首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 510 毫秒
1.
The objectives of this study were to determine the effects of NutriDense and waxy corn hybrids as silage and grain sources on milk yield, milk composition, digestibility of dietary components, and rumen characteristics. Six multiparous (intact) and six primiparous (ruminally cannulated) Holstein cows were assigned at 72 to 90 d of lactation to a 3 x 6 Latin rectangle design experiment to treatment of: 1) control diet, 2) NutriDense corn diet, and 3) waxy corn diet. Diets consisted of 10.9% alfalfa silage, 32.8% corn silage, 27.9% cracked corn grain, and 28.4% other ingredients (DM basis). Milk, FCM, and milk fat and protein yields were higher for cows fed the waxy diet than those fed the control diet. Milk protein percentage tended to be higher for cows fed the control and waxy diets than those fed the NutriDense diet. Dry matter intake tended to be higher for cows fed the waxy diet than the NutriDense diet. Apparent DM, OM, CP, ADF, NDF, and gross energy digestibilities were similar among dietary treatments, while apparent starch digestibility was higher for the waxy corn than for the NutriDense corn. Rumen NH3-N concentration was higher for cows fed the NutriDense diet than for those fed the control and waxy diets. The proportion of ruminal propionate was higher for the waxy diet than the control diet. NutriDense and waxy corn hybrids can be effective substitutes for conventional yellow dent corn hybrids in lactating dairy cow rations.  相似文献   

2.
This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average = 67.9%), NDF (average = 53.9%), crude protein (average = 63.3%), and gross energy (average = 67.9%) were not influenced by dietary treatments. It was concluded that cows fed CS performed better than those fed RM or SM likely due to the higher starch and lower NDF intakes. However, no major differences were noted between the 2 forage millet silage cultivars.  相似文献   

3.
The effect of neutral detergent fiber (NDF) degradability of corn silage in diets containing lower and higher NDF concentrations on lactational performance, nutrient digestibility, and ruminal characteristics in lactating Holstein cows was measured. Eight ruminally cannulated Holstein cows averaging 91 ± 4 (standard error) days in milk were used in a replicated 4 × 4 Latin square design with 21-d periods (7-d collection periods). Dietary treatments were formulated to contain either conventional (CON; 48.6% 24-h NDF degradability; NDFD) or brown midrib-3 (BM3; 61.1% 24-h NDFD) corn silage and either lower NDF (LNDF) or higher NDF (HNDF) concentration (32.0 and 35.8% of ration dry matter, DM) by adjusting the dietary forage content (52 and 67% forage, DM basis). The dietary treatments were (1) CON-LNDF, (2) CON-HNDF, (3) BM3-LNDF, and (4) BM3-HNDF. Data were analyzed as a factorial arrangement of diets within a replicated Latin square design with the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) with fixed effects of NDFD, NDF, NDFD × NDF, period(square), and square. Cow within square was the random effect. Time and its interactions with NDFD and NDF were included in the model when appropriate. An interaction between NDFD and NDF content resulted in the HNDF diet decreasing dry matter intake (DMI) with CON corn silage but not with BM3 silage. Cows fed the BM3 corn silage had higher DMI than cows fed the CON corn silage, whereas cows fed the HNDF diet consumed less DM than cows fed the LNDF diet. Cows fed the BM3 diets had greater energy-corrected milk yield, higher milk true protein content, and lower milk urea nitrogen concentration than cows fed CON diets. Additionally, cows fed the BM3 diets had greater total-tract digestibility of organic matter and NDF than cows fed the CON diets. Compared with CON diets, the BMR diets accelerated ruminal NDF turnover. When incorporated into higher NDF diets, corn silage with greater in vitro 24-h NDFD and lower undegradable NDF at 240 h of in vitro fermentation (uNDF240) allowed for greater DMI intake than CON. In contrast, for lower NDF diets, NDFD of corn silage did not affect DMI, which suggests that a threshold level of inclusion of higher NDFD corn silage is necessary to observe enhanced lactational performance. Results suggest that there is a maximum gut fill of dietary uNDF240 and that higher NDFD corn silage can be fed at greater dietary concentrations.  相似文献   

