首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Abstract: The decontamination efficacy of 6 chemical treatments for beef trimmings were evaluated against Escherichia coli O157:H7 and 6 non‐O157 Shiga toxin‐producing E. coli (nSTEC) serogroups. Rifampicin‐resistant 4‐strain mixtures of E. coli O157:H7 and nSTEC serogroups O26, O45, O103, O111, O121, and O145 were separately inoculated (3 to 4 log CFU/cm2) onto trimmings (10 × 5 × 1 cm; approximately 100 g) fabricated from beef chuck rolls, and were immersed for 30 s in solutions of acidified sodium chlorite (0.1%, pH 2.5), peroxyacetic acid (0.02%, pH 3.8), sodium metasilicate (4%, pH 12.5), Bromitize® Plus (0.0225% active bromine, pH 6.6), or AFTEC 3000 (pH 1.2), or for 5 s in SYNTRx 3300 (pH 1.0). Each antimicrobial was tested independently together with an untreated control. Results showed that all tested decontamination treatments were similarly effective against the 6 nSTEC serogroups as they were against E. coli O157:H7. Irrespective of pathogen inoculum, treatment of beef trimmings with acidified sodium chlorite, peroxyacetic acid, or sodium metasilicate effectively (P < 0.05) reduced initial pathogen counts (3.4 to 3.9 log CFU/cm2) by 0.7 to 1.0, 0.6 to 1.0, and 1.3 to 1.5 log CFU/cm2, respectively. Reductions of pathogen counts (3.1 to 3.2 log CFU/cm2) by Bromitize Plus, AFTEC 3000, and SYNTRx 3300 were 0.1 to 0.4 log CFU/cm2, depending on treatment. Findings of this study should be useful to regulatory authorities and the meat industry as they consider nSTEC contamination in beef trimmings. Practical Applications: Findings of this study should be useful to: (i) meat processors as they design and conduct studies to validate the efficacy of antimicrobial treatments to control pathogen contamination on fresh beef products; and (ii) regulatory agencies as they consider approaches for better control of the studied pathogens.  相似文献   

2.
Trisodium phosphate (TSP) was evaluated for removing attached E. coli O157:H7 and S. typhimurium from beef surfaces using microbiological plating and scanning electron microscopy (SEM). Both fat and fascia surfaces were exposed to 109 CFU/mL of each inoculum for 15 min and rinsed with 10% TSP solution (10°C) for 15 sec. Compared to controls, the level of E. coli O157:H7 was 1.35 and 0.92-logs lower on TSP-treated fat and fascia surfaces, respectively by plating. .S. typhimurium was 0.91- and 0.51-logs lower, respectively. By SEM, TSP-treated fabcia surfaces showed 1.39-log and 0.86-log reductions in E. coli O157:H7 and S. typhimurium, respectively. Overall, TSP was more effective on removing E. coli O157:H7 than S. typhimutium and more efficient in removing both bacteria from fat surfaces than from fascia.  相似文献   

3.
ABSTRACT: Inactivation of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes in iceberg lettuce by aqueous chlorine dioxide (ClO2) treatment was evaluated. Iceberg lettuce samples were inoculated with approximately 7 log CFU/g of E. coli O157:H7, S. typhimurium, and L. monocytogenes. Iceberg lettuce samples were then treated with 0, 5, 10, or 50 ppm ClO2 solution and stored at 4 °C. Aqueous ClO2 treatment significantly decreased the populations of pathogenic bacteria on shredded lettuce (P < 0.05). In particular, 50 ppm ClO2 treatment reduced E. coli O157:H7, S. typhimurium, and L. monocytogenes by 1.44, 1.95, and 1.20 log CFU/g, respectively. The D10‐values of E. coli O157:H7, S. typhimurium, and L. monocytogenes in shredded lettuce were 11, 26, and 42 ppm, respectively. The effect of aqueous ClO2 treatment on the growth of pathogenic bacteria during storage was evaluated, and a decrease in the population size of these pathogenic bacteria was observed. Additionally, aqueous ClO2 treatment did not affect the color of lettuce during storage. These results suggest that aqueous ClO2 treatment can be used to improve the microbial safety of shredded lettuce during storage.  相似文献   

