首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 69 毫秒
1.
在前期的番木瓜果浆微波辅助泡沫干燥工艺基础之上,探究果浆在微波辅助干燥过程中主要物质的含量变化规律。探究了不同微波功率下水分含量变化规律和营养物质含量变化规律,并对所得的动力学方程进行验证。研究结果表明:在水分含量模型中Page方程模型预测值与实验值拟合度最高,R~2为0.9884;在维生素C含量模型中零级反应模型预测值与实验值拟合度最高,R~2为0.9702;胡萝卜素含量模型中一级反应动力学模型预测值与实验值拟合度较高,R~2为0.9185。以上所得方程模型验证结果表明,模型预测值与实验值差异不显著,模型均能较好的反映木瓜微波辅助泡沫干燥过程中主要物质的动力学特征。   相似文献   

2.
以新榨蓝靛果汁为试材,采用控制温度、避光、连续充氮气等方法探讨蓝靛果汁维生素C的热降解动力学,为深加工条件的优化控制及保质期的预测提供科学的依据。结果表明:蓝靛果维生素C对热不稳定,维生素C的降解过程符合一级动力学反应;通过蓝靛果汁维生素C的热降解速率常数和活化能(Ea)分析,结果表明:充氮气处理可以提高蓝靛果维生素C的稳定性,光照对蓝靛果汁维生素C降解的影响比氧气对蓝靛果汁维生素C降解的影响大。  相似文献   

3.
以新榨蓝靛果汁为试材,采用控制温度、避光、连续充氮气等方法探讨蓝靛果汁维生素C的热降解动力学,为深加工条件的优化控制及保质期的预测提供科学的依据。结果表明:蓝靛果维生素C对热不稳定,维生素C的降解过程符合一级动力学反应;通过蓝靛果汁维生素C的热降解速率常数和活化能(Ea)分析,结果表明:充氮气处理可以提高蓝靛果维生素C的稳定性,光照对蓝靛果汁维生素C降解的影响比氧气对蓝靛果汁维生素C降解的影响大。   相似文献   

4.
为了研究微波泡沫干燥树莓果浆传热传质特性,以树莓为原料,采用中心组合实验设计方法,研究干燥条件对物料温度、含水率以及介电特性的影响规律,分析微波泡沫干燥过程中传热传质过程。结果表明:微波泡沫干燥树莓果浆过程中,干燥初期,介电常数与介电损耗因子均增大,使得物料吸收的微波能增大,果浆温度由室温上升至70℃,含水率无明显变化;干燥中期,介电常数与介电损耗因子先增大后减小,因此物料吸收的微波能呈先增大后减小趋势,果浆含水率由90%降至40%,温度变化不明显;干燥后期,介电常数与介电损耗因子均减小,物料吸收的微波能减少,果浆含水率缓慢降至15%左右,温度继续升高。微波泡沫干燥方法可有效提高高粘度果浆的干燥速度。   相似文献   

5.
该文研究热风干燥温度(50、60、70℃和80℃)对黄花菜干燥动力学(水分比、干燥速率、有效扩散系数、活化能)和维生素C降解动力学的影响。结果表明,黄花菜的干燥以降速阶段为主,随干燥温度的升高干燥时间显著缩短,水分有效扩散系数(D_(eff))显著升高。水分扩散活化能(E_a)与水分含量(M)呈指数关系:E_a=37.886 85exp(-M/1.739 28)+25.272 19。黄花菜干燥过程中维生素C降解呈Weibull模型,R~20.99,其降解的活化能(E_a)为72.25 kJ/mol。  相似文献   

6.
张雁南  刘硕芳  李皓  张艳荣 《食品科学》2010,31(18):104-107
采用微波辅助法提取蓝靛果中红色素,以吸光度为评价指标,采用单因素试验探讨乙醇溶液体积分数、料液比、微波功率、提取时间对蓝靛果红色素提取率的影响,采用正交试验优化提取工艺。用DPPH 法测定蓝靛果红色素的抗氧化活性。结果表明:微波辅助提取蓝靛果红色素的最佳提取工艺条件为乙醇溶液体积分数65%、料液比1:10(g/mL)、微波功率540W、提取时间90s,此条件下红色素提取量为105.5mg/100g 果实,抗氧化实验证明蓝靛果红色素具有清除DPPH 自由基的作用。  相似文献   