4.
The effectiveness of neutral detergent fiber (NDF) from soyhulls and whole cottonseed for replacing NDF from forage was evaluated in a lactation trial during wk 10 to 25 of lactation. Forty-eight cows were blocked and randomly assigned within a block to one of four diets: 1) 21% forage NDF with corn 2) 16% forage NDF with corn, 3) 16% forage NDF with corn and wheat (1:1) and, 4) 11% forage NDF with cottonseed and corn. Soybean hulls were added at approximately 23.0% of dry matter (DM) for the 16 and 11% forage NDF diets to replace forage and formulate diets with 35% nonfiber carbohydrates. Actual forage NDF concentration were 17.8, 14.0, 13.9, and 9.4%, respectively. Dry matter intake and milk yield were highest for cows fed 11% forage NDF with cottonseed. Milk fat percentage was higher for cows consuming 21% forage NDF and 16% forage NDF with corn than for cows fed the two other diets. Cows fed 16% forage NDF with corn and wheat experienced milk fat-protein inversion, but ruminal acetate:propionate was lower for cows fed 11% forage NDF than cows fed 16% forage NDF. Body weight (BW) and BW change were not different among treatments. Time spent chewing was similar among all diets. For cows in midlactation, forage NDF may be reduced to 9 to 11% when cottonseed is at 11% of DM and dietary nonstructural carbohydrates are at 30% of DM. Forage NDF may be reduced to 14 to 16% without cottonseed when nonstructural carbohydrates are at 30% of DM.  相似文献   

5.
This experiment was conducted to determine the effects of corn silage hybrids and nonforage fiber sources (NFFS) in high forage diets formulated with high dietary proportions of alfalfa hay (AH) and corn silage (CS) on ruminal fermentation and productive performance by early lactating dairy cows. Eight multiparous Holstein cows (4 ruminally fistulated) averaging 36 ± 6.2 d in milk were used in a duplicated 4 × 4 Latin square design experiment with a 2 × 2 factorial arrangement of treatments. Cows were fed 1 of 4 dietary treatments during each of the four 21-d replicates. Treatments were (1) conventional CS (CCS)-based diet without NFFS, (2) CCS-based diet with NFFS, (3) brown midrib CS (BMRCS)-based diet without NFFS, and (4) BMRCS-based diet with NFFS. Diets were isonitrogenous and isocaloric. Sources of NFFS consisted of ground soyhulls and pelleted beet pulp to replace a portion of AH and CS in the diets. In vitro 30-h neutral detergent fiber (NDF) degradability was greater for BMRCS than for CCS (42.3 vs. 31.2%). Neither CS hybrids nor NFFS affected intake of dry matter (DM) and nutrients. Digestibility of N, NDF, and acid detergent fiber tended to be greater for cows consuming CCS-based diets. Milk yield was not influenced by CS hybrids and NFFS. However, a tendency for an interaction between CS hybrids and NFFS occurred, with increased milk yield due to feeding NFFS with the BMRCS-based diet. Yields of milk fat and 3.5% fat-corrected milk decreased when feeding the BMRCS-based diet, and a tendency existed for an interaction between CS hybrids and NFFS because milk fat concentration further decreased by feeding NFFS with BMRCS-based diet. Although feed efficiency (milk/DM intake) was not affected by CS hybrids and NFFS, an interaction was found between CS hybrids and NFFS because feed efficiency increased when NFFS was fed only with BMRCS-based diet. Total volatile fatty acid production and individual molar proportions were not affected by diets. Dietary treatments did not influence ruminal pH profiles, except that duration (h/d) of pH <5.8 decreased when NFFS was fed in a CCS-based diet but not in a BMRCS-based diet, causing a tendency for an interaction between CS hybrids and NFFS. Overall measurements in our study reveal that high forage NDF concentration (20% DM on average) may eliminate potentially positive effects of BMRCS. In the high forage diets, NFFS exerted limited effects on productive performance when they replaced AH and CS. Although the high quality AH provided adequate NDF (38.3% DM) for optimal rumen fermentative function, the low NDF concentration of the AH and the overall forage particle size reduced physically effective fiber and milk fat concentration.  相似文献   