4.
Raw whole strawberries, if contaminated with pathogens, such as Escherichia coli O157:H7, must be pasteurized prior to consumption. Therefore, the objective of this research was to investigate the thermal inactivation kinetics of E. coli O157:H7 in strawberry puree (SP), and evaluate the changes in anthocyanins and color, and the survival of yeasts and molds (YM) after thermal processing. Inoculated with a 5‐strain cocktail, fresh SP, with or without added sugar (20 and 40 °Brix), was heated at 50, 52, 54, 57.5, 60, and 62.5 °C to determine the thermal resistance of E. coli O157:H7. In raw SP, the average D‐values of E. coli O157:H7 were 909.1, 454.6, 212.8, 46.1, and 20.2 s at 50, 52, 54, 57.5, and 60 °C, respectively, with a z‐value of 5.9 °C. While linearly decreasing with temperature, the log D‐values of E. coli O157:H7 increased slightly with sugar concentration. The log degradation rates of anthocyanins increased linearly with temperature, but decreased slightly with sugar concentrations. These results suggest that sugar may provide some protection to both E. coli O157: H7 and anthocyanins in SP. The browning index was not affected by heating at 50 and 52 ºC at low sugar concentrations, but increased by an average of 1.28%, 2.21%, and 10.1% per min when SP was exposed to heating at 54, 57.5, and 60 °C, respectively. YM was also inactivated by heating. This study demonstrated that properly designed thermal processes can effectively inactivate E. coli O157:H7 and YM in contaminated SP, while minimizing the changes in anthocyanins and color.  相似文献   

5.
6.
Meat and meat products have been implicated in outbreaks of Escherichia coli O157:H7 in most parts of the world. In the Amathole District Municipality of the Eastern Cape Province of South Africa, a large number of households consume meat and meat products daily, although the microbiological quality of these types of food is questionable. The present study investigated the prevalence of E. coli O157:H7 isolated from selected meat and meat products (45 samples each of biltong, cold meat, mincemeat, and polony) sold in this area. Strains of E. coli O157:H7 were isolated by enrichment culture and confirmed by polymerase chain reaction (PCR). Also investigated were the antibiogram profiles of the E. coli O157:H7 isolates. Five (2.8%) out of 180 meat and meat products examined were positive for E. coli O157:H7 that carried the fliCH7, rfbEO157, and eaeA genes. Two of the E. coli O157:H7 isolates were resistant against all the eight antibiotics tested. To prevent E. coli O157:H7 infections, meat and meat products such as biltong, cold meat, mincemeat and polony should be properly handled, and packed in sterile polyvinyl wrappers.  相似文献   

7.
Spray washing is a common sanitizing method for the fresh produce industry. The purpose of this research was to investigate the antimicrobial effect of spraying slightly acidic electrolyzed water (SAEW) and a combination of ozonated water with ultraviolet (UV) in reducing Escherichia coli O157:H7 on romaine and iceberg lettuces. Both romaine and iceberg lettuces were spot inoculated with 100 μL of a 3 strain mixture of E. coli O157:H7 to achieve an inoculum of 6 log CFU/g on lettuce. A strong antimicrobial effect was observed for the UV‐ozonated water combination, which reduced the population of E. coli by 5 log CFU/g of E. coli O157:H7 on both lettuces. SAEW achieved about 5 log CFU/g reductions in the bacterial counts on romaine lettuce. However, less than 2.5 log CFU/g in the population of E. coli O157:H7 was reduced on iceberg lettuce. The difference may be due to bacteria aggregation near and within stomata for iceberg lettuce but not for romaine lettuce. The UV light treatment may stimulate the opening of the stomata for the UV‐ozonated water treatment and hence achieve better bacterial inactivation than the SAEW treatment for iceberg lettuce. Our results demonstrated that the combined treatment of SAEW and UV‐ozonated water in the spray washing process could more effectively reduce E. coli O157:H7 on lettuce, which in turn may help reduce incidences of E. coli O157:H7 outbreaks.  相似文献   