7.
对长白山蓝靛果(Lonicera edulis)鲜果进行微生物分离纯化,筛选获得可降解有机酸的酵母菌株,研究其降酸特性和耐受性并进行生物学鉴定。结果表明:从蓝靛果果实中筛选出5株具有降酸作用的菌株,其中B5对于苹果酸、柠檬酸、酒石酸的降酸率分别为42.60%±0.85%、18.28%±0.80%、13.09%±0.61%。对菌株B5进行形态学观察,生理生化试验以及26S rDNA鉴定,菌株B5为二孢接合酵母(Zygosaccharomyces bisporus),耐受葡萄糖、SO2质量浓度分别为250 g/L,400 mg/L,耐受酒精度为18%vol。本实验结果可为果酒产品生物降酸提供参考。  相似文献   

8.
为了探索温度对苹果汁中维生素C降解的影响以及维生素C的降解动力学规律,采用可逆的一级反应模型,对加热温度30、40、50、60、70℃条件下苹果汁中还原型维生素C(AA)和氧化型维生素C(DHA)含量的变化及降解动力学进行了研究,结果表明:60℃的AA反应速率最大,DHA反应速率基本随着温度升高而增大;温度升高,可逆反应速率常数增大,其它降解途径速率常数变化不明显;AA无氧氧化速率与温度有一定关系,50℃的AA无氧氧化速率最大,70℃的AA无氧氧化速率最小;AA和DHA热降解反应活化能均低于一般化学反应活化能,说明苹果汁中维生素C热稳定性较差。维生素C的降解主要是有氧氧化反应,苹果汁中维生素C无氧降解速率比有氧降解速率慢;温度升高,苹果汁中维生素C有氧降解速度加快,无氧降解速度变化不明显。在苹果汁加工工艺中应尽量隔绝氧气,采用高温(70℃)短时热处理。对成品苹果汁应采用低温贮藏。  相似文献   

9.
雪莲果热风-微波联合干燥工艺优化   总被引:2,自引:0,他引:2  
以雪莲果为原料,研究样品厚度、热风温度、微波质量比功率对雪莲果热风和微波干燥特性的影响。以热风温度、转换点含水率、微波质量比功率为因素,以色泽变化(ΔE)、干燥时间(t)为指标,采用二次回归正交旋转组合试验设计确定雪莲果热风-微波联合干燥的最适工艺参数。结果表明:雪莲果热风干燥最适工艺参数组合为样品厚度2~4mm,热风温度70℃;雪莲果微波干燥最适工艺参数组合为样品厚度4mm,微波质量比功率2W/g。影响热风-微波联合干燥产品ΔE的主次顺序依次为微波质量比功率、热风温度、转换点含水率;影响干燥时间的主次顺序依次为转换点含水率、热风温度、微波质量比功率。雪莲果热风-微波联合干燥的最适工艺参数组合为热风温度68.1℃,转换点含水率61.0%,微波质量比功率2.6W/g。在此组合参数条件下,色泽变化ΔE=21.53,干燥时间t=172min,复水比RR=4.12,收缩率SR=84.35%。  相似文献   

10.
用Plackett-Burman法筛选出影响蓝靛果花色苷中粒度微胶囊包埋率的主要因素,对筛选出的主因素进行最陡爬坡实验来逼近最佳响应面区域,利用响应面Box-Behnken设计对乳化凝胶法制备微胶囊的工艺进行了优化。结果表明:4个影响包埋率的主要因素分别为海藻酸钠浓度、芯壁材比例、CaCl2浓度和Span80浓度。通过Box-Behnken设计,利用minitab15软件进行回归分析,确定制备蓝靛果花色苷微胶囊的最优工艺参数为:海藻酸钠浓度2.94%、芯壁材比例1∶2.05、CaCl2浓度3.19%、Span80浓度6.21%。在优化后的条件下,中粒度微胶囊包埋率可以达到73.7%。   相似文献   

