首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 562 毫秒

1.  基于高光谱成像技术无损检测苹果表面缺陷  
   孟庆龙  张艳  尚静《食品工业》,2019年第3期
   基于高光谱成像技术结合模式识别,建立了苹果表面缺陷识别模型。首先,利用高光谱图像采集系统采集完好无损和表面有缺陷苹果的高光谱图像,提取感兴趣区域的平均光谱反射率;然后,比较标准正态变换(SNV)和多元散射校正(MSC) 2种光谱预处理方法对建模效果的影响,得出MSC为建模最优预处理方法。最后,采用主成分分析法选择累计贡献率超过99%的前5个主成分作为样本集特征光谱数据,分别建立了基于K最近邻(KNN)模式识别和偏最小二乘判别分析(PLS-DA)识别模型。结果表明:光谱经MSC预处理后,基于PLS-DA建立的识别模型对校正集和检验集识别率均达到100%,表明基于高光谱成像技术结合模式识别可实现苹果表面缺陷的无损检测。    

2.  基于决策树支持向量机的苹果表面缺陷识别  
   《食品与机械》,2017年第9期
   在基于机器视觉苹果缺陷识别过程中,因果梗/花萼与缺陷表皮颜色相似,极大地降低苹果表面缺陷识别准确率,提出一种基于决策树支持向量机(DT-SVM)的苹果表面缺陷识别方法。该方法首先采用单阈值法去除背景,其次在R通道中利用Otsu法和连通域标记法提取目标区域(果梗、花萼和缺陷)的颜色、纹理和形状特征,最后利用决策树支持向量机进行识别。以600幅富士苹果图像为例,使用该方法进行缺陷识别,结果表明该方法的平均准确率为97.7%。与1-V-1多分类支持向量机(1-V-1SVM)和AdaBoost分类算法相比,DT-SVM方法正确率高、耗时短。说明决策树支持向量机对苹果表面缺陷识别十分有效。    

3.  FUDT在苹果近红外光谱分类中的应用  被引次数:1
   《计算机工程与应用》,2016年第3期
   苹果的分类是苹果采收后商品化处理的重要环节。为了快速、无损和有效地实现苹果的分类,利用近红外光谱技术采集四种苹果的近红外反射光谱,用主成分分析对高维的近红外光谱进行降维处理,分别运行线性判别分析,二次判别分析,模糊非相关判别转换和Foley-Sammon判别分析提取鉴别信息,用k-近邻分类器进行分类。分类结果表明,模糊非相关判别转换能更好地提取苹果近红外光谱的品种鉴别信息,达到了最高的分类准确率。    

4.  紫外/可见光谱技术无损检测苹果的挤压损伤  
   尚静  张艳  孟庆龙《包装工程》,2019年第40卷第13期
   目的 通过紫外/可见光谱技术结合模式识别算法,建立挤压损伤苹果的Fisher识别模型、K最近邻(KNN)识别模型和偏最小二乘判别分析(PLS-DA)识别模型。方法 以挤压损伤苹果和无损苹果为研究对象,采用光谱仪采集2种苹果的光谱反射率,综合比较不同光谱预处理方法(二阶微分(SD)、标准正态变换(SNV)和多元散射校正(MSC))对各模型识别效果的影响,并利用主成分分析方法(PCA)对预处理后的光谱数据进行降维,并提取能反映损伤苹果的特征光谱。结果 采用主成分分析法选择了累计贡献率超过99%的前7个主成分(P1—P7)作为特征光谱数据,有效地实现了光谱数据的降维;二阶微分对光谱反射率预处理的效果最好;3种判别模型均能满足实际要求,且SD+Fisher和SD+PLS-DA识别模型对校正集和预测集样本的总正确识别率均高达100%。结论 研究结果有助于实现挤压损伤苹果的快速识别。    