6.
Six ruminally and duodenally cannulated Holstein cows were used in a 6 x 6 Latin square design. The objective was to evaluate any potential interactions in site of nutrient digestion when neutral detergent fiber (NDF) from cottonseed was incrementally substituted for forage NDF (FNDF) from alfalfa silage and when starch availability was varied by feeding ground (G) or steam-flaked (SF) corn. Iso-NDF diets were forage control with G corn (21% FNDF), 5% whole cottonseed (WCS) with G or SF corn (18% FNDF), 10% WCS with G or SF corn (15% FNDF), and 15% WCS with G corn (12% FNDF). Ruminal or total tract digestibilities of organic matter (OM) or nonstructural carbohydrate (NSC) were unaffected, but efficiency of microbial protein synthesis decreased as WCS increased. Ruminal NDF digestibility was not affected despite a linear decrease in pH, but postruminal NDF digestibility decreased with increasing WCS. Ruminal digestibilities of OM and NSC were higher for SF than G corn but did not affect efficiency of microbial N synthesis. Dry matter intake increased quadratically with increasing level of WCS but decreased when SF replaced G corn. Milk yield did not differ across treatments. Milk fat percentage was affected quadratically and milk protein increased linearly with increasing WCS. Milk fat percentage decreased but milk protein was not affected when SF replaced G corn. Lack of an interaction between corn source and level of WCS substitution suggests that WCS was equally effective in maintaining ruminal fermentation and digestibility in diets varying in ruminal starch availability.  相似文献   

7.
Six Holstein cows in early lactation were used in a double 3 x 3 Latin square design to determine the effects of feeding diets with pea silage, relative to barley silage, or alfalfa silage. Cows were fed rations formulated to contain 50:50 forage:concentrate ratio. Two ruminally fistulated cows were used in a randomized complete block design to determine ruminal nutrient degradability for pea silage relative to barley and alfalfa silages. Pea silage contained lower neutral detergent fiber (NDF), acid detergent fiber, and starch concentrations but higher crude protein than barley silage. Compared with alfalfa silage, pea silage had higher starch and NDF but lower crude protein content. Pea and alfalfa silage had similar effective ruminal degradability of dry matter, which was higher than that of barley silage. The rate of degradation and effective ruminal degradability of NDF was highest for alfalfa silage, intermediate for pea silage and lowest for barley silage. Results of the lactation trial showed that dry matter intake and milk yield were not affected by forage source. Milk composition was similar for cows fed pea or barley silage; however, cows fed pea silage produced milk with a higher fat and a lower protein percentage than those fed the alfalfa silage. Pea silage can replace barley or alfalfa silage as a forage source for dairy cows in early lactation.  相似文献   

8.
This study examined the effects of gradually replacing grass silage with whole-crop barley silage on feed intake, ruminal and total tract digestibility, and milk yield in lactating dairy cows. Four dairy cows in early lactation, equipped with rumen cannulas, were fed 4 diets over four 21-d periods. The diets consisted of 4 forage mixtures of grass silage and whole-crop barley silage supplemented with 8.9 kg/d of concentrates [dry matter (DM) basis]. The proportion of barley silage in the forage was adjusted to 0, 0.20, 0.40, and 0.60 kg/kg of DM. Ruminal nutrient metabolism was measured on the basis of digesta flow entering the omasal canal. Ammonia concentrations and volatile fatty acid profiles were determined in the rumen fluid. Ruminal digestion and passage kinetics were assessed by the rumen evacuation technique. Replacement of grass silage with barley silage had no effect on DM, digestible organic matter, or neutral detergent fiber (NDF) intake, but starch intake increased, whereas nitrogen and digestible NDF (dNDF) intake decreased. Increases in the proportion of barley silage linearly decreased milk yield, and the molar proportion of acetate in the rumen, and increased that of propionate, butyrate, and valerate. Decreases in milk yield due to inclusion of barley silage were attributed to decreases in diet digestibility and nutrient supply to the animal. Barley silage linearly decreased organic matter digestibility in the total tract and NDF and dNDF digestibility in the rumen and the total tract, and decreased nonammonia N flow entering the omasal canal. No significant differences between diets were noted in the digestion rate of dNDF or passage rate of indigestible NDF from the rumen. Decreases in organic matter and NDF digestibility were attributed to the higher indigestible NDF concentration of barley silage compared with that of grass silage and to the smaller pool size of dNDF in the rumen.  相似文献   

