首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Shan Y  Ma M  Huang X  Guo Y  Jin G  Jin Y 《Journal of food science》2012,77(7):C740-C745
Ovomucin has been considered to contribute a lot to the excellent functional properties of egg white. This work focused on investigating the effects of pH and protein concentration on foaming and emulsifying properties of ovomucin to evaluate the proper use of this egg protein as a functional food ingredient, and to clarify its contribution to the functional properties of egg white under different pH conditions. Protein solubility and surface hydrophobicity were measured through the pH ranged from 2.3 to 11.0. Alkali treatment gave ovomucin improved emulsification properties, which were correlated well with the surface hydrophobicity (r ≥ 0.89, P < 0.01). Although ovomucin showed lower foaming capacity in acid and neutral solution, enhanced foaming stability was observed with weak acid-treated ovomucin (pH 5 to 6) compared to native ovomucin. These results demonstrated that acid and alkali treatment, which leads to partial unfolding of ovomucin can improve functional properties of ovomucin, with the greatest improvement for emulsification properties being from the alkali treatment and for foaming stability being from weak acid treatment. These results are helpful to produce unfolding ovomucin suitable for wide range of applications in food industry, and to provide useful information on the proper use of egg white in different food systems. PRACTICAL APPLICATION: Ovomucin plays a critical functional role in egg white products. However, it is typically insoluble in distilled water or common salt solutions, which has thus limited its commercial applications. Alkaline treatment resulted in gradual increase in solubility, which markedly enhanced the emulsifying properties, on the other hand foaming stability of ovomucin can be promoted by weak acid treatment. The results of this work help to produce unfolding ovomucin suitable for wide range of applications in food industry, and to provide useful information on the proper use of egg white in different food systems.  相似文献   

2.
Guang  Wang  Tong  Wang 《Journal of food science》2009,74(8):C581-C587
ABSTRACT:  Yolk contamination of egg white is a common problem in the egg breaking industry. Foaming properties of egg white protein are affected by such contamination, but proteins of basic nature may restore the foaming properties of the yolk-contaminated egg white protein. The purpose of this study was to chemically modify a soy protein, that is, to esterify the acidic groups on the protein and to study the potential of such modified protein in improving foaming. We showed that the modification changed the isoelectric point of soy protein isolate (SPI) from 4.5 to about 10. Sonication was proven to be a very effective means to redisperse the methanol-denatured soy protein during reaction, as shown by the improved solubility profile. Such modified basic protein, that is, the sonicated-modified SPI (SMSPI), when added to the yolk-contaminated (at 0.4% level, as-is basis) egg white, gave significantly improved foaming properties. We have shown that the slight change in pH due to the addition of SMSPI was not the reason for improved foaming performance; instead, the modified protein itself was the main reason for such improvement. Addition of SMSPI increased the foaming performance of both pure egg white and yolk-contaminated egg white. SMSPI consistently performed better than the unmodified SPI for improving foaming. Addition of SMSPI (16%, based on dry egg white, and 1.6% based on liquid egg white) fully restored foam expansion and foam liquid stability of 0.4% yolk-contaminated egg white, and it even out-performed the foaming of pure white protein. Therefore, a feasible solution to restore the foaming properties of yolk-contaminated egg white has been identified. It is expected that such modified SPI can be used as an additive or ingredient in foaming formulation, especially when the egg white protein is suspected of lipid contamination.  相似文献   

3.
Biopolymers were prepared by cross-linking whey protein isolate (WPI) and soybean 11S using transglutaminase. Electrophoretic pattern, solubility, emulsification, hydrophobicity and foaming properties of the biopolymers were determined. SDS-PAGE showed bands corresponding to high-molecular-weight components (MW>200 kDa). Biopolymer solubility was > 90% at pH 3 and below, and at pH 7 and above. Emulsifying properties of biopolymers were lower than those of WPI. The foaming capacity of the biopolymers (23.6 mL) and WPI/11S mixture (22.7 mL) were similar to that of egg albumin (20.3 mL). The foaming stability of the biopolymers (122 min) was higher than that of WPI/11S mixture (33.7 min), and was similar to that of egg albumin (132 min).  相似文献   