5.  基于多元局部二值模式的遥感图像纹理提取与分类  被引次数:3
   宋翠玉  李培军  杨锋杰《遥感技术与应用》,2011年第26卷第3期
   纹理信息已经广泛应用于遥感图像分类以提高地物识别的精度。为了描述多光谱遥感图像多个波段之间的空间信息变化规律,将新型纹理提取算法局部二值模式(Local Binary Pattern,LBP)扩展到多维空间以计算多元纹理。单波段纹理信息、多元纹理信息分别与光谱信息结合后用于遥感图像分类,并根据分类精度评价其有效性。实验表明,加入单波段或多元纹理信息的分类精度均比光谱分类有明显提高;基于多元LBP纹理的分类不仅避免了传统单波段纹理参与分类前进行波段选择的繁琐,其精度还能与基于单波段纹理分类精度最高者相当或者更高。    

6.  基于高光谱成像和模式识别的无损检测苹果表面损伤  
   孟庆龙  尚静  张艳《光电子.激光》,2019年第3期
   为了实现苹果表面损伤的快速无损检测,基于高 光谱成像技术结合模式识别算法建立了苹果表面损 伤检测模型。首先,利用高光谱图像采集系统采集完好无损和表面损伤苹果样本的高光谱图 像,提取正常 区域和损伤区域的平均光谱反射率曲线;然后,采用标准正态变换(SNV)和多元散射校正(MSC)分别 对原始光谱数据进行预处理;最后,利用偏最小二乘判别分析(PLS-DA)方法,建立了苹 果表面损伤 SNV+PLS-DA和MSC+PLS-DA检测模型。结果表明:采用SNV和MSC光谱预处理方法可有效地消 除高 光谱图像中的噪声;利用SNV+PLS-DA检测模型对校正集和检验集样本的正确识别率分别为 70.8%和 77.5%,而采用MSC+PLS-DA检测模型对校正集和检验集样本的正确识 别率分别为71.7%和77.5%。因此, 基于高光谱成像技术结合模式识别方法,可实现苹果表面损伤的无损检测。    

7.  基于支持向量机的时序周波波形分类方法  
   胡志坤  王美铃  桂卫华  阳春华  丁家峰《浙江大学学报(工学版)》,2010年第44卷第7期
    针对电力系统输出的周波波形多的特点,提出一种基于小波分析和支持向量机(SVM)的时序周波波形分类方法,实现三相电压源型逆变器的故障分类.利用离散正交小波变换(DOWT)将周波序列变换成小波系数矩阵,利用奇异值分解(SVD)的方法获得系数矩阵的奇异值向量,作为周波序列的特征值.建立基于新的Huffman树来实现支持向量机策略的多类分类模型.将奇异值分解得到的特征向量应用到该分类模型,判断逆变器的故障类型.仿真结果表明,该模型的平均期望准确率比基于普通二叉树的支持向量机多类模型高3.65%,分类准确率达到99.6%.    

8.  支持向量机在模式识别中的应用  被引次数:4
   沈明华  肖立  王飞行《电讯技术》,2006年第46卷第4期
   针对传统神经网络存在网络结构难于确定、过学习以及局部极小等问题,研究了基于支持向量机(SVM)的模式识别问题。通过对棋盘这种典型非线性二值问题的分类研究,分析了支持向量机的分类与泛化能力。支持向量机在分类和泛化能力方面远远优于传统神经网络。最后将支持向量机用于对两类飞机目标的分类识别,通过多组蒙特卡罗试验,获得了较好的识别结果。支持向量机在目标识别中有巨大潜力和广阔前景。    