8.
Beef steaks and ground beef were inoculated with Listeria monocytogenes, Yersinia enterocolitica, or Escherichia coli O157:H7. Samples were packaged in air or under vacuum and irradiated at low (0.60 to 0.80 kGy) or medium (1.5 to 2.0 kGy) doses, with each dose delivered at either a low (2.8 M/min conveyor speed) or high (6.9 M/min) dose rate. Medium-dose irradiation accompanied by 7°C storage resulted in no Y. enterocolitica or E. coli O157:H7 survivors being detected. There was no effect on survival of the pathogens by dose rate or storage atmosphere. No difference (P>0.05) was observed in meat pH or color, but TBA values increased after 7 days storage.  相似文献   

9.
Survival of Escherichia coli O157:H7 when heated in commercial-type turkey products was determined. Thermal death times (TDT) were determined at 52–60°C in ground turkey with no additives, 3% fat; ground turkey with no additives, 11% fat; turkey ham batter, 11% fat; turkey frank batter, 17% fat; and turkey sausage batter, 31% fat. Mean D52-values ranged from 44.9 to 116 min; D55-values from 6.63 to 39.4 min; D57-values from 2.20 to 11.7 min; D60-values from 0.68 to 5.86 min. At all temperatures, survival of E. coli O157:H7 was greater in formulated products than in turkey meat with no additives. Greatest survival occurred in the turkey frank batter. Using our z-value data, times to provide a 5 D kill of E. coli O157:H7 in turkey franks cooked at 60°C, 65.6°C, or 71°C would be 26, 3.1, or 0.37 min, respectively.  相似文献   

10.
In this study, Chinese-style sausages were subjected to air, vacuum or nitrogen packaging and stored at either 5 or 25°C. The survival characteristics of Escherichia coli O157: H7 during the storage period were determined. Results revealed that, when stored at 5°C, the number of viable E coli O157: H7 in sausages decreased slowly as the storage period extended, regardless of packaging methods. E coli O157: H7 in sausages decreased from an initial population of ca 5·97 log CFU g−1 to ca 4·42–4·81 log CFU g−1 after 40 days of storage at 5°C. It was also found that viable cells of E coli O157: H7 declined more rapidly in sausage stored at 25°C than at 5°C. No viable E coli O157: H7 was detected in either vacuum-packed or nitrogen-packed sausage after 40 days of storage at 25°C. On the other hand, the population of E coli O157: H7 reduced to non-detectable levels in air-packed sausages after 20 days of storage. Refrigerated storage and vacuum or nitrogen packaging provided conditions that slowed down the death rate of E coli O157: H7 in sausage. Furthermore, it was noted that, among the curing agents tested, NaCl exerted the most significant lethal effect on E coli O157: H7 in sausage during the storage period. © 1998 Society of Chemical Industry.  相似文献   