4.
为探究干燥方式对蛋清蛋白(egg white protein,EWP)功能特性的影响及其内在机理,分别通过喷雾干燥与真空冷冻干燥制备蛋清蛋白粉,并对其蛋白结构、理化性质与功能特性进行研究。结果表明,与蛋清液(EWP-C)相比,喷雾干燥使蛋清蛋白(EWP-P)的内源性荧光强度降低,表面疏水性和表面游离巯基含量增大。傅里叶变换红外光谱分析显示,EWP-P的α-螺旋、β-折叠和β-转角分别为16.30%、25.72%和40.23%,冷冻干燥蛋清蛋白(EWP-D)分别为20.43%、24.32%和35.69%。不同pH下,EWP-D的溶解度均高于EWP-P,表面张力小于EWP-P。此外,EWP-P的接触角为99.62°,高于EWP-D(接触角为65.97°),表明喷雾干燥能显著提高蛋白的疏水性(P<0.05)。EWP-D在不同pH下的乳化性、乳化稳定性以及起泡性均大于EWP-P,但起泡稳定性更小,这与EWP-D较高的溶解性与较低的表明疏水性有关。荧光倒置显微镜及激光共聚焦扫描显微镜分析表明EWP-D乳液的微粒更小,分布更均匀,其稳定性高于EWP-P。综上,喷雾干燥蛋清蛋白的β-折叠结构较多,表面游离巯基含量和表面疏水性较高,具有较好的凝胶性;冷冻干燥蛋清蛋白的表面疏水性较小,且表面张力小、溶解度大,具有更好的乳化能力与起泡性。  相似文献   

5.
To improve the foaming properties of egg white powder (EWP), the effects of incorporating four different kinds of peptides (soy peptides, corn peptides, whey peptides, and fish skin peptides) were evaluated. The addition of soy peptides (SP) enhanced the foamability, foam stability, and solubility of EWP, whereas whey peptides (WP) significantly reduced the foam stability and solubility. Adding corn peptides (CP) and fish skin peptides (FP) notably improved the foaming properties but had no significant effect on solubility. The addition of SP, WP, and CP markedly reduced zeta potential and surface tension and increased surface hydrophobicity. The rheology data showed that adding SP, CP, and FP significantly increased the elastic modulus of the foam, yet WP notably reduced the elastic modulus. The results obtained by Fourier infrared spectroscopy indicated that the addition of the four kinds of peptides made the secondary structure of egg white protein more flexible. In short, SP, CP, and FP could improve the foaming performance of EWP.  相似文献   

6.
ABSTRACT: Endo-protease treatments achieving low degrees of hydrolysis (DH 2% and 4%) were used to improve functional properties of hexane-extracted soy flour (HESF), extruded-expelled partially defatted soy flour (EESF), ethanol-washed soy protein concentrate (SPC), and soy protein isolate (SPI). These substrates had protein dispersibility indices ranging from 11% to 89%. Functional properties, including solubility profile (pH 3 to 7), emul-sification capacity and stability, foaming capacity and stability, and apparent viscosity were determined and related to surface hydrophobicity and peptide profiles of the hydrolysates. Protein solubilities of all substrates increased as DH increased. Emulsification capacity and hydrophobicity values of the enzyme-modified HESF and EESF decreased after hydrolysis, whereas these values increased for SPC and SPI. Emulsion stability was improved for all 4% DH hydrolysates. Hydrolyzed SPC had lower foaming capacity and stability. For substrates other than SPC, foaming properties were different depending on DH. Hydrolysis significantly decreased the apparent viscosities regardless of substrate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated differences in the molecular weight profiles of the hydrolysates. HESF and EESF, which had high proportions of native-state proteins, showed minor changes in the peptide profile due to hydrolysis compared with SPC and SPI.  相似文献   

7.
The foaming properties of commercial soy protein isolate subjected to different temperatures (20–90°C) were assessed. The results revealed that the solubility and surface hydrophobicity of a 5% (w/v) commercial soy protein isolate suspension increased with increasing temperature, which increased foaming capacity and reduced foaming stability. Commercial soy protein isolate supernatant (i.e., soluble fraction) had higher foaming capacity at low temperatures (20–50°C). A high content of commercial soy protein isolate soluble fraction increased foaming capacity but decreased foaming stability. The SDS-PAGE patterns and molecular weight distribution of commercial soy protein isolate revealed that there were soluble, large molecular weight aggregates (>400 kDa) formed mainly from A and B-11S polypeptides of commercial soy protein isolate via disulfide bonds. Additionally, some aggregates also dissociated into small polypeptides and subunits after heat treatment. Commercial soy protein isolate precipitate (i.e., insoluble fraction) had a high content of proline and cysteine, which probably contributed to the foaming stability of commercial soy protein isolate.  相似文献   

