首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Microbial fuel cells (MFCs) are typically designed as a two-chamber system with the bacteria in the anode chamber separated from the cathode chamber by a polymeric proton exchange membrane (PEM). Most MFCs use aqueous cathodes where water is bubbled with air to provide dissolved oxygen to electrode. To increase energy output and reduce the cost of MFCs, we examined power generation in an air-cathode MFC containing carbon electrodes in the presence and absence of a polymeric proton exchange membrane (PEM). Bacteria present in domestic wastewater were used as the biocatalyst, and glucose and wastewater were tested as substrates. Power density was found to be much greater than typically reported for aqueous-cathode MFCs, reaching a maximum of 262 +/- 10 mW/m2 (6.6 +/- 0.3 mW/L; liquid volume) using glucose. Removing the PEM increased the maximum power density to 494 +/- 21 mW/m2 (12.5 +/- 0.5 mW/L). Coulombic efficiency was 40-55% with the PEM and 9-12% with the PEM removed, indicating substantial oxygen diffusion into the anode chamber in the absence of the PEM. Power output increased with glucose concentration according to saturation-type kinetics, with a half saturation constant of 79 mg/L with the PEM-MFC and 103 mg/L in the MFC without a PEM (1000 omega resistor). Similar results on the effect of the PEM on power density were found using wastewater, where 28 +/- 3 mW/m2 (0.7 +/- 0.1 mW/L) (28% Coulombic efficiency) was produced with the PEM, and 146 +/- 8 mW/m2 (3.7 +/- 0.2 mW/L) (20% Coulombic efficiency) was produced when the PEM was removed. The increase in power output when a PEM was removed was attributed to a higher cathode potential as shown by an increase in the open circuit potential. An analysis based on available anode surface area and maximum bacterial growth rates suggests that mediatorless MFCs may have an upper order-of-magnitude limit in power density of 10(3) mW/m2. A cost-effective approach to achieving power densities in this range will likely require systems that do not contain a polymeric PEM in the MFC and systems based on direct oxygen transfer to a carbon cathode.  相似文献   

2.
The maximum power generated in a single-chamber air-cathode microbial fuel cell (MFC) has previously been shown to increase when the spacing between the electrodes is decreased from 4 to 2 cm. However, the maximum power from a MFC with glucose (500 mg/L) decreased from 811 mW/ m2 (R(ex) = 200 omega, Coulombic efficiency of CE = 28%) to 423 mW/m2 (R(ex) = 500 omega, CE = 18%) when the electrode spacing was decreased from 2 to 1 cm (batch mode operation, power normalized by cathode projected area). This decrease in power was unexpected as the internal resistance decreased from 35 omega (2-cm spacing) to 16 omega (1-cm spacing). However, providing advective flow through the porous anode toward the cathode substantially increased power, resulting in the highest maximum power densities yet achieved in an air-cathode system using glucose or domestic wastewater as substrates. For glucose, with a 1-cm electrode spacing and flow through the anode with continuous flow operation of the MFC, the maximum power increased to 1540 mW/m2 (51 W/m3) and the CE increased to 60%. Using domestic wastewater (255 +/- 10 mg of COD/L), the maximum power density was 464 mW/m2 (15.5 W/m3; CE = 27%). Although flow through the anode could lead to plugging, especially for particulate substrates such as domestic wastewater, the system was operated using glucose for over 42 days without clogging. These results show that power output in this air-cathode single-chamber MFC can be increased by reducing the electrode spacing if the reactors are operated in continuous flow mode with advective flow through the anode toward the cathode.  相似文献   

3.
Microbial fuel cells (MFCs) have been used to produce electricity from different compounds, including acetate, lactate, and glucose. We demonstrate here that it is also possible to produce electricity in a MFC from domestic wastewater, while atthe same time accomplishing biological wastewater treatment (removal of chemical oxygen demand; COD). Tests were conducted using a single chamber microbial fuel cell (SCMFC) containing eight graphite electrodes (anodes) and a single air cathode. The system was operated under continuous flow conditions with primary clarifier effluent obtained from a local wastewater treatment plant. The prototype SCMFC reactor generated electrical power (maximum of 26 mW m(-2)) while removing up to 80% of the COD of the wastewater. Power output was proportional to the hydraulic retention time over a range of 3-33 h and to the influent wastewater strength over a range of 50-220 mg/L of COD. Current generation was controlled primarily by the efficiency of the cathode. Optimal cathode performance was obtained by allowing passive air flow rather than forced air flow (4.5-5.5 L/min). The Coulombic efficiency of the system, based on COD removal and current generation, was < 12% indicating a substantial fraction of the organic matter was lost without current generation. Bioreactors based on power generation in MFCs may represent a completely new approach to wastewater treatment. If power generation in these systems can be increased, MFC technology may provide a new method to offset wastewater treatment plant operating costs, making advanced wastewater treatment more affordable for both developing and industrialized nations.  相似文献   

