首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
The peripartal dairy cow experiences a state of reduced liver function coupled with increased inflammation and oxidative stress. This study evaluated the effect of supplementing basal diets with rumen-protected Met in the form of MetaSmart (MS) or Smartamine M (SM) (both from Adisseo Inc., Antony, France) during the peripartal period on blood and hepatic biomarkers of liver function, inflammation, and oxidative stress. Thirty-seven multiparous Holstein cows were fed the same basal diet from −50 to −21 d relative to expected calving [1.24 Mcal/kg of dry matter (DM); no Met supplementation]. From −21 d to calving, the cows received diets (1.54 Mcal/kg of DM) with no added Met (control, CON; n = 13), CON plus MS (n = 11), or CON plus SM (n = 13). From calving through 30 d in milk (DIM), the cows received the same postpartal diet (1.75 Mcal/kg of DM; CON), or CON plus MS or CON plus SM. Liver and blood samples were harvested at various time points from −21 to 21 d relative to calving. Preplanned contrasts of CON versus SM + MS during prepartum (−21 and −10 d before calving) and postpartum (7, 14, and 21 d after calving) responses were evaluated. Cows fed MS or SM compared with CON had lower overall concentrations of plasma ceruloplasmin and serum amyloid A (SAA). Compared with CON, Met-supplemented cows had greater overall plasma oxygen radical absorbance capacity. Liver concentrations of glutathione and carnitine also were greater overall with Met supplementation. Milk choline and liver phosphatidylcholine were lower overall in cows fed Met compared with controls. Liver tissue choline concentrations did not differ. Data indicate that supplemental Met enhanced de novo glutathione and carnitine synthesis in liver and, thus, increased antioxidant and β-oxidation capacity. The greater decrease of IL-6 after calving coupled with lower ceruloplasmin and SAA in Met-supplemented cows indicated a reduction in proinflammatory signaling within liver. The lower hepatic phosphatidylcholine in Met-supplemented cows might have been associated with greater assembly or export of very low density lipoproteins. Overall, biomarker analyses in blood and tissue indicate that the beneficial effect of feeding SM and MS on postpartal cow performance is due in part to a better immunometabolic status.  相似文献   

2.
Eighteen primiparous and 42 multiparous Holstein cows were blocked according to parity and expected calving date and assigned randomly to 1 of 3 dietary treatments: 1) a basal diet (negative control), 2) the basal diet plus 2-hydroxy-4-methylthio butanoic acid isopropyl ester (MetaSmart, Adisseo Inc., Antony, France), or 3) the basal diet plus rumen-protected Met (Smartamine M, Adisseo Inc., Alpharetta, GA). Treatments were initiated 21 d before expected calving and continued through 140 d postpartum. Diets were similar in ingredient and chemical composition, except for the content of Met in metabolizable protein. MetaSmart [0.35% prepartum and 0.54% postpartum in diet dry matter (DM)] and Smartamine M (0.06% prepartum and 0.10% postpartum in diet DM) were added to the basal diet in amounts needed to achieve a 3.0:1 ratio of Lys to Met in metabolizable protein. Prepartum DM intake (DMI; 13.5 kg/d), body weight (687 kg), body condition score (3.81), postpartum milk yield (42.0 kg/d), milk fat yield (1,549 g/d), milk fat content (3.66%), milk true protein yield (1,192 g/d), and milk urea N content (12.9 mg/dL) were not different among treatments. Postpartum DMI and body condition score were greater and the ratios of milk:DMI and milk N:feed N were less for cows fed the MetaSmart diet than for cows fed the control and Smartamine M diets. Milk protein content was greater for the Smartamine M (2.87%) and MetaSmart (2.81%) treatments than for the control treatment (2.72%). Concentrations of Met and Met + Cys in total plasma AA were different among treatments, with values for the Smartamine M treatment being the highest, followed by the MetaSmart and control treatments. The results indicated that both MetaSmart and Smartamine M are effective in providing metabolizable Met, but clarification of their relative contributions to metabolizable Met is still needed.  相似文献   