9.
A dual-purpose hybrid and a hybrid selected for high neutral detergent fiber (NDF) concentration were harvested as corn silage. The dual-purpose silage (DPCS) had 42% NDF and 35.4% in vitro (30 h) NDF digestibility and the high fiber silage (HFCS) had 49% NDF and 40.1% in vitro NDF digestibility. Two diets (dry matter basis) had 45% DPCS or HFCS and 46% corn grain-based concentrate (dietary NDF was 29 and 32%, respectively), a third diet had 33% HFCS and 58% corn-based concentrate (27% dietary NDF), and a fourth diet had 33% DPCS and 58% concentrate that contained soybean hulls (32% dietary NDF). All diets contained 9% alfalfa silage. Diets were fed to eight midlactation Holstein cows in a 4 x 4 Latin square with 28 d periods. No differences among treatments were observed for milk yield (34.1 kg/d), dry matter intake (23.7 kg/d), and yield and concentration of milk protein. Cows fed the diet with 33% HFCS tended to have lower milk fat percentage than cows fed the 45% DPCS diet. Total digestible nutrients (measured using total collection) tended to be lower for the 33% DPCS diet than for the 45% DPCS diet. In vivo digestibility of NDF tended to be lower for the 33% HFCS diet than the 45% DPCS diet, but digestibility of starch in the two diets with HFCS was higher than the 45% DPCS diet. The lack of any substantial differences in responses suggest that the HFCS was equal to the DPCS when fed at 45% of the diet dry matter (53.5% total forage). When HFCS replaced DPCS so that NDF was similar between diets, milk fat percentage was reduced and ruminal propionate was increased. Increasing dietary NDF by adding soybean hulls to a diet based on DPCS reduced digestibility of dry matter, organic matter, and protein, and resulted in lower energy balance than the 45% DPCS diet.  相似文献   

10.
The objective of this study was to determine the feeding value of forage soybean silage (SS) for dairy cows relative to a fourth-cut alfalfa silage (AS). Forage soybean was harvested at full pod stage. Two isonitrogenous diets were formulated with a 48:52 forage:concentrate ratio. Soybean silage and AS constituted 72% of the forage in each diet, with corn silage constituting the remaining 28%. Twenty Holsteins cows in early lactation were used in a switchback design. Four lactating Holsteins cows fitted with ruminal cannulas were used to determine the effects of dietary treatments on ruminal fermentation parameters and in vivo total tract nutrient utilization. Relative to AS, SS contained 15, 28, and 25% more neutral detergent fiber, acid detergent fiber, and crude protein, respectively. Dry matter intake (23.5 vs. 25.1 kg/d) and milk yield (35.5 vs. 37.2 kg/d) were lower for cows fed SS than for those fed AS. However, energy-corrected milk and milk efficiency were similar for both dietary treatments. Milk protein, lactose, and total solids concentrations were not influenced by dietary treatments (average 3.0, 4.7, and 12.6%, respectively). However, cows fed SS produced milk with greater milk fat (3.8 vs. 3.6%) and milk urea nitrogen concentrations (15.6 vs. 14.3 mg/dL) compared with cows fed AS. Ruminal pH was lower, whereas ruminal NH3-N concentration was greater in cows fed SS than in cows fed AS. Total tract digestibilities of dry matter, crude protein, and neutral detergent fiber were not influenced by silage type. We concluded that forage SS, when compared with AS, had a negative impact on feed intake and milk yield, whereas energy-corrected milk, milk efficiency, and total tract nutrient digestion were similar.  相似文献   