11.
ABSTRACT: Escherichia coli O157:H7 may become internalized during brine injection of meat. This study evaluated the effect of brining ingredients on E. coli O157:H7 in a meat model system after simulated brining, storage, and cooking. Fresh knuckles (5.3 ± 2.4% fat) or beef shoulder (15.3 ± 2.2% fat) were ground individually, mixed with an 8-strain composite of rifampicin-resistant E. coli O157:H7 (7 log CFU/g) and brining solutions. Treatments included no brining, distilled water, sodium chloride (NaCl, 0.5%), sodium tripolyphosphate (STP, 0.25%), sodium pyrophosphate (SPP, 0.25%), NaCl + STP, NaCl + SPP, NaCl + STP + potassium lactate (PL, 2%), NaCl + STP + sodium diacetate (SD, 0.15%), NaCl + STP + PL + SD, NaCl + STP + lactic acid (0.3%), NaCl + STP + acetic acid (0.3%), NaCl + STP + citric acid (0.3%), NaCl + STP + EDTA (20 mM) + nisin (0.0015%) or pediocin (1000 AU/g), NaCl + STP + sodium metasilicate (0.2%), NaCl + STP + cetylpyridinium chloride (CPC; 0.5%), and NaCl + STP + hops beta acids (0.00055%). Samples (30 g) were analyzed for pH, and total microbial and rifampicin-resistant E. coli O157:H7 (inoculum) populations immediately after mixing, storage (24 h at 4 °C), and cooking to 65 °C. Fat and moisture contents and water activity were measured after storage and cooking only; cooking losses also were determined. The effect of beef type on microbial counts, pH, and water activity was negligible. No reductions in microbial counts were obtained by the brining solutions immediately or after storage, except for samples treated with CPC, which reduced (P < 0.05) pathogen counts after storage by approximately 1 log cycle. Cooking reduced pathogen counts by 1.5 to 2.5 logs, while CPC-treated samples had the lowest (P < 0.05) counts compared to any other treatment. These data may be useful in developing/improving brining recipes for control of E. coli O157:H7 in moisture-enhanced beef products.  相似文献   

12.
Survival of Escherichia coli O157:H7 in apple cider containing no preservatives, 0.025% dimethyl dicarbonate (DMDC), 0.045% sodium benzoate (SB), 0.0046% sodium bisulfite (NaS; 65.5% sulfur dioxide), or a combination of NaS and SB (NaS/SB) and stored at 4, 10, and 25°C was evaluated. E. coli O157:H7 survived for up to 18 days at 4,10, and 25°C in unpreserved apple cider. At 4 and 10°C, DMDC was most efficient at inactivating E. coli O157:H7, generally followed by NaS/SB SB, and NaS (p<0.05). E coli O157:H7 was more resistant to preservatives at 4°C than at 25°C (P < 0.05). E. coli O157:H7 was sublethally injured in cider containing preservatives, and to a lesser extent, in unpreserved cider. Generally, injury was more pronounced in cider containing DMDC, followed by NaS/SB, SB, and NaS (p<0.05).  相似文献   

13.
This study investigated the efficacy of 3 GRAS‐status, plant‐derived antimicrobials (PDAs), trans‐cinnamaldehyde (TC), carvacrol (CR), and β‐resorcylic acid (BR) applied as an antimicrobial wash for killing Escherichia coli O157:H7 on apples. “Red delicious” apples inoculated with a 5 strain mixture of E. coli O157:H7 were subjected to washing in sterile deionized water containing 0% PDA (control), 0.15% TC, 0.35% TC, 0.15% CR, 0.30% CR, 0.5% BR, or 1% BR for 1, 3, and 5 min at 23 °C in the presence and absence of 1% soil, and surviving pathogen populations on apples were enumerated at each specified time. All PDAs were more effective in reducing E. coli O157:H7 compared to the water wash treatment (P < 0.05) and reduced the pathogen by 4‐ to 5‐log CFU/apple in 5 min. Chlorine (1%) was the most effective treatment reducing the pathogen on apples to undetectable levels in 1 min (P < 0.05). Moreover, the antimicrobial effect of CR and BR was not affected by the presence of soil, whereas the efficacy of TC and BR was decreased in the presence of soil. Further, no bacteria were detected in the wash solution containing CR and BR; however, E. coli O157:H7 was recovered in the control wash water and treatment solutions containing TC and chlorine, in the presence of 1% soil (P < 0.05). Results suggest that the aforementioned PDAs, especially CR and BR could be used effectively to kill E. coli O157:H7 on apples when used as a wash treatment. Studies on the sensory and quality characteristics of apples treated with PDAs are needed before recommending their usage.  相似文献   