3.
Low postpartum blood calcium remains one of the largest constraints to postpartum feed intake, milk yield, and energy balance in transitioning dairy cows. Supplemental dietary anions decrease the dietary cation-anion difference (DCAD) and reduce the risk for postpartum hypocalcemia. Prepartum management strategies aiming to minimize social stress and diet changes have resulted in a need to explore the effects of extended exposure to a negative DCAD (>21 d) diet. Holstein and Holstein-cross dairy cows (n = 60) were assigned to 1 of 3 treatments 42 d before expected calving to evaluate effects of supplying anions for 21 or 42 d during the dry period on energy status, postpartum production, and Ca homeostasis. Treatments included (1) a control diet (CON; DCAD = 12 mEq/100 g of DM), (2) a 21-d negative DCAD diet (21-ND; DCAD = 12 and −16 mEq/100 g of DM), and (3) a 42-d negative DCAD diet (42-ND; DCAD = −16 mEq/100 g of DM). Cows fed CON were fed positive DCAD prepartum for 42 d. Cows fed 21-ND received the positive DCAD (12 mEq/100 g of DM) diet for the first 21 d of the dry period and the anionic diet (−16 mEq/100 g of DM) from d 22 until calving. Cows fed 42-ND received the anionic diet for the entire dry period. Control and anionic diets were formulated by using 2 isonitrogenous protein mixes: (1) 97.5% soybean meal and (2) 52.8% BioChlor (Church & Dwight Co. Inc.), 45.8% soybean meal. Supplementing anions induced a mild metabolic acidosis, reducing urine pH for 21-ND and 42-ND compared with CON. Prepartum DMI was not different among treatments. Postpartum DMI was higher for 21-ND compared with CON (20.8 vs. 18.1 ± 1.1 kg/d), and 42-ND had similar DMI compared with 21-ND. During the first 56 d of lactation 21-ND had greater average milk production compared with CON (44.8 vs. 39.2 ± 2.1 kg/d). Average milk production by 42-ND was similar to 21-ND. Postpartum total blood Ca concentration was greater for 42-ND. Cows fed anionic diets prepartum tended to have lower lipid accumulation in the liver after calving compared with CON. These data suggest low-DCAD diets fed for 21 or 42 d during the dry period can have positive effects on postpartum DMI, Ca homeostasis, and milk production.  相似文献   

4.
5.
Our objectives were to determine if dietary cation-anion difference (DCAD) and source of anions influence periparturient feed intake and milk production of dairy cattle during the transition period. Diets differed in DCAD (cationic or anionic) and anionic supplement. The 4 diets used prepartum were (1) control [DCAD +20 mEq/100 g of dry matter (DM)], (2) Bio-Chlor (DCAD −12 mEq/100 g of DM; Church & Dwight Co. Inc., Princeton, NJ), (3) Fermenten (DCAD −10 mEq/100 g of DM; Church & Dwight Co. Inc.), and (4) salts (DCAD −10 mEq/100 g of DM). Urine pH was lower for cows that consumed an anionic diet prepartum compared with control. Prepartum diet had no effect on prepartum dry matter intake (DMI) of multiparous or primiparous cows. Postpartum DMI and milk yield for multiparous cows fed anionic diets prepartum were greater compared with those fed the control diet. Postpartum DMI and milk yield of primiparous cows were similar for prepartum diets. Feeding prepartum anionic diets did not affect plasma Ca at or near calving. However, cows fed anionic diets began their decline in plasma Ca later than control cows. Postpartum β-hydroxybutyrate and nonesterified fatty acids were lower for primiparous cows fed prepartum anionic diets compared with those fed the control diet. Prepartum and postpartum plasma glucose concentrations were not affected by prepartum diet for all cows. Liver triglyceride differed for parity by day. Parities were similar at 21 d prepartum, but at 0 d and 21 d postpartum, levels were greater for multiparous cows. Results indicate that decreasing the DCAD of the diet during the prepartum period can increase postpartum DMI and milk production of multiparous cows without negatively affecting performance of primiparous cows.  相似文献   

6.
An experiment was conducted to determine the effect of plane of energy intake prepartum on postpartum performance. Primiparous (n = 24) and multiparous (n = 23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A moderate energy diet [1.63 Mcal of net energy for lactation (NEL)/kg; 15% crude protein (CP)] was fed for either ad libitum intake (OVR) or restricted intake (RES) to supply 150 or 80% of National Research Council (2001) energy requirement, respectively, for dry cows in late gestation. To limit energy intake to 100% of NRC requirement at ad libitum dry matter intake (DMI), chopped wheat straw was included as 31.8% of dry matter (DM) in a control diet (CON; 1.21 Mcal of NEL/kg of DM; 14% CP). Multiparous and primiparous cows assigned to OVR gained body condition during the dry period [initial body condition score (BCS) = 3.3], but were not overconditioned by parturition (BCS = 3.5). Multiparous cows in the OVR group lost more BCS postpartum than multiparous RES or CON cows. Primiparous cows lost similar amounts of BCS among dietary treatment groups postpartum. Addition of chopped wheat straw to CON diets prevented a large decrease in DMI prepartum in both primiparous and multiparous cows. During the first 3 wk postpartum, DMI as a percentage of BW was lower for multiparous OVR cows than for multiparous RES cows. Prepartum diet effects did not carry over through the entire 8-wk lactation period. Because of greater mobilization of body stores, OVR cows had greater milk fat percentage and greater 3.5% fat-corrected milk yield during the first 3 wk postpartum. Multiparous cows assigned to OVR experienced a 55% decrease in energy balance and primiparous cows a 40% decrease in energy balance during the last 3 wk before parturition, compared with CON or RES cows that had little change. Multiparous cows fed OVR had a greater contribution of energy from body energy reserves to milk energy output than either CON or RES cows. Overfeeding energy prepartum resulted in large changes in periparturient energy balance. Even in the absence of overconditioning, a large change in DMI and energy balance prepartum influenced postpartum DMI and BCS loss, especially for multiparous cows. Chopped wheat straw was effective at controlling energy intake prepartum, although primiparous cows did not achieve predicted DMI. Even so, controlling or restricting energy intake in primiparous cows was not detrimental to lactational performance over the first 8 wk of lactation.  相似文献   