9.  郎枣轻微损伤可见/近红外光谱分波段动态判别研究  被引次数:1
   杨一  张淑娟  薛建新  王斌  满尊  张学豪《现代食品科技》,2015年第31卷第8期
   为了实现轻微损伤郎枣的快速无损检测,以完好和轻微损伤郎枣为研究对象,动态采集其可见/近红外光谱数据。依据光谱波段定义将采集的光谱数据分为可见光(Vis)、短波近红外(SW-NIR)、长波近红外(LW-NIR)、可见/短波近红外(Vis/SW-NIR)、近红外(NIR)和可见/近红外(Vis/NIR)等6个波段,分别选取各波段最佳预处理方法。采用连续投影法(SPA)和主成分分析法(PCA)分别对各波段光谱数据降维,以全波长、SPA提取的特征波长和PCA提取的主成分作为输入,分别建立偏最小二乘回归法(PLSR)和最小二乘支持向量机(LS-SVM)模型,通过比较预测集的判别准确率,确定最佳建模方法。结果表明,PLSR模型优于LS-SVM模型,SW-NIR波段较其余5个波段有更好的判别能力,所建SW-NIR-SNV-SPA-PLSR模型判别准确率为93.3%,为最佳模型。本实验为轻微损伤郎枣的快速无损检测和相关仪器的开发提供了理论基础。    

10.  基于颜色分割与 GA-SVM 的花生表皮破损识别  
   申志超  赵志衡  卢雷  孙磊  罗思婕  胡琦渊《中国粮油学报》,2021年第36卷第3期
   传统农作物色选方法以设定颜色阈值为主,具有分类准确率较低、泛化能力较差等缺点,本文提出基于颜色分割的预处理与遗传算法优化支持向量机参数的花生表皮破损识别算法。根据花生表皮的破损情况将花生分为完好花生及表皮破损花生2类,在不同光照条件下构建了含有多个品种的花生图像数据集。对花生图像提取方向梯度直方图特征,利用支持向量机对花生图像进行分类。为提高分类准确率,在RGB颜色空间基于支持向量机对彩色花生图像进行颜色分割预处理;同时采用软间隔非线性支持向量机模型,并基于遗传算法对模型参数进行寻优。综合优化后的算法在训练集上对花生图像分类时的准确率达到96.88%,在测试集上的准确率达到100%,测试时平均每张花生图像耗时5.6 ms。仿真测试结果表明本文构建的花生表皮破损识别算法对花生品种及光照变化等干扰有较好的鲁棒性,且算法不依赖于人的经验,泛化能力强,具有良好的应用前景。    

11.  基于分块LBP融合特征和SVM的人脸识别算法  
   《传感器与微系统》,2019年第5期
   针对传统局部二值模式(LBP)特征提取方法在光线和人脸表情变化的情况下表现不佳、单一方法提取出的特征不能多角度表现出整张人脸的特征信息的问题,提出一种基于分块LBP融合特征和支持向量机(SVM)的人脸识别方法。先将人脸图像划分为不同的块,对每一块提取LBP特征;然后将不同分块的像素均值特征与LBP特征进行融合,用融合后的特征向量来表征人脸;最后引入SVM作为分类器对上述特征进行分类。在YALE、ORL标准人脸库以及自建人脸库上进行实验验证,实验结果表明:该方法识别准确率分别能达到95. 15%,99. 75%,96. 25%,对比实验显示,该方法优于C4. 5决策树、随机森林等传统方法。    

12.  基于支持向量机和神经网络对分类问题的比较研究  
   张金会  何政军  田希《机械工程师》,2012年第8期
   支持向量机(SVM)和神经网络(ANN)是模式识别的两种方法,支持向量机是新兴的一种效率更高的识别方法,能够达到比神经网络更好的分类效果。文中以二分类为例比较了二者的分类准确率和效率问题。    

13.  基于高光谱成像技术的苹果表面缺陷无损检测  
   孟庆龙  张艳  尚静《食品研究与开发》,2019年第5期
   以"红富士"苹果为研究对象,提出基于高光谱成像技术结合图像分割技术的苹果表面缺陷的无损检测方法。采用高光谱图像采集系统(400 nm~1 000 nm)采集完好无损和表面有缺陷苹果的高光谱图像;对采集到的高光谱图像进行最小噪声分离变换,提取感兴趣区域的平均光谱反射率;采用图像分割技术提出苹果表面缺陷的无损检测方法。结果表明:采用最小噪声分离变换可有效地消除苹果高光谱图像中的噪声;在700 nm~800 nm以及900 nm~1 000 nm波段范围内完好无损和表面有缺陷的苹果的光谱反射率值具有明显的差异,同时选取特征波长717.98 nm处的光谱反射率值小于0.6以及982.59 nm处的光谱反射率值大于0.52作为区分苹果正常区域和表面缺陷区域的阈值条件,进一步利用阈值分割方法对80个完好无损苹果和40个表面有缺陷苹果的正确识别率分别为97.5%和95%。表明高光谱成像技术结合图像分割技术可实现苹果表面缺陷的无损检测。    

