the time that pH was below 5.8 or 5.5 (r = −0.46). This study shows that the risk of ruminal acidosis is high for cows fed a low F:C diet, particularly when finely chopped silage is used. Intake of dietary peNDF is a good indicator of ruminal pH status of dairy cows. Increasing the proportion of forage in the diet helps prevent ruminal acidosis through increased chewing time, a change in meal patterns, and decreased ruminal acid production. Increasing FPL elevates ruminal pH, but in low-forage diets increased FPL does not completely alleviate subacute acidosis because the fermentability of the diet is high and changes in chewing activity are marginal.  相似文献   

10.
A study was conducted to investigate the effects of physically effective (pe) neutral detergent fiber (NDF) content of dairy cow diets containing corn silage as the sole forage type on feed intake, meal patterns, chewing activity, and rumen pH. The experiment was designed as a replicated 3 × 3 Latin square using 6 lactating dairy cows with ruminal cannulas. Diets were chemically similar but varied in peNDF content (high, medium, and low) by altering corn silage particle length. The physical effectiveness factors for the long (original), medium (rechopped once), and fine (rechopped twice) silages were determined using the Penn State Particle Separator and were 0.84, 0.73, and 0.67, respectively. The peNDF contents of the diets were 11.5, 10.3, and 8.9%, for the high, medium, and low diets, respectively. Increased forage particle length increased intake of peNDF but did not affect intake of DM or NDF. Number of chews (chews/d) and chewing time, including eating and ruminating time, were linearly increased with increasing dietary peNDF. Meal patterns were generally similar for all treatments, except that number of meals was quadratically increased with increasing dietary peNDF. Mean ruminal pH, area between the curve and a horizontal line at pH 5.8 or 5.5, and time that pH was below 5.8 or 5.5 were not affected by peNDF content. Dietary peNDF content was moderately correlated to number of chews during eating (r = 0.41) and to total chewing time (r = 0.37). The present study demonstrates that increasing the peNDF content of diets increased chewing time, but increased chewing time did not necessarily reduce ruminal acidosis. Models that predict rumen pH should include both peNDF and fermentable OM intake. Dietary particle size, expressed as peNDF, was a reliable indicator of chewing activity.  相似文献   

11.
Barley silages varying in theoretical chop length were used to evaluate the effects of physically effective (pe) neutral detergent fiber (NDF) content of dairy cow diets on nutrient intakes, site and extent of digestion, microbial protein synthesis, and milk production. The experiment was designed as a replicated 3 × 3 Latin square using 6 lactating dairy cows with ruminal and duodenal cannulas. During each of 3 periods, cows were offered 1 of 3 diets (low, medium, and high peNDF) obtained using barley silage that varied in particle length: fine (theoretical chop length of 4.8 mm), medium (equal proportions of long and fine silages), and long (theoretical chop length of 9.5 mm). The peNDF contents were determined by multiplying the proportion (dry matter basis) of feed retained on the 2 screens (8 and 19 mm) of the Penn State Particle Separator by the NDF content of the diet, and were 10.5, 11.8, and 13.8% for the low, medium, and high diets, respectively. Increased forage particle length linearly increased intake of peNDF but intakes of dry matter, organic matter, starch, and N were highest for cows fed the medium peNDF diet. Digestibilities of organic matter, NDF, and acid detergent fiber in the total tract were linearly decreased with increasing dietary peNDF, although total digestibility of starch and N was not affected by the treatments. Nevertheless, decreased digestibility due to increased dietary peNDF did not reduce milk production or milk composition because the cows were in mid to late lactation. Ruminal microbial protein synthesis and microbial efficiency were numerically higher with the low peNDF than with the medium or high peNDF diets. These results indicate that increasing the peNDF content of a diet containing barley silage decreases fiber digestibility in the total tract and lowers microbial efficiency. Therefore, the benefits of increasing dietary particle size, expressed as peNDF, on reducing the risk of ruminal acidosis should be weighed against potentially negative effects on efficiency of feed use.  相似文献   