14.
H.H. Sunwoo    E.N. Lee    K. Menninen    M.R. Suresh    J.S. Sim 《Journal of food science》2002,67(4):1486-1494
Escherichia coli O157:H7‐specific antibodies (immunoglobulin Y [IgY]) were isolated by the water‐dilution method from the egg yolk of chickens that were immunized with E. coli O157:H7 whole cells. The specific‐binding activity of IgY against E. coli O157:H7 as determined by the enzyme immuno assay showed high levels of activity against bacterial whole cells. IgY binding activity was further demonstrated to have an inhibitory effect on E. coli O157:H7 growth in a liquid medium. The antibacterial function of IgY appeared to result from the interaction of IgY with surface components of E. coli O157:H7, as proven from observation of immunofluorescence and immunoelectron microscopy.  相似文献   

15.
The effects of beef trimming decontamination with ozone and chlorine dioxide on ground beef microbial, color and odor characteristics were studied. Beef trimmings were inoculated with Escherichia coli (EC) and Salmonella Typhimurium (ST), then treated with either 1% ozonated water for 7 min (7O) or 15 min (15O), or with 200 ppm chlorine dioxide (CLO) and compared with a control (C). Trimmings were ground, packaged and sampled at 0, 1, 2, 3 and 7 days of display for EC, ST, coliforms (CO), aerobic plate counts (APC), instrumental color, as well as sensory color and odor characteristics. The 15O and CLO treatments reduced (P<0.05) all bacterial types evaluated, whereas the 7O treatment reduced (P<0.05) APC and ST. All treatments caused ground beef to become lighter (L*) in color (P<0.05); however, the 15O treatment was similar (P>0.05) in redness (a*), percentage discoloration, beef odor and off odor intensities when compared to C.  相似文献   

16.
H. Yang    B.L. Swem    Y. Li 《Journal of food science》2003,68(3):1013-1017
Fresh‐cut lettuce samples inoculated with S. Typhimurium, E. coli O157:H7 or L. monocytogenes were dipped into 300 ppm electrolyzed water (EW) at pH 4 to 9 and 30 °C for 5 min. The effects of treatment pH on bacterial reduction and visual quality of the lettuce were determined. The treatments at pH 4 and 8 resulted in the most effective inactivation of E. coli O157:H7, but the effect of pH was not significant (P > 0.05) for S. Typhimurium and L. monocytogenes. The treatment at pH 7 retained the best visual quality of lettuce, and achieved a reduction of approximately 2 log CFU/g for above 3 bacteria.  相似文献   

17.
ABSTRACT: The effectiveness of whey protein isolate (WPI) coatings incorporated with grape seed extract (GSE), nisin (N), malic acid (MA), and ethylenediamine tetraacetic acid (EDTA) and their combinations to inhibit the growth of Listeria monocytogenes, E. coli O157:H7, and Salmonella typhimurium were evaluated in a turkey frankfurter system through surface inoculation (approximately 106 CFU/g) of pathogens. The inoculated frankfurters were dipped into WPI film forming solutions both with and without the addition of antimicrobial agents (GSE, MA, or N and EDTA, or combinations). Samples were stored at 4 °C for 28 d. The L. monocytogenes population (5.5 log/g) decreased to 2.3 log/g after 28 d at 4 °C in the samples containing nisin (6000 IU/g) combined with GSE (0.5%) and MA (1.0%). The S. typhimurium population (6.0 log/g) was decreased to approximately 1 log cycles after 28 d at 4 °C in the samples coated with WPI containing a combination of N, MA, GSE, and EDTA. The E. coli O157:H7 population (6.15 log/g) was decreased by 4.6 log cycles after 28 d in samples containing WPI coating incorporated with N, MA, and EDTA. These findings demonstrated that the use of an edible film coating containing nisin, organic acids, and natural extracts is a promising means of controlling the growth and recontamination of L. monocytogenes, S. typhimurium, and E. coli O157:H7 in ready‐to‐eat poultry products.  相似文献   