14.  基于透射光谱的苹果霉心病多因子无损检测  
   苏 东  张海辉  陈克涛  胡 瑾  张佐经  雷 雨《食品科学》,2016年第37卷第8期
   针对目前苹果霉心病难以检测的问题,提出一种基于透射光谱的苹果霉心病多因子无损检测方法,通过融合多波段透射光谱与苹果直径,构建苹果霉心病判别模型,实现了苹果霉心病无损检测。搭建光谱测试范围在200~1?025?nm的透射光谱采集平台,实验获取232个苹果样本的透射光谱数据,采用游标卡尺获得苹果直径数据。采用杂散光校正,非线性校正对苹果透射原始光谱进行预处理,选取与霉心病发病相关的12个波段透射光强值,结合苹果的直径进行主成分分析,将分析的结果作为自变量,建立苹果霉心病Fisher判别模型。经过异校验验证,模型总体识别率为93.1%,而仅采用透射光谱构建的模型识别率为91.37%。结果表明,基于透射光谱与直径结合的多因子检测方法可实现苹果霉心病的准确判定,为苹果霉心病的快速、无损检测提供可行思路。    

15.  基于随机森林和纹理特征的苹果园遥感提取  
   《现代电子技术》,2020年第3期
   为准确、快速地从高分影像中获取苹果种植分布信息,以QuickBird遥感影像为数据源,首先采用分形理论和灰度共生矩阵(GLCM)提取纹理特征,然后将提取的分形纹理和GLCM纹理特征分别与光谱特征组合,最后开展随机森林分类实验,对不同分类特征和不同分类方法的实验结果进行比较。结果表明:光谱+GLCM纹理识别苹果园的效果明显优于光谱特征和光谱+分形纹理,其苹果园提取精度为95.99%,比光谱分类显著提高11.83%,比光谱+分形纹理提高1.34%;在相同分类特征下随机森林分类结果最高,其中,随机森林结合光谱+GLCM纹理分类精度最高,总体精度和Kappa系数分别为95.30%和0.94,较最小距离和支持向量机分类有明显提高。    

16.  一种基于多尺度局部纹理特征和CART决策树的野外火灾火焰图像识别算法  
   《计算机应用与软件》,2019年第5期
   为了消除野外环境中枯草、枯树枝、枯树叶等干扰对象对野外火灾识别的影响,提高火焰识别的准确率,提出一种新的基于Gabor滤波和局部二值模式(LBP)的多尺度局部纹理特征提取方法,并构建Adaboost-SVM火焰图像分类器。利用火焰的颜色特征提取出疑似火焰区域;对疑似火焰区域进行Gabor滤波,再对Gabor滤波后不同尺度下的图像以16×16的像素邻域网格作为采样窗口,采用LBP提取其纹理特征;运用CART决策树对LBP特征向量进行降维,将分类回归树算法(CART)选择出来的特征输入到支持向量机(SVM)训练分类器,进行火灾火焰图像识别。实验结果表明,野外火灾火焰的识别准确率为96%,证明了该算法的有效性。    