12.
Dry matter intakes (DMI), nutrient selection, and milk production responses of dairy cows grazing 3 herbage-based diets offered at 2 allowances were measured. The 2 allowances were 20 (low) and 30 (high) kg of dry matter (DM)/cow per day and these were applied to 3 herbage types: perennial ryegrass (PRG) and chicory (CHIC+) monocultures and a mixed sward of chicory and perennial ryegrass (MIX). The CHIC+ diet was supplemented with alfalfa hay (approximately 2 kg of DM/cow per day) to maintain dietary neutral detergent fiber (NDF) concentration and all diets were supplemented with energy-based pellets (6 kg of DM/cow per day). Holstein-Friesian dairy cows averaging 136 ± 30 d in milk were allocated to 4 replicates of the 6 treatments using stratified randomization procedures. Cows were adapted to their experimental diets over a 14-d period, with measurements of DMI, milk yield, and composition conducted over the following 10 d. Herbage DMI was lowest (12.8 vs. 14.0 kg of DM/d) for CHIC+ compared with the MIX and PRG, although total forage intake (grazed herbage plus hay) was similar (14.0 to 15.0 kg of DM/d) across the 3 treatments. Milk production, milk protein, and milk fat concentrations were not different between herbage types. Grazed herbage DMI increased with increasing herbage allowance and this was associated with increased milk protein concentration (3.23 to 3.34%) and total casein production (41.7 to 43.6 mg/g). Concentrations of polyunsaturated fatty acids in milk fat, particularly linoleic acid, were increased in milk from cows offered the CHIC+ or the MIX diets, indicating potential benefits of chicory herbage on milk fatty acid concentrations. Although feeding CHIC+ or MIX did not increase milk yield, these herbage types could be used as an alternative to perennial ryegrass pasture in spring.  相似文献   

13.
This study was conducted to investigate the nutrient digestibility and lactation performance when alfalfa was replaced with rice straw or corn stover in the diet of lactating cows. Forty-five multiparous Holstein dairy cows were blocked based on days in milk (164 ± 24.8 d; mean ± standard deviation) and milk yield (29.7 ± 4.7 kg; mean ± standard deviation) and were randomly assigned to 1 of 3 treatments. Diets were isonitrogenous, with a forage-to-concentrate ratio of 45:55 [dry matter (DM) basis] and contained identical concentrate mixtures and 15% corn silage, with different forage sources (on a DM basis): 23% alfalfa hay and 7% Chinese wild rye hay (AH), 30% corn stover (CS), and 30% rice straw (RS). The experiment was conducted over a 14-wk period, with the first 2 wk for adaptation. The DM intake of the cows was not affected by forage source. Yield of milk, milk fat, protein, lactose, and total solids was higher in cows fed diets of AH than diets of RS or CS, with no difference between RS and CS. Contents of milk protein and total solids were higher in AH than in RS, with no difference between CS and AH or RS. Feed efficiency (milk yield/DM intake) was highest for cows fed AH, followed by RS and CS. Cows fed AH excreted more urinary purine derivatives, indicating that the microbial crude protein yield may be higher for the AH diet than for RS and CS, which may be attributed to the higher content of fermentable carbohydrates in AH than in RS and CS. Total-tract apparent digestibilities of all the nutrients were higher in cows fed the AH diet than those fed CS and RS. The concentration of rumen volatile fatty acids was higher in the AH diet than in CS or RS diets, with no difference between CS and RS diets. When the cereal straw was used to replace alfalfa as a main forage source for lactating cows, the shortage of fermented energy may have reduced the rumen microbial protein synthesis, resulting in lower milk protein yield, and lower nutrient digestibility may have restricted milk production.  相似文献   

14.
Multiparous (n = 70) and primiparous (n = 66) Holstein cows were balanced by 305-d previous mature-equivalent milk yield and parity and assigned to 1 of 3 dietary treatments to evaluate the ratio of zinc sulfate to zinc amino acid complex (CZ) in pre- and postpartum Holstein cows fed diets containing 75 mg of added zinc/kg. Treatments were (1) 75 mg of supplemental zinc/kg of dry matter (DM) provided entirely as zinc sulfate (0-CZ); (2) 0-CZ diet, except 33.3 mg of zinc sulfate/kg of DM in the prepartum and 15.5 mg of zinc sulfate/kg of DM in the postpartum diet were replaced by CZ from Availa-Zn (16-CZ; Zinpro Corp., Eden Prairie MN); and (3) 0-CZ diet, except 66.6 mg of zinc sulfate/kg of DM in the prepartum and 40.0 mg of zinc sulfate/kg of DM in the postpartum diet was replaced by Availa-Zn (40-CZ). Cows were housed at the Iowa State University Dairy Farm and were individually offered a total mixed ration containing dietary treatments beginning at 28 ± 15 d before expected calving date until 250 d in milk. Relative to 0-CZ, multiparous cows (but not primiparous) fed CZ (16-CZ or 40-CZ) had increased (20%) colostrum IgG concentrations. Prepartum DM intake (DMI) was decreased with CZ supplementation. Postpartum DMI was decreased in cows fed CZ, whereas milk yield (MY) was increased in the 40-CZ-fed cows relative to those fed both 0-CZ and 16-CZ. Feed efficiency increased linearly when measured as MY/DMI, 3.5% fat-corrected MY/DMI, and solids-corrected MY/DMI. Regardless of level, feeding CZ decreased services per conception. Feeding 16-CZ decreased milk fat concentration and feeding CZ linearly increased milk urea nitrogen concentration. In summary, supplementing zinc as a mixture of CZ and zinc sulfate, as opposed to supplementing only zinc sulfate, has beneficial effects on production parameters in dairy cows, with those benefits becoming more apparent as the ratio of CZ to zinc sulfate increases.  相似文献   