11.
Two experiments were conducted to evaluate the effects of maturity and mechanical processing of two hybrids of whole plant corn silage on DM and OM digestibility, nitrogen metabolism, ruminal fermentation, and milk production and composition in lactating Holstein cows. In the first experiment, Pioneer hybrid 3845 whole plant corn was harvested at hard dough, one-third milkline, and two-thirds milkline with a theoretical length-of-cut of 6.4 mm. At each stage of maturity, corn was harvested with (1-mm roll clearance) and without (15.9-mm roll clearance) mechanical processing using a John Deere 5830 harvester with an on-board kernel processor. In the second experiment, Pioneer hybrids 3845 and Quanta were harvested at one-third milkline, two-thirds milkline, and blackline stages of maturity with and without mechanical processing. The theoretical length-of-cut was 12.7 mm. Total tract DM and OM digestibilities were lower for cows fed diets containing processed corn silage in experiment 1, and tended to be lower for cows fed diets containing unprocessed corn silage in experiment 2. Ruminal acetate concentrations were greater and ruminal propionate concentrations were lower 2 and 6 h after feeding for cows fed diets containing corn silage harvested at physiological maturity in experiment 2. This was due to decreased digestion of starch at advanced maturities in experiment 2. Ruminal pH tended to decline rapidly after feeding for cows fed hybrid Quanta (2 h) compared to hybrid 3845 (5 h) corn silage based diets. Ruminal acetate concentrations decreased and ruminal propionate concentrations increased 2 and 6 h after feeding for cows fed diets containing hybrid Quanta corn silage compared to hybrid 3845 corn silage. This was related to a greater starch concentration in the corn silage, greater starch intake, and increased rate of starch digestion for cows fed hybrid Quanta corn silage-based diets. Microbial nitrogen flow was lower and feed nitrogen flow was greater for cows fed diets containing hybrid Quanta corn silage. The lower microbial nitrogen flow was due to lower microbial nitrogen concentration and nonammonia nitrogen flow to the duodenum. Milk fat and protein concentrations had a strong quadratic relationship with forage NDF intake as a percentage of body weight. When forage NDF intake as a percentage of body weight dropped below 0.70%, there was a rapid decline in milk fat and protein concentrations.  相似文献   

12.
The objective of this study was to investigate the effects of concentrations of forages and corn distillers dried grains with solubles (DDGS) on ruminal fermentation, ruminal kinetics, and total-tract digestibility of nutrients in lactating dairy cows. Four lactating Holstein cows with ruminal cannulas were assigned to a 4 × 4 Latin square in a 2 × 2 factorial arrangement of treatments. Diets were formulated to contain low forage [LF; 17% forage neutral detergent fiber (NDF)] or high forage (HF; 24.5% forage NDF) and DDGS at 0 or 18% (0DG or 18DG) of diet dry matter (DM). Intake of DM was not affected by the diets. Daily mean ruminal pH was affected by forage NDF × DDGS interactions, as the lowest ruminal pH was observed among cows fed LF18DG (6.02). Apparent total-tract digestibility for DM, organic matter, crude protein, NDF, acid detergent fiber, and starch was not affected by diets. Cows fed LF diets had a greater total volatile fatty acid concentration compared with cows fed HF (122 vs. 116 mM). Molar proportions of acetate were greater for HF compared with that of LF diets (62.6 vs. 57.5 mmol/100 mmol) and greater for 0DG diet compared with that of 18DG diets (61.3 vs. 58.7 mmol/100 mmol) diets. The molar proportion of propionate was affected by forage × DDGS interaction as the greatest propionate molar proportion was observed with cows fed LF18DG diet (27.7 mmol/100 mmol). Also, molar proportion of butyrate was affected by forage × DDGS interaction, as the greatest butyrate molar proportion was observed in cows fed HF18DG diet (13.5 mmol/100 mmol). Average fractional dilution rate for all diets was 11.9%/h and was not affected by diets. Fractional passage rate of the solid phase was greater for HF than for LF (4.40 vs. 3.76%/h). The ruminal retention time of solid phase was greater for LF compared with HF diets (27.3 vs. 23.3 h). Fractional passage rate of DDGS was affected by forage × DG interaction, as the highest fractional passage rate of DDGS was observed with cows fed HF18DG diet (7.72%/h). Our results demonstrated that concentrations of forage, DDGS, and their interaction influence ruminal degradation and kinetics of diets fed. Diets formulated at 17% forage NDF at 17% (DM basis) can decrease milk fat concentration compared with diets formulated at 25% forage NDF. Additionally, feeding DDGS at 18% DM basis to lactating dairy cows did not affect milk fat concentration or yield.  相似文献   