17.  基于深度信念网络的苹果霉心病病害程度无损检测  被引次数:3
   周兆永  何东健  张海辉  雷雨  苏东  陈克涛《食品科学》,2017年第38卷第14期
   针对现有霉心病无损检测只能检测出有无病害,无法对病害程度进行判断的问题,研究并提出一种基于深度信念网络(deep belief net,DBN)的无监督检测模型。该模型由多层限制玻尔兹曼机(restricted Boltzmann machine,RBM)网络和1层反向传播(back propagation,BP)神经网络组成,RBM网络实现最优特征向量映射,输出的特征向量由BP神经网络对霉心病病害程度分类。对225个苹果样本在波长200~1 025 nm获取其透射光谱后,根据腐烂面积占横截面比例将霉心病害程度分为健康、轻度、中度和重度4种,分别用150个和75个样本作为训练集和测试集,以全光谱数据和基于连续投影算法提取的特征波长数据为输入构建病害程度判别模型,并比较DBN模型与偏最小二乘判别分析、BP神经网络和支持向量机模型的识别效果,实验结果表明,DBN模型病害判别准确率达到88.00%,具有较好的识别效果。    

18.  高光谱图像对白萝卜糠心的无损检测  被引次数:2
   胡鹏程  孙 晔  吴海伦  顾欣哲  屠 康  郑 剑  潘磊庆《食品科学》,2015年第36卷第12期
   为实现白萝卜异常品质糠心的无损检测,构建高光谱图像技术检测白萝卜糠心的检测系统。获取了光源透射、反射和半透射模式下白萝卜的高光谱图像信息,结合偏最小二乘分析(partial least squares discriminantanalysis,PLS-DA)、支持向量机(support vector machine,SVM)、人工神经网络(artificial neural network,ANN)3 种算法分别建立白萝卜糠心的识别模型。结果表明:3 种检测模式中,基于透射模式的高光谱图像系统检测准确率最高;3 种预测模型中,ANN模型优于PLS-DA和SVM模型。其中,基于透射模式的ANN模型,高光谱图像对萝卜糠心的检测总体准确率达94.3%,效果最好。因此,采用透射模式的高光谱图像技术对白萝卜糠心的检测是可行的。    

19.  基于卷积神经网络的苹果栽培品种识别  
   仇誉  韩俊英  封成智  陈永卫《计算机与现代化》,2021年第12期
   针对苹果栽培品种识别分类问题,提供一个包含多个苹果果树品种的叶片图像原始数据集,并且研究构建一种新的深度卷积神经网络分类模型,对其分类准确性、泛化性能和稳定性进行对比验证,以期对苹果栽培品种简便、快速、准确的识别分类提供理论依据和技术支持.以甘肃省平凉市静宁县果树果品研究所苹果良种苗木繁育基地作为实验基地,在其中选取14个苹果果树品种.每个品种选取10棵左右树龄、树势、长势都存在差异的果树,采摘100片左右成熟的、无机械损伤的叶片,然后拍摄叶片图像建立数据集,进而利用卷积神经网络训练识别分类模型.本文针对苹果栽培品种识别分类,提供一个包含14个苹果果树品种共计14394张叶片图像的原始数据集,并且设计实现基于卷积神经网络的识别分类模型.实验结果表明,该识别分类模型有较高的准确率,训练集训练精度可以达到99.88%,验证集验证精度为94.36%,独立测试集的测试精度为90.49%.本文的研究结果可以为现代苹果田间种植及科研试验等实际场景提供力所能及的帮助,为深度卷积神经网络技术在植物品种识别分类实际应用场景提供参考,丰富深度学习在农业上的应用.    

20.  高光谱技术在血迹分类识别中的应用  
   李成成  赵明富  汤 斌  罗彬彬  邹 雪  王博思《太赫兹科学与电子信息学报》,2019年第17卷第3期
   利用高光谱技术对血迹种类进行无损识别研究。采用小波变换技术对400~950 nm之间的原始光谱进行去噪处理,并对处理后的光谱进行特征波段选择,建立全波段和特征波长下的血迹种类识别模型。结果表明,利用特征波长与支持向量机(SVM)结合建立的血迹种类识别模型的识别准确率及识别时间分别为98%和0.2 s,优于全波段建立的模型。研究表明,采用高光谱技术对血迹种类识别是可行的。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号