15.
A study was conducted to evaluate whether the risk of acidosis in dairy cows can be lowered by increasing the physically effective fiber (peNDF) concentration of the diet, either through increased theoretical chop length of alfalfa silage or higher proportion of forage in the diet. The experiment was designed as a replicated 4 × 4 Latin square using 8 ruminally cannulated lactating dairy cows. Treatments were arranged in a 2 × 2 factorial design; 2 forage particle lengths (FPL) of alfalfa silage (short and long) were combined with low (35:65) and high (60:40) forage:concentrate (F:C) ratios [dry matter (DM) basis]. Dietary peNDF concentration (DM basis) was determined from the sum of the proportion of dietary DM retained either on the 2 sieves (8 and 19 mm) or on the 3 sieves (1.18, 8, and 19 mm) of the Penn State Particle Separator multiplied by the neutral detergent fiber concentration of the diet. The dietary peNDF concentrations were altered by changing the F:C or the FPL, and ranged from 10.7 to 17.5% using 2 sieves, or from 23.1 to 28.2% using 3 sieves. Intake of peNDF was increased by increasing FPL but not by increasing F:C ratio because of the reduction of DM intake at the higher F:C ratio. Chewing activity, including number of chews and chewing time, increased with increasing F:C ratio or FPL. Mean ruminal pH was elevated by 0.4 and 0.2 units with increasing F:C ratio and FPL, respectively. Lowering the F:C ratio decreased the duration that ruminal pH was below 5.8 (1.2 vs. 8 h/d). Increased F:C ratio or FPL reduced ruminal volatile fatty acids concentration from 137 to 122 or from 133 to 126 mM, respectively, whereas acetate:propionate ratio was increased from 2.55 to 3.46 with increasing F:C ratio. Dietary peNDF concentration measured using 2 sieves was correlated to chewing time (r = 0.57) and mean ruminal pH (r = 0.75), whereas dietary peNDF concentration measured using 3 sieves was correlated to mean ruminal pH (r = 0.83) and negatively correlated to the time that pH was below 5.8 (r = −0.78). This study shows that the risk of ruminal acidosis is high for cows fed a low F:C diet. Increasing the proportion of forage in the diet helps prevent ruminal acidosis through increased chewing time, a change in meal patterns, and decreased ruminal acid production. Increasing FPL elevates ruminal pH, but in low forage diets, increased FPL does not alleviate subacute acidosis because the fermentability of the diet is high and changes in chewing activity are marginal.  相似文献   