4.
微生物燃料电池(MFC)最具应用前景之一是处理废水的同时能够产生电能。以糖蜜废水作为阳极基质,以金属离子的电镀废水做阴极溶液,研究了双室微生物燃料电池不同电极面积对产电性能和COD的影响。结果发现,当外电阻为300Q时,大反应器微生物燃料电池A.(阳极面积为78.15cm^2)及小反应器微生物燃料电池~(阳极面积为76.8cm^2)最大功率密度分别为0.28mW/cm^2和0.22mW/cm^2。在前200个小时内,A:电池在第60个小时时产生最大电压71.1mV和最大电流189.5μA,A,在第190个小时时产生最大电压81.1mV和最大电流228.1μA。同时,当Zn^2+作阴极溶液时,小反应器微生物燃料电池阳极溶液的COD去除率在1.5%到7.02%之间,大反应器微生物燃料电池阳极溶液的COD去除率在0到14.96%之间。阴极中Zn^2+去除率A1中为28.6%,A2为21.2%。  相似文献   

5.
A sediment microbial fuel cell (MFC) produces electricity through the bacterial oxidation of organic matter contained in the sediment. The power density is limited, however, due in part to the low organic matter content of most marine sediments. To increase power generation from these devices, particulate substrates were added to the anode compartment. Three materials were tested: two commercially available chitin products differing in particle size and biodegradability (Chitin 20 and Chitin 80) and cellulose powder. Maximum power densities using chitin in this substrate-enhanced sediment MFC (SEM) were 76 +/- 25 and 84 +/- 10 mW/m2 (normalized to cathode projected surface area) for Chitin 20 and Chitin 80, respectively, versus less than 2 mW/m2 for an unamended control. Power generation over a 10 day period averaged 64 +/- 27 mW/ m2 (Chitin 20) and 76 +/- 15 mW/m2 (Chitin 80). With cellulose, a similar maximum power was initially generated (83 +/- 3 mW/m2), but power rapidly decreased after only 20 h. Maximum power densities over the next 5 days varied substantially among replicate cellulose-fed reactors, ranging from 29 +/- 12 to 62 +/- 23 mW/m2. These results suggest a new approach to power generation in remote areas based on the use of particulate substrates. While the longevity of the SEM was relatively short in these studies, it is possible to increase operation times by controlling particle size, mass, and type of material needed to achieve desired power levels that could theoretically be sustained over periods of years or even decades.  相似文献   

6.
Hydrogen can be recovered by fermentation of organic material rich in carbohydrates, but much of the organic matter remains in the form of acetate and butyrate. An alternative to methane production from this organic matter is the direct generation of electricity in a microbial fuel cell (MFC). Electricity generation using a single-chambered MFC was examined using acetate or butyrate. Power generated with acetate (800 mg/L) (506 mW/m2 or 12.7 mW/ L) was up to 66% higher than that fed with butyrate (1000 mg/L) (305 mW/m2 or 7.6 mW/L), demonstrating that acetate is a preferred aqueous substrate for electricity generation in MFCs. Power output as a function of substrate concentration was well described by saturation kinetics, although maximum power densities varied with the circuit load. Maximum power densities and half-saturation constants were Pmax = 661 mW/m2 and Ks = 141 mg/L for acetate (218 ohms) and Pmax = 349 mW/m2 and Ks = 93 mg/L for butyrate (1000 ohms). Similar open circuit potentials were obtained in using acetate (798 mV) or butyrate (795 mV). Current densities measured for stable power outputwere higher for acetate (2.2 A/m2) than those measured in MFCs using butyrate (0.77 A/m2). Cyclic voltammograms suggested that the main mechanism of power production in these batch tests was by direct transfer of electrons to the electrode by bacteria growing on the electrode and not by bacteria-produced mediators. Coulombic efficiencies and overall energy recovery were 10-31 and 3-7% for acetate and 8-15 and 2-5% for butyrate, indicating substantial electron and energy losses to processes other than electricity generation. These results demonstrate that electricity generation is possible from soluble fermentation end products such as acetate and butyrate, but energy recoveries should be increased to improve the overall process performance.  相似文献   

7.
Biological denitrification in microbial fuel cells   总被引:20,自引:0,他引:20  
Microbial fuel cells (MFCs) that remove carbon as well as nitrogen compounds out of wastewater are of special interest for practice. We developed a MFC in which microorganisms in the cathode performed a complete denitrification by using electrons supplied by microorganisms oxidizing acetate in the anode. The MFC with a cation exchange membrane was designed as a tubular reactor with an internal cathode and was able to remove up to 0.146 kg NO(3-)-N m(-3) net cathodic compartment (NCC) d(-1) (0.080 kg NO(3-)-N m(-3) total cathodic compartment d(-1) (TCC)) at a current of 58 A m(-3) NCC (32 A m(-3) TCC) and a cell voltage of 0.075 V. The highest power output in the denitrification system was 8 W m(-3) NCC (4 W m(-3) TCC) with a cell voltage of 0.214 V and a current of 35 A m(-3) NCC. The denitrification rate and the power production was limited bythe cathodic microorganisms, which only denitrified significantly at a cathodic electrode potential below 0 V versus standard hydrogen electrode (SHE). This is, to our knowledge, the first study in which a MFC has both a biological anode and cathode performing simultaneous removal of an organic substrate, power production, and complete denitrification without relying on H2-formation or external added power.  相似文献   