13.
Four rumen cannulated Holstein cows were used in a Latin square design to examine the effect of supplemental calcium salt of palm oil fatty acids (.68 kg/d) or prilled fat (.68 or .91 kg/d) on DM intake, rumen fermentation, and nutrient digestibility. Basal diet contained 45% concentrate, 27.5% alfalfa silage, and 27.5% corn silage (DM basis), and treatments were balanced for calcium. Dry matter intake was similar among treatments. Ruminal pH, total VFA, and molar percentage acetate and propionate were not affected by fat supplementation. Feeding prilled fat decreased slightly ruminal molar percentage butyrate. Forage DM and neutral detergent fiber disappearance from ruminally suspended dacron bags did not differ due to treatment. For unknown reasons, total tract apparent digestibility of DM and NDF was lower when cows received the low amount but not the high amount of prilled fat. Milk yield and fat percentage were not significantly affected by treatment. Milk protein was maintained during prilled fat supplementation but decreased .13% during calcium salt of palm oil fatty acid supplementation. Both fat supplements appeared inert in the rumen and did not markedly affect nutrient digestion when supplemented at 3.5% or less of the total ration DM.  相似文献   

14.
Interactions of endosperm type of corn grain and the brown midrib 3 (bm3) mutation in corn silage on ruminal kinetics and site of nutrient digestion of lactating dairy cows were evaluated. Eight ruminally and duodenally cannulated cows (72 +/- 8 d in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design experiment with a 2 x 2 factorial arrangement of treatments. Treatments were corn grain endosperm type (floury or vitreous) and corn silage type (bm3 or isogenic normal). Diets contained 26% neutral detergent fiber (NDF) and 30% starch. Interactions of treatments were not observed for any measure of digestibility, but digestion kinetics of starch and fiber did interact to affect digestible organic matter intake by affecting dry matter intake. Rate of ruminal starch digestion was faster and rate of ruminal starch passage tended to be slower in diets containing corn grain with floury vs. vitreous endosperm, resulting in a mean increase of 22 units for ruminal starch digestibility. Although compensatory postruminal starch digestion decreased differences among treatments for total tract starch digestibility, starch entering the duodenum was more digestible for grain with floury endosperm compared with vitreous grain, resulting in greater total tract starch digestibility for floury compared with vitreous corn grain. Fermentation rate of potentially digestible NDF was not affected by either bm3 corn silage or greater ruminal starch digestion of floury grain. Brown midrib corn silage increased total tract NDF digestibility vs. control silage by numerically increasing ruminal and postruminal digestibility of NDF. Endosperm type of corn grain greatly influences site of starch digestion and should be considered when formulating diets.  相似文献   

15.
Six multiparous Holstein cows (average 31 days in milk; 36.3 kg/d of milk) fitted with ruminal cannulas were used in a 6 x 6 Latin square with 21-d periods to investigate the effects of diets that varied in forage source and amount of supplemental tallow. Isonitrogenous diets in a 2 x 3 factorial arrangement were based on either high corn silage (40:10 corn silage to alfalfa silage, % of dry matter) or high alfalfa silage (10:40 corn silage to alfalfa silage, % of dry matter) and contained 0, 2, or 4% tallow. Intakes of dry matter and total fatty acids were lower when cows were fed the high corn silage diet. Tallow supplementation linearly decreased dry matter intake. Milk yield was unaffected by diet; yields of milk fat and 3.5% fat-corrected milk were higher for the high alfalfa silage diet but were unaffected by tallow. Milk fat percentage was higher for the high alfalfa silage and tended to decrease when tallow was added to the high corn silage diet. Contents of trans-C18:1 isomers in milk fat were increased by high corn silage and tallow, and tended to be increased more when tallow was fed in the high corn silage diet. Ruminal pH and acetate:propionate were lower when high corn silage was fed. Ruminal acetate:propionate decreased linearly as tallow increased; the molar proportion of acetate was decreased more when tallow was added to the high corn silage diet. Ruminal liquid dilution rates were higher for the alfalfa silage diet; ruminal volume and solid passage rates were similar among diets. Total tract apparent digestibilities of dry matter, organic matter, crude protein, starch, energy, and total fatty acids were unaffected by diet. Digestibilities of neutral detergent fiber, acid detergent fiber, hemicellulose, and cellulose were lower when high corn silage was fed. The high alfalfa silage diet increased intakes of metabolizable energy and N, and increased milk energy and productive N. Tallow decreased the amount of N absorbed but had few other effects on utilization of energy or N. Tallow linearly increased concentrations of nonesterified fatty acids and cholesterol in plasma; cholesterol was increased by high alfalfa silage. Overall, forage source had more pronounced effects on production and metabolism than did tallow supplementation. Few interactions between forage source and tallow supplementation were detected except that ruminal fermentation and milk fat content were affected more negatively when tallow was fed in the high corn silage diet.  相似文献   