7.
Limit-feeding dry cows a high-energy diet may enable adequate energy intake to be sustained as parturition approaches, thus reducing the extent of negative energy balance after parturition. Our objective was to evaluate the effect of dry period feeding strategy on plasma concentrations of hormones and metabolites that reflect energy status. Multiparous Holstein cows (n = 18) were dried off 45 d before expected parturition, paired by expected calving date, parity, and previous lactation milk yield, and randomly assigned to 1 of 2 dry-period diets formulated to meet nutrient requirements at ad libitum or limited intakes. All cows were fed the same diet for ad libitum intake after parturition. Prepartum dry matter intake (DMI) for limit-fed cows was 9.4 kg/d vs. 13.7 kg/d for cows fed ad libitum. During the dry period, limit-fed cows consumed enough feed to meet calculated energy requirements, and ad libitum-fed cows were in positive calculated net energy for lactation (NEL) balance (0.02 vs. 6.37 Mcal/d, respectively). After parturition, milk yield, milk protein concentration, DMI, body condition score, and body weight were not affected by the prepartum treatments. Cows limit fed during the dry period had a less-negative calculated energy balance during wk 1 postpartum. Milk fat concentration and yield were greater for the ad libitum treatment during wk 1 but were lower in wk 2 and 3 postpartum. Plasma insulin and glucose concentrations decreased after calving. Plasma insulin concentration was greater in ad libitum-fed cows on d −2 relative to calving, but did not differ by dietary treatment at other times. Plasma glucose concentrations were lower before and after parturition for cows limit-fed during the dry period. Plasma nonesterified fatty acid concentrations peaked after parturition on d 1 and 4 for the limit-fed and ad libitum treatments, respectively, and were greater for limit-fed cows on d −18, −9, −5, and −2. Plasma tumor necrosis factor-α concentrations did not differ by treatment in either the pre- or postpartum period, but tended to decrease after parturition. Apart from a reduction in body energy loss in the first week after calving, limit feeding a higher NEL diet during the dry period had little effect on intake and milk production during the first month of lactation.  相似文献   

8.
Twenty-four multiparous Holstein cows (775 ± 24 kg body weight; 3.4 ± 0.11 body condition score) were used in a randomized complete block design experiment to determine the impact of increased ruminal butyrate from the fermentation of lactose on metabolism and lactation. Dietary treatments were either a corn-based control diet (CON) or a diet containing lactose at 15.7% of diet dry matter (LAC). Experimental diets were fed from 21 d before expected calving through 21 d in milk (DIM). Blood was sampled at −21, −14, −7, −2, 2, 7, 14, and 21 DIM, rumen fluid at −21, −7, and 7 DIM, and liver tissue via biopsy at 7 and 14 DIM. Pre- and postpartum dry matter intake (DMI) through 28 DIM averaged 12.8 and 17.7 kg/d, respectively, and did not differ between treatments; however, cows fed LAC did not exhibit a prepartum decrease in DMI. Milk yield was unaffected by treatments and averaged 45.7 kg/d during the first 70 DIM. Plasma glucose, insulin, and non-esterified fatty acids were not affected by dietary treatments. Feeding LAC increased the ruminal proportion of butyrate both pre- (11.3 vs. 9.2 ± 0.45%) and postpartum (13.0 vs. 10.3 ± 0.67%). Likewise, circulating plasma β-hydroxybutyrate was increased both pre- (6.1 vs. 4.2 ± 0.31 mg/dL) and postpartum (14.6 vs. 8.34 ± 1.7 mg/dL) when feeding LAC compared with CON. Liver lipid content was decreased (8.6. vs. 14.7 ± 1.5% of wet weight) in cows fed LAC relative to those fed CON, whereas liver glycogen was not affected by dietary treatments. Feeding lactose to transition dairy cows increased the proportion of butyrate in the rumen and β-hydroxybutyrate in plasma and decreased liver lipid but did not affect lactation performance.  相似文献   