8.
Pulp and papermaking industries generate high volumes of carbohydrate-rich effluents. Microbial fuel cell (MFC) technology is based on organic materials’ consumption?and efficient power production. Using a classical two-chamber lab-scale MFC design with an external resistance of 2000 W, we investigated the effects of anode chamber biofilm adaptation (ACBA) and cathode chamber redox solutions (CCRS) on the operation efficiency of MFC when treating wastewater. In ACBA studies, biofilm growth activation showed an increase in the power density to 20.48, 35.18, and 36.98 mW/m2 when the acetate feeding concentrations were 3, 6, and 12 g/L, respectively. Improvement by biofilm adhesion on granular activated carbon (GAC) was examined by scanning electron microscopy (SEM). The obtained power density increased to 25.47, 33.42, and 40.39 mW/m2 when the GAC particles concentrations were 0, 50, and 100 g/L, respectively. The generated power densities were 51.26 and 40.39 mW/m2 as well as the obtained voltages were 0.41 and 0.72 V when the electrode area increased from 16 to 64 cm22, current density of 0.094 A/m2, and voltage of 1.20 V with a successful organic removal efficiency of 86.0% after 264 h of operation.  相似文献   

9.
Cathode catalysts and binders were examined for their effect on power densities in single chamber, air-cathode, microbial fuel cells (MFCs). Chronopotentiometry tests indicated thatthe cathode potential was only slightly reduced (20-40 mV) when Pt loadings were decreased from 2 to 0.1 mg cm(-2), and that Nafion performed better as a Pt binder than poly(tetrafluoroethylene) (PTFE). Replacing the precious-metal Pt catalyst (0.5 mg cm(-2); Nafion binder) with a cobalt material (cobalt tetramethylphenylporphyrin, CoTMPP) produced slightly improved cathode performance above 0.6 mA cm(-2), but reduced performance (<40 mV) at lower current densities. MFC fed batch tests conducted for 35 cycles (31 days) using glucose showed that replacement of the Nafion binder used for the cathode catalyst (0.5 mg of Pt cm(-2)) with PTFE reduced the maximum power densities (from 400 +/- 10 to 480 +/- 20 mW m(-2) to 331 +/- 3 to 360 +/- 10 mW m(-2)). When the Pt loading on cathode was reduced to 0.1 mg cm(-2), the maximum power density of MFC was reduced on average by 19% (379 +/- 5 to 301 +/- 15 mW m(-2); Nafion binder). Power densities with CoTMPP were only 12% (369 +/- 8 mW m(-2)) lower over 25 cycles than those obtained with Pt (0.5 mg cm(-2); Nafion binder). Power densities obtained using with catalysts on the cathodes were approximately 4 times more than those obtained using a plain carbon electrode. These results demonstrate that cathodes used in MFCs can contain very little Pt, and that the Pt can even be replaced with a non-precious metal catalyst such as a CoTMPP with only slightly reduced performance.  相似文献   

10.
One of the greatest challenges for using microbial fuel cells (MFCs) for wastewater treatment is creating a scalable architecture that provides large surface areas for oxygen reduction at the cathode and bacteria growth on the anode. We demonstrate here a scalable cathode concept by showing that a tubular ultrafiltration membrane with a conductive graphite coating and a nonprecious metal catalyst (CoTMPP) can be used to produce power in an MFC. Using a carbon paper anode (surface area Aan = 7 cm2, surface area per reactor volume Aan,s = 25 m2/m3), an MFC with two 3-cm tube cathodes (Acat = 27 cm2, Acat,s = 84 m2/m3) generated up to 8.8 W/m3 (403 mW/m2) using glucose [0.8 g/L in a 50 mM phosphate buffer solution (PBS)], which was only slightly less than that produced using a carbon paper cathode with a Pt catalyst (9.9 W/m3, 394 mW/m2; Acat= 7 cm2, Acat,s= 25 m2/m3). Coulombic efficiencies (CEs) with carbon paper anodes were 25-40% with tube cathodes (CoTMPP), compared to 7-19% with a carbon paper cathode. When a high-surface-area graphite brush anode was used (Aan = 2235 cm2, Aan,s = 7700 m2/m3) with two tube cathodes placed inside the reactor (Acat = 27 cm2, Acas, = 93 m2/m3), the MFC produced 17.7 W/m3 with a CE = 70-74% (200 mM PBS). Further increases in the surface area of the tube cathodes to 54 cm2 (120 m2/m3) increased the total power output (from 0.51 to 0.83 mW), but the increase in volume resulted in a constant volumetric power density (approximately 18 W/m3). These results demonstrate that an MFC design using tubular cathodes coated with nonprecious metal catalysts, and brush anodes, is a promising architecture that is intrinsically scalable for creating larger systems. Further increases in power output will be possible through the development of cathodes with lower internal resistances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号