16.
Two experiments were conducted to measure the effects of intake and forage: grain ratio on utilization of early maturity alfalfa silage in dairy cows. In Experiment 1, diets with three forage: concentrate ratios (percentage of silage, percentage NDF): low (56, 28.3), medium (71, 31.0), or high (86, 33.4) were fed ad libitum to six lactating, ruminally cannulated cows in a replicated 3 x 3 Latin square. The same diets were then fed at 1.3 x maintenance intake to six gestating dry cows. Dairy milk yield and percentage and yield of milk protein and casein were higher for cows fed the low silage diet than for cows receiving other treatments. Fat percentage and yield were not different among diets. Lactating cows consumed more DM on low silage (23.0 kg/d) than on medium or high silage diets (21.4 kg), but NDF intake as percentage of BW was higher for the high silage diet. Digestibility of DM in the lactating (70.7, 69.9, and 67.5% for low, medium, and high) and dry cows (76.7, 73.5, and 69.0%, respectively) decreased as the level of silage increased. Depression in digestibility was greater as dietary concentrate increased. Cows fed the high silage diet had a faster fractional passage rate of solids and higher rumen fill. Digestion of concentrate cell walls appeared to be depressed more than alfalfa cell walls as intake increased.  相似文献   

17.
The effects of digestibility of corn silage neutral detergent fiber (NDF) and dietary NDF content on ruminal digestion kinetics, site of nutrient digestion, and microbial N production efficiency were evaluated with eight multiparous high producing dairy cows in a duplicated 4 x 4 Latin square design with 21-d periods. Experimental diets contained corn silage from a brown midrib (bm3) hybrid or its isogenic normal control at two concentrations of dietary NDF (29 and 38%). The NDF digestibility estimated by a 30-h in vitro fermentation was higher for bm3 corn silage by 9.4 units (55.9 vs. 46.5%). Neither ruminal nor total tract NDF digestibility was affected by corn silage treatment. The bm3 corn silage diet decreased starch digestibility in the rumen and in the total tract, but increased postruminal starch digestibility compared with control diet. The bm3 corn silage diets increased microbial N flow to the duodenum and tended to decrease ruminal ammonia concentration. Microbial efficiency was greater for cows fed bm3 corn silage in spite of lower ruminal pH. Higher efficiency of microbial nitrogen production might be attributed to faster passage rate of NDF for cows fed bm3 corn silage compared with those fed control corn silage. Higher in vitro NDF digestibility might predict enhanced NDF fragility and ease of NDF hydrolysis in vivo. Enhanced in vitro NDF digestibility does not necessarily result in increased NDF digestibility either in the rumen or in the total tract, but possibly increases rate of passage and DMI, improving efficiency of microbial N production.  相似文献   

18.
Effects of legume maturity on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, and digestion and passage kinetics, and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 16 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 17-d treatment periods. During the preliminary period, the pDMI of individual cows ranged from 22.9 to 30.0 kg/d (mean=25.9 kg/d) and the 3.5% fat-corrected milk yield ranged from 34.1 to 68.2 kg/d (mean=43.7 kg/d). Experimental treatments were diets containing alfalfa silage harvested either a) early-cut, less mature (EC) or b) late-cut, more mature (LC) as the sole forage. Early- and late-cut alfalfa contained 40.8 and 53.1% neutral detergent fiber (NDF) and 23.7 and 18.1% crude protein, respectively. Forage:concentrate ratios were 53:47 and 42:58 for EC and LC, respectively; both diets contained approximately 22% forage NDF and 27% total NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4d of the preliminary period when cows were fed a common diet and used as a covariate. Main effects of alfalfa maturity and their interaction with pDMI were tested by ANOVA. Alfalfa maturity and its interaction with pDMI did not affect milk yield but EC increased DMI compared with LC; thus, EC had lower efficiency of milk production than LC. The EC diet decreased milk fat concentration more per kilogram of pDMI increase than the LC diet, but milk fat yield was not affected. The lower concentration and faster passage rate of indigestible NDF for EC resulted in lower rumen pools of indigestible NDF, total NDF, and dry matter than did LC, which EC increased at a slower rate than did LC as pDMI increased. The EC diet decreased starch intake and increased ruminal pH compared with the LC diet. The rate of ruminal starch digestion was related to level of intake, but this did not affect ruminal or postruminal starch digestion. Total-tract digestibility of NDF, organic matter, and dry matter was higher for EC than LC. Microbial efficiency tended to be related to pDMI and the response differed by treatment. When alfalfa silage was the only source of forage in the diet, cows supplemented with additional concentrate to account for decreased protein and increased fiber concentrations associated with LC produced similar fat-corrected milk yields with greater efficiency than cows fed EC.  相似文献   