9.
The objectives of this study were to investigate the effects of forage source [wheat straw (WS) or orchardgrass hay (OG)] and total amount of diet dry matter fed [ad libitum or restricted to 70% of predicted dry matter intake (DMI)] prepartum on postpartum performance. The study design was a 2 × 2 factorial design with 10 cows per treatment. Treatments were WS total mixed ration (TMR) ad libitum, OG TMR ad libitum, WS TMR restricted, and OG TMR restricted. The WS TMR (dry matter basis) contained 30% WS, 20.7% corn silage, 10.0% alfalfa hay, 18.2% ground corn, 16.8% soybean meal, and 4.3% molasses mineral mix (14.7% CP, 1.5 Mcal/kg of net energy for lactation, 37.0% neutral detergent fiber). The OG TMR contained 30% OG, 46.2% corn silage, 10.0% alfalfa hay, 9.5% soybean meal, and 4.3% molasses (14.2% CP, 1.5 Mcal/kg of net energy for lactation, 41.0% neutral detergent fiber). Cows received 1 lactation diet after calving (17.7% CP, 1.6 Mcal/kg of net energy for lactation, 27.3% neutral detergent fiber). Total diet DMI prepartum was higher for ad libitum than for restricted as designed, but forage source had no effect on DMI. Total tract apparent digestibilities of DM and NDF were greater for OG than for WS. Postpartum DMI expressed as a percentage of body weight for the first week of lactation was higher for ad libitum than for restricted diets. Postpartum DMI during the first 30 d of lactation was higher for OG than for WS, but no effect was observed for the amount fed prepartum. Milk yield during the first week of lactation was higher for OG than for WS; however, during the first 30 d, 3.5% fat-corrected milk yield and yield of milk fat were highest for OG TMR restricted and WS TMR ad libitum. Prepartum treatments had a limited effect on pre- and postpartum lipid metabolism; however, cows fed WS TMR ad libitum had the highest postpartum β-hydroxybutyrate. Eating behavior was observed by 10-min video scans of 24-h video surveillance for 5 d pre- and postpartum. Prepartum eating time and eating bouts tended to be greater by WS than for OG, and postpartum eating time per kilogram of neutral detergent fiber intake tended to be greater for WS than for OG. Results indicate that forage source and amount of DM fed prepartum affected postpartum performance and tended to alter the behavior of cows in tie-stall barns.  相似文献   

10.
Multiparous (n = 70) and primiparous (n = 66) Holstein cows were balanced by 305-d previous mature-equivalent milk yield and parity and assigned to 1 of 3 dietary treatments to evaluate the ratio of zinc sulfate to zinc amino acid complex (CZ) in pre- and postpartum Holstein cows fed diets containing 75 mg of added zinc/kg. Treatments were (1) 75 mg of supplemental zinc/kg of dry matter (DM) provided entirely as zinc sulfate (0-CZ); (2) 0-CZ diet, except 33.3 mg of zinc sulfate/kg of DM in the prepartum and 15.5 mg of zinc sulfate/kg of DM in the postpartum diet were replaced by CZ from Availa-Zn (16-CZ; Zinpro Corp., Eden Prairie MN); and (3) 0-CZ diet, except 66.6 mg of zinc sulfate/kg of DM in the prepartum and 40.0 mg of zinc sulfate/kg of DM in the postpartum diet was replaced by Availa-Zn (40-CZ). Cows were housed at the Iowa State University Dairy Farm and were individually offered a total mixed ration containing dietary treatments beginning at 28 ± 15 d before expected calving date until 250 d in milk. Relative to 0-CZ, multiparous cows (but not primiparous) fed CZ (16-CZ or 40-CZ) had increased (20%) colostrum IgG concentrations. Prepartum DM intake (DMI) was decreased with CZ supplementation. Postpartum DMI was decreased in cows fed CZ, whereas milk yield (MY) was increased in the 40-CZ-fed cows relative to those fed both 0-CZ and 16-CZ. Feed efficiency increased linearly when measured as MY/DMI, 3.5% fat-corrected MY/DMI, and solids-corrected MY/DMI. Regardless of level, feeding CZ decreased services per conception. Feeding 16-CZ decreased milk fat concentration and feeding CZ linearly increased milk urea nitrogen concentration. In summary, supplementing zinc as a mixture of CZ and zinc sulfate, as opposed to supplementing only zinc sulfate, has beneficial effects on production parameters in dairy cows, with those benefits becoming more apparent as the ratio of CZ to zinc sulfate increases.  相似文献   

11.
The objective of this study was to determine the effects of feeding increased dietary crude protein (CP) on productive performance and indicators of protein and energy metabolism during 21 d postpartum. Thirty multiparous Holstein dairy cows were balanced by previous lactation milk yield, body condition score (BCS) at calving, and parity and randomly allocated to 1 of 3 dietary treatments from calving until 21 d postpartum. Dietary treatments were 16.0% CP with 5.0% rumen undegradable protein (RUP) based on dry matter (DM) (16CP), 18.7% CP with 7.0% RUP based on DM (19CP), and 21.4% CP with 9.0% RUP based on DM (21CP). Diets were similar in net energy for lactation (approximately 1.7 Mcal/kg of DM) and CP levels were increased with corn gluten meal and fish meal. Dry matter intake (DMI) was increased by increasing dietary CP levels from 16.0 to 19.0% of DM, but dietary CP beyond 19.0% had no effect on DMI. Milk yields were 4.7 and 6.5 kg/d greater in cows fed the 19CP and 21CP diets versus those fed the 16CP diet, whereas 4% fat-corrected milk was greater for cows fed the 21CP than the 16CP diet (36.0 vs. 31.4 kg/d). Milk protein content and yield, lactose yield, and milk urea nitrogen were elevated by increased dietary CP. Milk lactose content and fat yield were not different among dietary treatments, but milk fat content tended to decline with increasing content of CP in diets. High CP levels increased milk N secretion but decreased milk N efficiency. Apparent digestibility of DM, CP, and neutral detergent fiber was greater on the 19CP and 21CP diets compared with the 16CP diet. Cows fed the 19CP and 21CP diets lost less body condition relative to those fed the 16CP diet over 21 d postpartum. Feeding higher CP levels increased the concentrations of serum albumin, albumin to globulin ratio, and urea nitrogen and decreased aspartate aminotransferase, nonesterified fatty acids, and β-hydroxybutyrate, but had no effect on globulin, glucose, cholesterol, or triacylglycerol. These findings indicated that elevating dietary CP up to 19.0% of DM using RUP supplements improved DMI, productive performance and the indicators of protein and energy metabolism from calving to 21 d postpartum.  相似文献   