16.
This experiment was conducted to determine the effects of corn silage hybrids and nonforage fiber sources (NFFS) in high forage diets formulated with high dietary proportions of alfalfa hay (AH) and corn silage (CS) on ruminal fermentation and productive performance by early lactating dairy cows. Eight multiparous Holstein cows (4 ruminally fistulated) averaging 36 ± 6.2 d in milk were used in a duplicated 4 × 4 Latin square design experiment with a 2 × 2 factorial arrangement of treatments. Cows were fed 1 of 4 dietary treatments during each of the four 21-d replicates. Treatments were (1) conventional CS (CCS)-based diet without NFFS, (2) CCS-based diet with NFFS, (3) brown midrib CS (BMRCS)-based diet without NFFS, and (4) BMRCS-based diet with NFFS. Diets were isonitrogenous and isocaloric. Sources of NFFS consisted of ground soyhulls and pelleted beet pulp to replace a portion of AH and CS in the diets. In vitro 30-h neutral detergent fiber (NDF) degradability was greater for BMRCS than for CCS (42.3 vs. 31.2%). Neither CS hybrids nor NFFS affected intake of dry matter (DM) and nutrients. Digestibility of N, NDF, and acid detergent fiber tended to be greater for cows consuming CCS-based diets. Milk yield was not influenced by CS hybrids and NFFS. However, a tendency for an interaction between CS hybrids and NFFS occurred, with increased milk yield due to feeding NFFS with the BMRCS-based diet. Yields of milk fat and 3.5% fat-corrected milk decreased when feeding the BMRCS-based diet, and a tendency existed for an interaction between CS hybrids and NFFS because milk fat concentration further decreased by feeding NFFS with BMRCS-based diet. Although feed efficiency (milk/DM intake) was not affected by CS hybrids and NFFS, an interaction was found between CS hybrids and NFFS because feed efficiency increased when NFFS was fed only with BMRCS-based diet. Total volatile fatty acid production and individual molar proportions were not affected by diets. Dietary treatments did not influence ruminal pH profiles, except that duration (h/d) of pH <5.8 decreased when NFFS was fed in a CCS-based diet but not in a BMRCS-based diet, causing a tendency for an interaction between CS hybrids and NFFS. Overall measurements in our study reveal that high forage NDF concentration (20% DM on average) may eliminate potentially positive effects of BMRCS. In the high forage diets, NFFS exerted limited effects on productive performance when they replaced AH and CS. Although the high quality AH provided adequate NDF (38.3% DM) for optimal rumen fermentative function, the low NDF concentration of the AH and the overall forage particle size reduced physically effective fiber and milk fat concentration.  相似文献   

17.
The objective of this study was to investigate the potential of reducing enteric methane production from dairy cows by incorporating into the diet various sources of long-chain FA varying in their degree of saturation and ruminal availability. The experiment was conducted as a crossover design with 16 lactating dairy cows maintained in 2 groups and fed 4 dietary treatments in four 28-d periods. Eight ruminally cannulated primiparous cows (96 ± 18 d in milk) were assigned to group 1 and 8 multiparous cows (130 ± 31 d in milk) were assigned to group 2. The dietary treatments were: 1) a commercial source of calcium salts of long-chain fatty acids (CTL), 2) crushed sunflower seeds (SS), 3) crushed flaxseed (FS), and 4) crushed canola seed (CS). The oilseeds added 3.1 to 4.2% fat to the diet (DM basis). All 3 oilseed treatments decreased methane production (g/d) by an average of 13%. When corrected for differences in dry matter intake (DMI), compared with CTL, methane production (g/kg of DM intake) was decreased by feeding FS (−18%) or CS (−16%) and was only numerically decreased (−10%) by feeding SS. However, compared with the CTL, feeding SS or FS lowered digestible DMI by 16 and 9%, respectively, because of lowered digestibility. Thus, only CS lowered methane per unit of digestible DM intake. Feeding SS and CS decreased rumen protozoal counts, but there were no treatment effects on mean ruminal pH or total volatile fatty acid concentration. Milk efficiency (3.5% fat corrected milk/DMI), milk yield, and component yield and concentrations were not affected by oilseed treatments. The study shows that adding sources of long-chain fatty acids to the diet in the form of processed oilseeds can be an effective means of reducing methane emissions. However, for some oilseeds such as SS or FS, the reduction in methane can be at the expense of diet digestibility. The use of crushed CS offers a means of mitigating methane without negatively affecting diet digestibility, and hence, milk production.  相似文献   

18.
The effect of barley-based (BBD) or corn-based diets (CBD), or their equal blend (BCBD) on dry matter (DM) intake, feeding and chewing behavior, and production performance of lactating dairy cows was evaluated. Nine multiparous Holstein cows (75.6 ± 11.0 d in milk) were used in a triplicate 3 × 3 Latin square design with 21-d periods. Forage-to-concentrate ratio (40:60), forage neutral detergent fiber (20% of DM), total neutral detergent fiber (>29% of DM), and geometric mean particle size (4.3 mm) were similar among treatments. Meal patterns, including meal size and intermeal interval, were not affected by the dietary treatments and DM intake (25.6 kg/d) was not different among treatments. Ether extract intake increased linearly with increasing amount of the corn grain in the diets. Due to similar feed intake, actual milk (48.6 kg/d), 4% fat-corrected milk (36.8 kg/d), and fat- and protein-corrected milk (38.1 kg/d) yields were not affected by treatments. Average milk protein percentage and yield were 2.83% and 1.37 kg/d, respectively, and were not different across treatments. Milk fat percentage increased linearly with increasing amount of corn grain in the diets and was greater in CBD relative to BCBD but not BBD (2.31, 2.28, and 2.57%, for BBD, BCBD, and CBD, respectively). However, milk fat yield tended to show a linear increase as the amount of corn grain included in the diets increased. Results indicated that changing diet fermentability by replacing barley grain for corn grain in oil-supplemented diets did not influence feeding patterns and thereby no changes in feed intake and milk yield occurred.  相似文献   