19.
The objective of this study was to examine the effect of replacing conventional corn silage (CCS) with brown midrib corn silage (BMCS) in dairy cow diets on enteric CH4 emission, nutrient intake, digestibility, ruminal fermentation characteristics, milk production, and N excretion. Sixteen rumen-cannulated lactating cows used in a crossover design (35-d periods) were fed (ad libitum) a total mixed ration (forage:concentrate ratio = 65:35, dry matter basis) based (59% dry matter) on either CCS or BMCS. Dry matter intake and milk yield increased when cows were fed BMCS instead of CCS. Of the milk components, only milk fat content slightly decreased when cows were fed the BMCS-based diet compared with when fed the CCS-based diet (3.81 vs. 3.92%). Compared with CCS, feeding BMCS to cows increased yields of milk protein and milk fat. Ruminal pH, protozoa numbers, total VFA concentration, and molar proportions of acetate and propionate were similar between cows fed BMCS and those fed CCS. Daily enteric CH4 emission (g/d) was unaffected by dietary treatments, but CH4 production expressed as a proportion of gross energy intake or on milk yield basis was lower for cows fed the BMCS-based diet than for cows fed the CCS-based diet. A decline in manure N excretion and a shift in N excretion from urine to feces were observed when BMCS replaced CCS in the diet, suggesting reduced potential of manure N volatilization. Results from this study show that improving fiber quality of corn silage in dairy cow diets through using brown midrib trait cultivar can reduce enteric CH4 emissions as well as potential emissions of NH3 and N2O from manure. However, CH4 emissions during manure storage may increase due to excretion of degradable OM when BMCS diet is fed, which merits further investigation.  相似文献   

20.
The effects of increasing concentrations of dried, pelleted beet pulp substituted for high-moisture corn on digestion and ruminal digestion kinetics were evaluated using eight ruminally and duodenally cannulated multiparous Holstein cows in a duplicated 4 x 4 Latin square design with 21-d periods. Cows were 79 +/- 17 (mean +/- SD) d in milk at the beginning of the experiment. Experimental diets with 40% forage (corn silage and alfalfa silage) and 60% concentrate contained 0, 6.1, 12.1, or 24.3% beet pulp substituted for high-moisture corn on a dry matter basis. Diet concentrations of neutral detergent fiber (NDF) and starch were 24.3 and 34.6% (0% beet pulp), 26.2 and 30.5% (6% beet pulp), 28.0 and 26.5% (12% beet pulp), and 31.6 and 18.4% (24% beet pulp), respectively. Ruminal dry matter pool decreased and NDF turnover rate increased as dietary beet pulp content increased. Potentially digestible NDF was digested more extensively and at a faster rate in the rumen with increasing beet pulp, resulting in increased total tract NDF digestibility. Passage rates of potentially digestible NDF and of indigestible NDF were not affected by treatment. True ruminal digestibility of starch decreased with increasing beet pulp substitution. This was caused by a linear increase in starch passage rate, possibly because of increasing ruminal fill, and a linear decrease in digestion rate of starch in the rumen, possibly because of reduced amylolytic enzyme activity for lower-starch diets. Although true ruminal starch digestibility decreased when more beet pulp was fed, whole tract starch digestibility was not affected because of compensatory digestion of starch in the intestines. Due to more thorough digestion of fiber in diets containing more beet pulp, whole-tract digestibility of organic matter increased linearly, and intake of digestible organic matter was not affected. Partially replacing high-moisture corn with beet pulp in low-forage diets increased fiber digestibility without reducing whole-tract starch digestibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号