8.
苏现波  尚会霞 《食品科学》2016,37(17):115-120
以碱提酸沉法制备的马铃薯淀粉废水蛋白为原料,分别考察了pH值、NaCl浓度和温度对蛋白功能特性(溶解性、持水能力、乳化性及乳化稳定性、起泡性及泡沫稳定性)的影响。结果表明,pH值、NaCl浓度和温度对蛋白的功能特性产生不同程度的影响。在等电点(pH 4.0)时,马铃薯蛋白表现出最低的溶解性、持水性、乳化性、乳化稳定性及起泡性,而泡沫稳定性最好。在较低NaCl浓度(<0.2 mol/L)时,蛋白溶解性、持水能力、乳化性和乳化稳定性随NaCl浓度的增加而提高,而高浓度的NaCl(>0.2 mol/L)对上述性质具有抑制作用;蛋白的起泡性和泡沫稳定性在NaCl浓度为0.4 mol/L时具有最大值。在4~80 ℃范围内,蛋白质的各项功能性质随温度的升高均呈现先增加后降低的趋势,且溶解性、持水性、乳化稳定性、起泡性及泡沫稳定性在40 ℃时最佳,乳化性在60 ℃最佳。  相似文献   

9.
ABSTRACT: Glycinin and β-conglycinin have unique functionality characteristics that contribute important properties in soy foods and soy ingredients. Limited functionality data have been published for glycinin and β-conglycinin fractions produced in pilot-scale quantities. Protein extraction conditions were previously optimized for our pilotscale fractionation process to maximize protein solubilization and subsequent product recovery. Glycinin, β-conglycinin, and intermediate (mixture of glycinin and β-conglycinin) fractions were prepared using optimized-process (OP) extraction conditions (10:1 water-to-flake ratio, 45°C) and previous conditions termed Wu process (WP) (15:1, 20°C). Viscosity, solubility, gelling, foaming, emulsification capacity, and emulsification activity and stability of the fractionated proteins, and soy protein isolate (SPI) produced from the same defatted soy white flakes were compared to evaluate functional properties of these different protein fractions. Differential scanning calorimetry, sodium dodecylsulfate-polyacrylamide gel electrophoresis, and surface hydrophobicity data were used to interpret functionality differences. OP β-conglycinin had more glycinin contamination than did the WP β-conglycinin. OP and WP solubility profiles were each similar for respective glycinin and β-conglycinin fractions. Emulsification activities and stabilities were higher for OP β-conglycinin and OP intermediate fractions compared with respective WP fractions. β-Conglycinin and SPI emulsification capacities (ECs) mirrored solubility profile, whereas glycinin ECs did not. OP glycinin had a higher foaming capacity than WP glycinin. OP and WP intermediate fraction apparent viscosities trended higher than those of other protein fractions. β-Conglycinin dispersions at pH 3 and 7 produced firm gels at 80°C, whereas glycinin dispersions formed weaker gels at 99°C and did not gel at 80°C.  相似文献   

10.
Production and functional properties of beef lung protein concentrates   总被引:1,自引:0,他引:1  
This work investigated the production and the properties of meat protein concentrates from beef lungs (BLPC) at pilot scale. Protein recovery and functional properties were compared to those of BLPC obtained using membrane technology in a previous work (Selmane, D., Vial, C., & Djelveh, G. (2008). Extraction of proteins from slaughterhouse by-products: Influence of operating conditions on functional properties. Meat Science, 79, 640–647). An alkaline solubilisation method was applied for protein extraction, followed by pI precipitation for concentration. The physicochemical properties of BLPC such as molecular mass, solubility, surface hydrophobicity, surface tension and interfacial tension, as well as technofunctional emulsifying and foaming properties were determined. These were compared to those of commercial protein ingredients, such as sodium caseinates, whey protein isolates, egg white proteins and soy protein isolates. Results showed that proteins from BLPC included a low-molecular-weight fraction and exhibited good solubility and high hydrophobicity with small surface and interfacial tensions. This explained their excellent emulsifying activity, better than sodium caseinates, and their good foaming properties.  相似文献   

11.
利用碱提-等电点沉淀技术分别从沙米麸皮和去皮沙米中提取出沙米麸皮分离蛋白(B-pro)和外胚乳分离蛋白(S-pro),研究这两种蛋白的理化及功能性质。结果表明,沙米麸皮中蛋白以球蛋白为主,而去皮沙米中以清蛋白为主。B-pro和S-pro纯度分别为94.33%、91.80%(m_d),S-pro颜色更白。两种蛋白均含有丰富的必需氨基酸,且S-pro中Lys含量较高。B-pro和S-pro的功能性质随pH值的变化均符合植物蛋白的一般规律,总体而言,不同pH值条件下S-pro的功能性均优于B-pro。与大豆分离蛋白和鸡蛋蛋白相比,B-pro和S-pro的持油能力及发泡性较好,而溶解性、持水力及乳化性较弱。  相似文献   