12.
Extended postpartum anovulatory intervals (PPAI) are a major contributor to infertility in seasonal dairy systems constrained to 365-d calving intervals. This study was conducted to evaluate the effects of pasture-based dietary energy intakes during the transitional calving period on PPAI. Sixty-eight multiparous Holstein-Friesian cows were assigned to high [11.9 kg of dry matter (DM)/d] or low (4.8 kg of DM/d) pasture intakes for 29 ± 7.7 d prepartum. After calving, cows within each prepartum diet were assigned to either a high (13.5 kg of DM/d) or low (8.6 kg of DM/d) pasture intake for 35 d in a 2 × 2 factorial arrangement. Progesterone concentrations were measured in milk samples collected twice weekly to determine PPAI, which was defined as the day on which progesterone level was elevated to ≥3 ng/mL with subsequent concentrations being consistent with an ovulatory cycle. Blood samples were collected before initiation of treatments, and at d −21, −14, −7, 0 (day of calving), 1, 2, 3, 4, 7, 14, 21, 28, and 35 in all cows. The PPAI was associated with body condition score, concentrations of plasma insulin and insulin-like growth factor-I, and growth hormone. Postpartum intake did not affect these metabolic hormones or PPAI, but yield of FCM during the first 35 d was reduced by 23% among cows on a restricted intake. No relationships were found between PPAI and milk production characteristics. These data demonstrate that when pasture is the sole dietary source during the calving transition period, PPAI may be influenced by prepartum intake levels, whereas postpartum intake influences milk yield, but not PPAI. The underlying mechanism(s) that associates the prepartum period to PPAI may involve the sensitivity of the growth hormone-insulin-like growth factor axis to dietary intake levels. Nonetheless, PPAI in grazing multiparous dairy cows appears largely unresponsive to intake levels during the calving transition period.  相似文献   

13.
The aim of this study was to compare 2 dry-cow management strategies and evaluate the effect of shortened dry period strategy on feed intake, metabolism, and postpartum performance of dairy cows in early lactation. Twenty-nine high-yielding dairy cows were divided into 2 groups. The control (CON) group (n = 14) was assigned to a traditional dry period of approximately 60 d (57 ± 5.9 d) and was fed a far-off dry cow ration from dry-off to −21 d relative to expected parturition. From d −21 relative to expected parturition, the cows were switched to a precalving ration containing an additional 3 kg of concentrates. The cows of the experimental group (n = 15) were assigned to a shortened dry period (SDP; 35 ± 6.3 d) and were continuously fed a late-lactation diet from d −60 d relative to expected parturition until calving. After calving, both groups were fed the same lactation diet corresponding to their lactation requirements and cows were followed for 100 d of lactation. Prepartum dry matter intake of the cows assigned to an SDP and fed a late-lactation diet was approximately 4.11 kg/cow per day greater compared with the CON group during the 60 d. However, no effect of dry period strategy on postpartum dry matter intake was detected. The cows with an SDP produced approximately 2.78 kg/d (6.9%) less milk in the first 100 d of lactation than CON cows; the difference was not statistically significant. No differences were observed in live body weight, body condition score, or back-fat thickness between the treatments. Similarly, no differences existed in concentrations of plasma metabolites. The cows of the SDP group showed lower pH and increased concentrations of lactic acid and volatile fatty acids prepartum than the CON cows. Postpartum concentrations of lactic acid, volatile fatty acids, and NH3 and pH in rumen fluid did not differ between the treatments. Shortening of the dry period did not affect the colostrum quality or birth weights of the calves. Based on the results of this study, a traditional dry period management strategy appeared to be more favorable, considering the dry matter intake and milk production, compared with an SDP and feeding a late-lactation diet throughout the dry period.  相似文献   