11.
本文研究了不同贮藏条件对草莓汁中维生素C降解的影响,分别采用玻璃瓶和PET瓶为包装材料对草莓汁在不同贮藏温度(4℃、20℃和37℃)下维生素C的降解规律进行分析,并分别建立动力学模型。结果表明:草莓汁中的维生素C对热不稳定,随贮藏温度的升高,降解速率增大,半衰期减小;同一贮藏温度下,PET瓶的降解速率大于玻璃瓶;玻璃瓶和PET瓶中草莓汁维生素C的降解均符合一级动力学模型,其反应活化能分别为32.04 kJ/mol和28.26 kJ/mol。两种包装材料预测模型的验证值与实测值的相关系数R~20.99,表明了模型的有效性,可用于预测任意温度下贮藏的维生素C含量及草莓汁货架期。同时对草莓汁中维生素C活化热力学函数(ΔG~≠,ΔH~≠,ΔS~≠,K~≠)的值进行了计算分析,为阐释维生素C降解机制提供了依据。  相似文献   

12.
高Vc红枣真空干燥技术与设备的研究   总被引:1,自引:0,他引:1  
以试验为依据,对红枣真空干燥技术进行了分析研究,用以加工出口感酥脆、枣香浓郁、Vc含量高达800mg/100g以上的优质干枣。  相似文献   

13.
ABSTRACT: Intrinsic stability and rheological properties of apple juice foams for foam mat drying were studied. Foams were prepared from clarified apple juice by adding various concentrations of 2 foaming agents of different nature: a protein (egg white at 0.5%, 1%, 2%, and 3% w/w) and a polysaccharide (methylcellulose at 0.1%, 0.2%, 0.5%, 1%, and 2% w/w), and whipping at different times (3, 5, and 7 min). In general, egg white foams were less stable but showed a higher degree of solidity (stronger structures), higher foaming capacity, and smaller bubble average diameter than methylcellulose foams. Foam stability increased with increasing concentrations of either methylcellulose or egg white. Increasing whipping times increased the stability of egg white foams only. Stability parameters (maximum drainage and drainage half-time) were correlated in terms of rheological parameters of the continuous phase (consistency index and apparent viscosity at 30/s, respectively). The correlations ( R 2= 0.766 and 0.951, respectively) were considered acceptable because they were independent of whipping time and foaming agent nature and concentration. Results on foam rheology obtained by dynamic and vane tests were in agreement, but the latter method was more sensitive. Optimal concentrations to obtain the most solid foams (0.2% methylcellulose and 2% to 3% egg white, respectively) were the same concentrations required for maximum foaming capacity. Based on this observation and previous models, an empirical expression was proposed to predict the degree of solidity (in terms of inverse phase angle and yield stress) only as a function of foam structural properties (air volume fraction and average bubble size). The model proved to be satisfactory to fit experimental results ( R 2= 0.848 and 0.975, respectively), independently of whipping time, foaming agent nature and concentration.  相似文献   

14.
为了探索微波功率密度对产品微波真空干燥(MVD)的影响,本文在干燥特性的基础上,进行了胡萝卜微波真空干燥动力学方程的数值模拟,然后利用遗传算法进行胡萝卜多功率组合的微波真空干燥优化研究。结果表明,单一微波功率密度干燥下,微波功率密度越大,胡萝卜片干燥速率越大,干燥时间越短,产品越易焦糊;在4种常见的薄层干燥及其延伸模型的数值拟合对比研究中,发现基于wang延伸模型1(即MR=aexp(-ktn)+c)能很好的表征不同功率密度下胡萝卜片微波真空干燥过程的脱水情况。进一步以三条(分别为20、5和0.6 W/g)不同微波功率密度下的胡萝卜干燥动力学方程为对象,通过遗传算法优化并获得了多功率密度连续微波真空干燥组合工艺参数;经验证,该工艺加工的胡萝卜片干基水分含量(0.078±0.005)g/g,没有焦糊;相比0.6 W/g单一微波功率的干燥结果,不但产品减少了收缩和焦糊现象,而且干燥效率提高了4.77倍。采用计算机遗传算法可以达到优化多功率组合的微波真空干燥加工工艺的目的,减少实验工作量,还可以获得计算机数值模拟模型,为实现微波干燥加工过程信息化提供技术支撑。  相似文献   