12.
Gelation-like protein hydrolysates from scallop (Patinopecten yessoensis) male gonad (SMG) were obtained by enzymatic hydrolysis using neutrase. Functional properties of SMG hydrolysates (SMGHs) with different degree of hydrolysis (DH: 4.94, 6.84, 7.53 and 11.86%, respectively) were evaluated with the objective to investigate the relations between hydrolysis characteristics and functionalities. The results showed that hydrolysis with neutrase improved the gelation property, solubility, water-holding capacity (WHC), oil-holding capacity (OHC), and surface hydrophobicity (SH), but not foaming capacity (FC) of SMG. The SMGHs at high DH (11.86%) showed better gelation property and solubility than that at low DH (4.94–7.53%). However, the maximum values of WHC, OHC, and SH of SMGHs were found at DH of 4.94%, significantly higher than (p < 0.05) or equivalent to (p > 0.05) that of soy protein isolate (SPI) for WHC and OHC. Emulsifying capacity of SMGHs is independent of DH, but restricted by pH environment. The emulsifying activity index of all SMGHs was significantly higher than that of SPI in pH 5 (p < 0.05) and slightly higher than or equivalent to that of SPI in pH 7. Meanwhile, SMG and SMGHs were abundant in glycine, lysine, alanine, glutamic acid, and aspartic acid, containing all the essential amino acids (41.63–42.90% of the total amino acids). These results imply that SMGHs might be utilized as multifunctional and nutritive ingredients in food industry.  相似文献   

13.
对全蛋液pH值对其蛋白溶解度、起泡性、乳化性、凝胶强度等功能性质的影响进行了研究。结果表明:在pH 6.5~9.0内,随着全蛋液样品pH值升高,全蛋液的蛋白溶解度、乳化稳定性和凝胶强度逐渐提高,而全蛋液乳化活力逐渐下降;在pH 7.0~7.5内,全蛋液具有较好的起泡力和泡沫稳定性,pH值过高或过低时全蛋液起泡性都会下降;在实际应用中可以根据对全蛋液各种功能性质的不同要求选择适当pH值的全蛋液。  相似文献   

14.
The purpose of this study was to expound on the correlation between foaming properties and physicochemical characteristics of rice bran protein (RBP) samples. RBP nano-particles (RBPNs) were prepared by acidic–thermal treatment under different RBP solution concentrations and treated times at 90 °C, and then the foaming properties were measured at pH 7.0 and pH 2.0. Compared to RBP, the foaming properties of RBPNs were increased at pH 7.0, and RBPNs could have better foam capacity but have no obvious changes in foam stability at pH 2.0. The results of Pearson correlation showed that the foaming properties were closely correlated with ζ potential, contact angle, and surface hydrophobicity for RBP and RBPNs, and a strong correlation between foaming capacity and surface hydrophobicity was shown for RBPNs. Additionally, the result of TEM images confirmed that RBPNs were inclined to form associated aggregates which may affect the physicochemical characteristics of RBPNs.  相似文献   

15.
鸡蛋清蛋白水解物的物化及功能性质的研究   总被引:4,自引:2,他引:2  
杨瑾  唐传核 《现代食品科技》2011,27(11):1316-1319
蛋清蛋白质溶解性欠佳且容易起泡,使其应用受限。本文利用Alcalase酶解鸡蛋蛋清蛋白制取水解度为5~15%的酶解物并对酶解物的理化性质和功能性质进行了表征。测定性质包括乳化性、起泡性及稳定性以及溶解性、表面疏水性。所有酶解产物具有较低的表面疏水性,水解大大提高了溶解度,当水解度15%时最大值为89%,但乳化性有所降低,起泡性及稳定性也大约下降了40%。  相似文献   

16.
ABSTRACT: Functional properties of protein isolates prepared from 3 cowpea varieties and 2 soybean varieties in each of 2 y were determined. Both cowpea protein isolate (CPI) and soy protein isolate (SPI) showed a u-shaped curve for solubility with the minimum solubility occurring at pH 4.5. The CPI had lower emulsifying activity than SPI but was similar in stability. Foaming capacity and foaming stability ranged from 58.6 to 60.2 mL and 63.7 to 64.4 min for CPI and from 31.9 to 33.0 mL and 43.4 to 45.0 min for SPI, respectively. Gels were formed at 70 °C for 40 min and 30 min for CPI (12%) and SPI (10%), respectively. The CPI needs modification to enhance functional properties for potential application in food products.  相似文献   