19.
We used a novel corn wet-milling coproduct [CMP; approximately 70% dry matter, 28% crude protein, 36% neutral detergent fiber (NDF), and 18% nonstructural carbohydrates] in diets formulated to contain 18.4% forage NDF, 17.4% crude protein, 20.2% starch, and 3.7% sugar. Six primiparous, rumen-cannulated Jersey cows were assigned to a 6 × 6 Latin square design with a 2 × 3 factorial arrangement of treatments. Diets were formulated to contain 20 and 30% CMP with 3 forage sources [corn silage (CS) and 40.5% NDF, CS replaced with 10% alfalfa hay (AH) and 45.0% NDF, or CS replaced with 7% grass hay (GH) and 67.4% NDF], with each providing 18.4% forage NDF in the diet. Total-tract digestibilities of NDF, N, and organic matter were not affected by treatment. Similarly, no treatment effects were detected for kinetics of NDF disappearance in situ from CMP or respective forage source or for N disappearance in situ from CMP. Grass hay increased total and liquid pool size of rumen contents compared with AH (by 3.2 and 3.0 kg, respectively). Total time spent chewing increased in cows fed GH by over 35 min compared with those fed AH, partially due to a trend for increased minutes spent ruminating. Mean particle size of rumen contents also tended to be higher in the GH (0.55 mm) than AH (0.69 mm) diets. No effects on production of milk or milk components were detected, but dry matter intake (DMI) tended to decrease when CMP increased from 20 to 30%. Gross feed efficiency (fat-corrected milk/DMI) tended to be greater when cows were fed AH and GH compared with CS and was greater for AH than GH diets. In diets containing low starch, increasing CMP from 20 to 30% potentially maintained similar fat-corrected milk production with lower DMI. However, more consideration also should be given to interactions among forages with respect to fill, digestion, and passage of fiber with increased inclusion rates of CMP.  相似文献   

20.
Intake of physically effective neutral detergent fiber (peNDF) of dairy cows was altered by adjusting the proportion of forage in the diet and forage particle length, and effects on nutrient intake, site and extent of digestion, microbial N synthesis, and milk production were measured. The experiment was designed as a triplicated 4 × 4 Latin square using 12 lactating dairy cows, with 4 that were ruminally and duodenally cannulated, 4 that were ruminally cannulated, and 4 that were intact. Thus, the site and extent of digestion, and microbial N synthesis were measured in a single 4 × 4 Latin square. Treatments were arranged in a 2 × 2 factorial design; 2 forage particle lengths (FPL) of alfalfa silage (short and long) were combined with low (35:65) and high (60:40) forage:concentrate (F:C) ratios (dry matter basis). Dietary peNDF content was determined from the sum of the proportion (dry matter basis) of dietary dry matter retained either on the 2 screens (8- and 19-mm) or on the 3 screens (1.18-, 8-, and 19-mm) of the Penn State Particle Separator multiplied by the neutral detergent fiber content of the diet. An increased F:C ratio reduced intakes of dry matter and starch by 9 and 46%, respectively, but increased intake of fiber from forage sources by 53%. Digestibility of dry matter in the total tract was not affected, whereas total digestion of fiber and N was improved by increasing the F:C ratio. Improved total fiber digestion resulted from higher ruminal digestion, which was partially due to a shift in starch digestion from the rumen to the intestine with the increased F:C ratio. Actual milk yield was decreased but production of 4% fat-corrected milk was similar between the low and high F:C diets because of increased milk fat content. Increased FPL increased intake of peNDF, especially when the high F:C diet was fed. However, nutrient intakes, N metabolism in the digestive tract, and milk production were not affected. Digestibility of neutral detergent fiber in the total tract was increased because of improved fiber digestion in the rumen with increased FPL. These results indicate that feeding dairy cows a low F:C diet is beneficial in terms of increasing feed intake, microbial N synthesis, and milk production. However, low F:C diets do not maximize feed digestion and production efficiency because of the effects of subacute ruminal acidosis. Increased FPL improves fiber utilization with minimal effects on the digestion of other nutrients and milk production. Increasing dietary peNDF, through an increased proportion of forage or increased FPL, improves fiber digestion because of improved rumen function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号