18.
Multistate outbreaks of Escherichia coli O157:H7 infections through consumption of contaminated foods including produce products have brought a great safety concern. The objectives of this study were to determine the effect of biofilm and quorum sensing production on the attachment of E. coli O157:H7 on food contact surfaces and to evaluate the transfer of the pathogen from the food contact to various food products. E. coli O157:H7 produced maximum levels of AI-2 signals in 12 h of incubation in tested meat, poultry, and produce broths and subsequently formed strong biofilm in 24 h of incubation. In general, E. coli O157:H7 formed stronger biofilm on stainless steel than glass. Furthermore, E. coli O157:H7 that had attached on the surface of stainless steel was able to transfer to meat, poultry, ready-to-eat deli, and produce products. Strong attachment of the transferred pathogen on produce products (cantaloupe, lettuce, carrot, and spinach) was detected (>103 CFU/cm2) even after washing these products with water. Our findings suggest that biofilm formation by E. coli O157:H7 on food contact surfaces can be a concern for efficient control of the pathogen particularly in produce products that require no heating or cooking prior to consumption.  相似文献   

19.
Contaminated leafy green vegetables have been linked to several outbreaks of human gastrointestinal infections. Antimicrobial interventions that are adoptable by the fresh produce industry for control of pathogen contamination are in great demand. This study was undertaken to evaluate the efficacy of sustained active packaging on control of Escherichia coli O157:H7 and total aerobic bacteria on lettuce. Commercial Iceberg lettuce was inoculated with a 3‐strain mixture of E. coli O157:H7 at 102 or 104 CFU/g. The contaminated lettuce and un‐inoculated controls were placed respectively in 5 different active packaging structures. Traditional, nonactive packaging structure was included as controls. Packaged lettuce was stored at 4, 10, or 22 °C for 3 wk and sampled weekly for the population of E. coli O157:H7 and total aerobic bacteria. Results showed that packaging structures with ClO2 generator, CO2 generator, or one of the O2 scavengers effectively controlled the growth of E. coli O157:H7 and total aerobic bacteria under all storage conditions. Packaging structure with the ClO2 generator was most effective and no E. coli O157:H7 was detected in samples packaged in this structure except for those that were inoculated with 4 log CFU/g of E. coli O157:H7 and stored at 22 °C. Packaging structures with an oxygen scavenger and the allyl isothiocyanate generator were mostly ineffective in control of the growth of the bacteria on Iceberg lettuce. The research suggests that some of the packaging structures evaluated in the study can be used to control the presence of foodborne pathogens on leafy green vegetables.  相似文献   

20.
In this study, Chinese-style sausage was subjected to three different air-blast drying conditions commonly employed during the manufacturing process. The fate of Escherichia coli O157: H7 during the drying period was determined and compared. The effect of curing agents on the survival of E coli O157: H7 was also identified. Results showed that populations of E coli O157: H7 decreased ca 1.51 Log CFU g-1 in sausage containing curing agents after a 6-h drying period at 50°C. However, the number of viable cells of E coli O157: H7 increased slightly in sausage without curing agents. When subjected to air-blast drying at 55°C for 6 h or at 55°C for 2·5 h and then 60°C for 3·5 h, a reduction in the number of viable cells of E coli O157: H7 was observed in sausage with or without curing agents. The reduction was more significant in sausage containing curing agents than in those without curing agents. No viable E coli O157: H7 was detected after 6 h of drying in samples containing curing agents, while the control samples still contained a viable E coli O157: H7 population of ca 2·65–4·36 Log CFU g-1. After drying the sausage at 55°C for 4 h, inactivation of E coli O157: H7 increased in the presence of 30·00 g kg-1 sodium chloride or 1·50 g kg-1 sodium sorbate. On the other hand, the presence of 0·07–0·15 g kg-1 sodium nitrite did not increase the inactivation of E coli O157: H7 compared to that in the control. © 1997 SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号