17.
Characterization of globulin from Phaseolus angularis (red bean)   总被引:4,自引:0,他引:4  
Phaseolus angularis (red bean) seeds contain about 25% protein (dry basis), almost half of which is globulin. Similar to globulins from other Phaseolus species , 7S vicilin is the major fraction of red bean globulin (RBG), with 11S legumin as a minor component. The amino acid profile of RBG met or exceeded the FAO/WHO standard. Circular dichroism measurements indicate that RBG is a protein rich in α-helical and β-turn structures. RBG exhibited higher protein solubility than Supro 610, a commercial soy protein isolate, especially at acidic pHs, with minimal solubility at around pH 5.0. Compared to Supro 610, RBG had lower water hydration capacity and comparable fat binding capacity, which might be because of its lower surface hydrophobicity. RBG had higher emulsifying activity index and emulsion stability than Supro 610, but with poorer foaming properties.  相似文献   

18.
ABSTRACT: The foaming properties of egg albumen, which had been subjected to low and high pH unfolding followed by refolding, were investigated. The foaming capacity of egg albumen, the stability of the foam, or both, could be improved by an unfolding and refolding regime by choosing proper unfolding and refolding pH values. The foaming capacities of egg albumen were greatly improved when the refolding was at pH 6.5, 7.5, or 8.5, whereas the foaming capacities could be either slightly increased or decreased when the refolding was at pH 4.5 or 5.5 compared with the controls. The foam stability was in almost all cases improved by the unfolding and refolding treatments except for a few cases of unfolding at pH 1.5 or 10.5. The foam stability and liquid drainage were improved most when the unfolding was at pH 12.5. Analysis of total and surface sulfhydryl groups, surface hydrophobicity, and protein analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) provided strong evidence that the partial unfolding of egg albumen proteins as well as the interactions among egg albumen proteins through disulfide and/or hydrophobic groups dictated the improvements in foaming properties. The increase in surface hydrophobicity showed better correlation with the improvement of foaming properties than the change of surface sulfhydryl content did.  相似文献   

19.
Peanut protein concentrates (PPCs) were prepared by aqueous extraction processing (AEP), organic solvent extraction processing (SEP) and prepress-organic solvent extraction processing (P-SEP) and converted into powder by freeze and spray drying. The drying method showed an influence on the surface morphology and second structure of PPCs. Peanut protein concentrates of AEP were found to have lower protein contents, solubility and higher surface hydrophobicity, resulted in similar emulsion ability index (EAI) values and lower emulsion stability index (ESI) and water-holding capacity (WHC) values compared to PPCs of SEP and P-SEP. Foaming capacity was barely affected by oil extraction processing and drying methods, foaming stability was significantly influenced by oil extraction processing. Freeze-dried PPCs had higher solubility, WHC and fat absorption capacity than spray-dried PPCs, which was not the case for EAI and ESI. Hence, PPCs of AEP showed adequate functional properties, making AEP more appropriate for phytoprotein beverages.  相似文献   

20.
The effects of pH and protein concentration on some structural and functional properties of hemp seed protein isolate (HPI, 84.15% protein content) and defatted hemp seed protein meal (HPM, 44.32% protein content) were determined. The HPI had minimum protein solubility (PS) at pH 4.0, which increased as pH was decreased or increased. In contrast, the HPM had minimum PS at pH 3.0, which increased at higher pH values. Gel electrophoresis showed that some of the high molecular weight proteins (>45 kDa) present in HPM were not well extracted by the alkali and were absent or present in low ratio in the HPI polypeptide profile. The amino acid composition showed that the isolation process increased the Arg/Lys ratio of HPI (5.52%) when compared to HPM (3.35%). Intrinsic fluorescence and circular dichroism data indicate that the HPI proteins had a well‐defined structure at pH 3.0, which was lost as pH value increased. The differences in structural conformation of HPI at different pH values were reflected as better foaming capacity at pH 3.0 when compared to pH 5.0, 7.0, and 9.0. At 10 and 25 mg/mL protein concentrations, emulsions formed by the HPM had smaller oil droplet sizes (higher quality), when compared to the HPI‐formed emulsions. In contrast at 50 mg/mL protein concentration, the HPI‐formed emulsions had smaller oil droplet sizes (except at pH 3.0). We conclude that the functional properties of hemp seed protein products are dependent on structural conformations as well as protein concentration and pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号