15.
以胡萝卜为研究对象,研究胡萝卜在干燥加工过程中的维生素含量变化规律。对胡萝卜分别采用真空冷冻干燥、热泵干燥、热风干燥等进行干燥加工,对干燥过程中胡萝卜中的不同维生素的含量进行测定,采用SPSS 12.0对所得实验数据进行统计学处理。结果表明:较干燥前,干燥后的胡萝卜中的维生素总量损失较大。其中,冷冻干燥过程中,维生素A的总损失率为62.23%,维生素B1为54.95%,维生素B2为48.32%,维生素C为66.52%;热风干燥过程中,在干燥温度为100℃时,四种维生素的损失率达到最高,其中维生素A的损失率为80.75%,维生素B1为77.45%,维生素B2为79.63%,维生素C为80.47%。在热泵干燥过程中,当出风温度为100℃时,四种维生素的损失率达到最高,其中维生素A的损失率为80.23%,维生素B1为69.54%,维生素B2为64.35%,维生素C为89.27%。在胡萝卜干燥加工过程中维生素A与维生素C的损失率最高,因此为减少胡萝卜干燥加工过程中的维生素损失,应该不断改进胡萝卜干燥加工工艺。  相似文献   

16.
王忠合  王军  林倩仪   《中国食品学报》2020,20(4):187-196
采用超声波预处理柠檬片,以干基含水量、干燥速率、复水率、维生素C含量为主要指标,研究超声处理时间对柠檬片干制的影响。结果表明:超声波预处理后热风干燥柠檬片的干燥速率增加,干燥所需时间至少缩短20%,热风干燥阶段耗能量明显降低;试验范围内的探针式超声处理时间越短,干燥速率越大,而一定范围内的水浴式超声预处理时间越长,干燥速率越大。超声波预处理不仅能降低柠檬片热风干燥时维生素C的损失,而且对干制品的复水率也有较好的改善效果。探针式超声波预处理时间越长,维生素C损失越大,复水比降低,应用中需选择较短时间的预处理;随着水浴式超声波预处理时间的延长,干制柠檬片中维生素C含量呈平缓下降的趋势,复水比逐渐增大,而超声预处理时间延长至11 min后,变化不明显(P<0.05)。探针式超声波预处理3 min、热风干燥160 min的柠檬片中维生素C的含量为32.93 mg/100 g,复水比4.61±0.08;水浴式超声波预处理11 min、热风干燥160 min的柠檬片中维生素C的含量为29.70 mg/100 g,复水比4.60±0.13。  相似文献   

17.
真空微波干燥金针菇的工艺研究   总被引:1,自引:1,他引:1  
初步研究了微波真空干燥金针菇的工艺条件,分析了不同工艺参数下水分变化规律,对不同干燥方式下产品的理化指标和感官指标进行了评价。结果表明:在1.2kW、-75kPa、100g条件下干燥能较好地保留金针菇原有的营养物质且复水性较好。真空微波干燥的金针菇多项指标明显优于热风干燥且与冻干接近,干燥效率高。  相似文献   

18.
High performance liquid chromatography with electrochemical detection was used to follow losses of L-ascorbic acid (AsA) in the processing and serving of fortified mashed potatoes. Cumulative losses of AsA were: 56% for adding AsA to freshly mashed potatoes at 251 ppm (wet basis); 82% drum-drying the potatoes; 82% storing the flakes 4.3 months at 25°C., and 96% reconstituting mashed potatoes and holding them 30 min on a steam table. The mashed potatoes at the point of ingestion would contain 10 ppm AsA (wet basis), and one serving size (100g) would provide 2% of the adult RDA. Fortification with equivalent levels of magnesium L-ascorbate 2-mono-phosphate (AsMP) or sodium L-ascorbate 2-polyphosphate (AsPP) gave overall cumulative losses of 20 or 32%, respectively. Such reconstituted mashed potatoes contained 201 ppm and 171 ppm AsA respectively, and one serving would provide about 33% of the RDA of vitamin C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号