14.
Our objective was to examine the effect of dietary cation-anion difference (DCAD) on performance and acid-base status of cows postpartum. Sixteen Holstein and 8 Jersey multiparous cows were used immediately after calving to compare 2 DCAD [22 or 47 milliequivalents (Na + K − Cl − S)/100 g of dry matter (DM)] in a completely randomized design. The corn silage-based diets were formulated to contain 19.0% crude protein, 25.4% neutral detergent fiber, 15.0% acid detergent fiber, and 1.69 Mcal of net energy for lactation per kilogram (on a DM basis). An additional 2.3 kg of alfalfa hay was fed during the first 5 d postpartum, and then milk, blood, and urine samples were collected weekly for 6 wk. Repeated-measures (with an extra between-cow effect) mixed model analysis indicated that DCAD did not affect DM intake (18.2 and 18.3 kg/d), milk production (33.5 and 33.3 kg/d), milk composition (3.96 and 4.11% fat, 3.11 and 3.00% protein, and 8.95 and 8.83% solids-not-fat), jugular venous blood pH (7.395 and 7.400), HCO3 concentration (27.3 and 27.6 mEq/L), or partial pressure of CO2 (46.7 and 46.5 mmHg). Elevated coccygeal venous plasma branched-chain AA (431 and 558 μM) and ratio of essential AA to total AA (0.390 and 0.434) in cows with DCAD of 22 vs. 47 mEq/100 g of DM indicated that N metabolism in the rumen was affected, probably resulting in more microbial protein flowing to the small intestine. Urinary pH tended to increase with DCAD (8.12 vs. 8.20). Higher net acid excretion in cows with DCAD of 22 vs. 47 mEq/100 g of DM (−24 and −41 mM:mM) suggested that net acid excretion was much more indicative of acid load than blood acid-base parameters in cows postpartum. Intake of DM and performance of cows postpartum were not improved when DCAD increased from 22 to 47 mEq/100 g of DM, likely because cows immediately after calving respond more variably to dietary treatments and that makes treatment effects difficult to detect.  相似文献   

15.
Objectives of the current experiment were to evaluate plasma concentrations of metabolites and haptoglobin peripartum, uterine health and involution, and follicle growth and resumption of cyclicity of Holstein (HO) and Montbéliarde-sired crossbred cows. Cows (52 HO and 52 crossbred) were enrolled in the study 45 d before expected calving date. Cows had body weight and body condition score recorded on d −45, −14, 0, 1, 28, and 56 relative to calving. Dry matter intake was calculated for a subgroup of cows (25 HO and 38 crossbred) from 6 wk before to 6 wk after calving. Blood was sampled weekly from d −14 to 56 relative to calving for determination of glucose, nonesterified fatty acid, and β-hydroxybutyrate concentrations; from d −7 to 21 relative to calving for determination of haptoglobin concentration; and from d 14 to 56 postpartum for determination of progesterone concentration. Cows were examined at calving and on d 4, 7, 10, and 14 postpartum for diagnosis of postparturient diseases, on d 24 postpartum for diagnosis of purulent vaginal discharge, and on d 42 postpartum for diagnosis of subclinical endometritis. Uteri and ovaries were examined by ultrasonography every 3 d from d 14 to 41 postpartum. Milk yield and composition were measured monthly and yield of milk, fat, protein, and energy-corrected milk were recorded for the first 90 d postpartum. Body weight was not different between Holstein and crossbred cows, but HO cows had reduced body condition score compared with crossbred cows. Even though DMI from 6 wk before to 6 wk after calving tended to be greater for HO cows (16.8 ± 0.7 vs. 15.3 ± 0.5 kg/d), HO cows tended to have more pronounced decline in dry matter intake, expressed in percentage of body weight from d −15 to 0 relative to calving. Energy-corrected milk and nonesterified fatty acid and β-hydroxybutyrate concentrations were not different between breeds. No differences were observed in incidence of retained fetal membranes, metritis, and subclinical endometritis, but HO cows tended to be more likely to have pyrexia from d 0 to 15 postpartum (50.0 vs. 31.4%) and to have greater incidence of purulent vaginal discharge (44.2 vs. 26.5%) than crossbred cows. Holstein cows were more likely to have at least 1 uterine disorder postpartum than crossbred cows (63.5 vs. 36.7%). No differences between breeds were observed in uterine involution. Holstein cows had larger subordinate follicles (10.1 ± 0.4 vs. 8.9 ± 0.5) and a greater number of class III follicles (1.6 ± 0.1 vs. 1.2 ± 0.1) than crossbred cows. Furthermore, the first corpus luteum postpartum of HO cows was diagnosed at a slower rate compared with crossbred cows. Crossbred cows had improved uterine health compared with HO cows and this may have been a consequence of heterosis and (or) breed complementarity and less pronounced decrease in DMI during the last days of gestation.  相似文献   

16.
Twenty-four multiparous Holstein cows [body weight, 759 kg (SD = 30 kg); body condition score, 3.2 (SD = 0.13)] were used in a randomized complete block design to determine the effect of feeding α-amylase during the transition period on rumen fermentation, key metabolic indicators, and lactation performance. Cows were assigned to either a control diet or the control diet supplemented with α-amylase (662 fungal amylase units per gram, AMA) at 0.1% of diet dry matter (DM). Experimental diets were fed from 21 d before expected calving through 21 d in milk. From 22 to 70 d in milk, all cows were fed a similar lactation cow diet. Average pre- and postpartum DM intakes were 12.4 and 17.8 kg/d, respectively, and did not differ between treatments; however, DM intakes during the last week prepartum decreased to a greater degree in AMA than control cows compared with wk −2. Supplementing diets with α-amylase tended to increase proportions of ruminal butyrate prepartum but not postpartum. Treatment differences were not detected for concentrations of insulin in plasma and lipid and glycogen in liver tissue. Prepartum, concentrations of β-hydroxybutyrate and nonesterified fatty acids were increased in cows fed AMA compared with the control diet. Postpartum, concentrations of glucose in plasma tended to be increased by feeding AMA. Increased plasma β-hydroxybutyrate and nonesterified fatty acids pre- but not postpartum and a tendency for increased plasma glucose postpartum demonstrate shifting reliance from lipid- to carbohydrate-based metabolism postpartum in cows fed α-amylase.  相似文献   

17.
The present study aimed to determine whether the improvement in postpartum energy balance frequently reported in cows under short dry period management could be due to an improvement in ruminal function related to the reduction in the number of diet changes before calving. Six multiparous and 6 primiparous Holstein cows equipped with ruminal cannula were assigned to 6 blocks of 2 cows each according to parity, projected milk production at 305 d, and expected calving date. Within each block, cows were randomly assigned to either a conventional (CDP; 63.2 ± 2.0 d) or a short dry period (SDP; 35.2 ± 2.0 d) management in a randomized complete block design. The CDP cows were fed a far-off diet until 28 d before calving, followed by a prepartum diet, whereas SDP cows received only the prepartum diet. After calving, both groups were fed the same lactation diet. Milk yield and dry matter intake (DMI) were recorded daily and milk composition, weekly. Blood samples were taken twice a week during the first 4 wk postcalving and weekly otherwise. Omasal and ruminal samples were collected approximately 3 wk prior and 3 wk after calving. From 28 d before calving until calving, when the 2 groups of cows were fed the same prepartum diet, there was no effect of the dry period length management on DMI, plasma concentrations of β-hydroxybutyrate, nonesterified fatty acids, and glucose and nutrient digestibility in the rumen. However, CDP cows tended to have lower ruminal pH and higher ruminal concentrations of total volatile fatty acids than SDP cows. From calving to 60 d in milk, daily DMI was higher for SDP than for CDP cows (22.3 ± 0.44 vs. 20.7 ± 0.30 kg), but milk production and milk concentrations and yields of fat, protein, and total solids were not affected by the dry period length management. After calving, body weight loss was reduced and body condition score tended to increase more rapidly for SDP than for CDP cows. Nutrient digestibility in the rumen, expressed in kilograms per day, was greater or tended to be greater for SDP cows, but differences were no longer significant when expressed per unit of nutrient ingested. The decrease in plasma nonesterified fatty acids and β-hydroxybutyrate in SDP cows without effect on milk yield suggests an improved energy balance likely due to greater DMI. Results from the present study seem to indicate that reducing the number of diet changes before calving could facilitate ruminal adaptation to the lactation diet and improve energy balance postpartum.  相似文献   

18.
Forty cows and twenty heifers were used to study the effects of dietary energy density during late gestation and early lactation on lactation performance and ruminal parameters. A 2 x 2 factorial arrangement of treatments was used. During prepartum (-28 d to calving), animals were fed a low energy density diet [DL; 1.58 Mcal of net energy for lactation (NE(L))/kg, 40% neutral detergent fiber (NDF) and 38% nonfiber carbohydrate (NFC)] or a high energy diet (DH; 1.70 Mcal NE(L)/kg, 32% NDF and 44% NFC). After calving, half of the cows from each prepartum treatment group were assigned to a low energy density diet (L; 1.57 Mcal NE(L)/kg, 30% NDF and 41% NFC) or a high energy density diet (H; 1.63 Mcal NE(L)/kg, 25% NDF and 47% NFC) until d 20 postpartum. After d 20, all cows were fed H until d 70. Animals fed DH had 19.8% greater dry matter intake (DMI; % of body weight) and 21.5% greater energy intake than animals fed DL prepartum and the response was greater for cows compared to heifers. Animals fed DH had lower ruminal pH compared to animals fed DL, but no major changes in volatile fatty acid concentrations were observed. Effects of dietary energy density during prepartum on postpartum production responses were dependent on parity. Primiparous cows fed DL had higher 3.5% fat-corrected milk yield and milk fat production and percentage during the first 10 wk of lactation than those fed DH. Prepartum diet did not affect lactation performance of multiparous cows. Cows fed H had higher DMI and energy intake for the first 20 d of lactation compared to cows fed L. Diets did not affect DMI after the third wk of lactation. Milk production increased faster for cows fed H compared to cows fed L. Animals fed DL-L sequence of treatments tended to have the lowest energy intake during the first 10 wk of lactation. Prepartum treatments did not affect ruminal fermentation characteristics postpartum. Cows fed H had lower ruminal pH and higher propionate concentrations than cows fed L. No prepartum x postpartum interactions were observed for ruminal fermentation parameters. The effects of DH on prepartum DMI did not carry over to the postpartum period or influence early postpartum production. Increasing concentrate content of the diet immediately postpartum instead of delaying the increase until d 21 postpartum is associated with a higher rate of increase.in milk production and higher DMI.  相似文献   

19.
The objective of this study was to investigate the effects of dietary energy levels and rumen-protected lysine supplementation on serum free fatty acid levels, β-hydroxybutyrate levels, dry matter (DM) intake, and milk production and composition. Treatments were arranged in a 2 × 2 factorial design with 2 dietary energy levels [high net energy for lactation (NEL) = 1.53 Mcal/kg of DM vs. low NEL = 1.37 Mcal/kg of DM; HE vs. LE) fed either with rumen-protected lysine (bypass lysine; 40 g/cow per day) or without rumen-protected lysine (control). Sixty-eight third-lactation Holstein dairy cows entering their fourth lactation were randomly allocated to 4 treatments groups: HE with bypass lysine, HE without bypass lysine, LE with bypass lysine, and LE without bypass lysine. Groups were balanced based upon their expected calving date, previous milk yields, and body condition score. All cows were fed the same diet (NEL = 1.34 Mcal/kg of DM) during the dry period prior to the trial. Rumen-protected lysine was top-dressed on a total mixed ration to deliver 9.68 g/d of metabolizable lysine to pre- and postpartum cows. After calving, all cows received the same TMR (1.69 Mcal/kg of DM). Blood samples were collected at ?21, ?14, ?7, 0, 3, 7, 14, and 21 d relative to calving, and free fatty acids and β-hydroxybutyrate concentrations were measured. Amount of feed offered and orts were collected and measured for individual cows 4 d/wk. Milk samples were collected once per week following calving, and milk composition was analyzed. Feeding high NEL to close-up cows decreased the concentrations of free fatty acid and β-hydroxybutyrate in prepartum cows but not in postpartum cows. Addition of rumen-protected lysine increased postpartum DM intake, and decreased serum free fatty acid and β-hydroxybutyrate concentrations. Neither energy nor rumen-protected lysine supplementation nor their interaction affected milk yield or fat or lactose yields. However, cows in the group receiving HE with bypass lysine tended to produce more milk compared with other groups and had a lower blood β-hydroxybutyrate concentration postpartum. These results indicate that feeding a high-energy diet together with rumen-protected lysine improved DM intake and lowered serum free fatty acid and β-hydroxybutyrate concentrations in transition cows.  相似文献   

20.
Forty-five multiparous Holstein cows and 15 springing Holstein heifers were used in a randomized block design trial to determine the effect of length of feeding a negative dietary anion-cation difference (DCAD) diet prepartum on serum and urine metabolites, dry matter (DM) intake, and milk yield and composition. After training to eat through Calan doors (American Calan Inc., Northwood, NH), cows within parity were assigned randomly to 1 of 3 treatments and fed a negative-DCAD diet for 3 (3W), 4 (4W), or 6 wk (6W) before predicted calving. Actual days cows were fed negative-DCAD diets was 19.2 ± 4.1, 27.9 ± 3.1, and 41.5 ± 4.1d for 3W, 4W, and 6W, respectively. Before the trial, all cows were fed a high-forage, low-energy diet. During the trial, cows were fed a diet formulated for late gestation (14.6% CP, 42.3% NDF, 20.5% starch, 7.1% ash, and 0.97% Ca) supplemented with Animate (Prince Agri Products Inc., Quincy, IL), with a resulting DCAD (Na + K − Cl − S) of −21.02 mEq/100 g of DM. After calving, cows were fed a diet formulated for early lactation (18.0% CP, 36.4% NDF, 24.2% starch, 8.1% ash, and 0.94% Ca) for the following 6 wk with a DCAD of 20.55 mEq/100 g of DM. Urine pH was not different among treatments before calving and averaged 6.36. No differences were observed in prepartum DM intake, which averaged 11.4, 11.5, and 11.7 kg/d for 3W, 4W, and 6W, respectively. Prepartum serum total protein, albumin, and Ca concentrations, and anion gap were within normal limits but decreased linearly with increasing time cows were fed a negative-DCAD diet. No differences were observed in serum metabolite concentrations on the day of calving. Postpartum, serum total protein and globulin concentrations increased linearly with increasing length of time the negative-DCAD diet was fed. No differences were observed in postpartum DM intake, milk yield, or concentration of fat or protein among treatments: 19.1 kg/d, 40.6 kg/d, 4.30%, and 2.80%; 19.6 kg/d, 41.5 kg/d, 4.50%, and 2.90%; and 18.6 kg/d, 41.0 kg/d, 4.30%, and 2.73% for 3W, 4W, and 6W, respectively. Results of this trial indicate that no differences existed in health or milk production or components in cows fed a negative-DCAD diet for up to 6 wk prepartum compared with those fed a negative-DCAD diet for 3 or 4 wk prepartum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号