首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
Age at first insemination, days from calving to first insemination, number of services, first-service nonreturn rate to 56 d, days from first service to conception, calving ease, stillbirth, gestation length, and calf size of Canadian Holstein cows were jointly analyzed in a linear multiple-trait model. Traits covered a wide spectrum of aspects related to reproductive performance of dairy cows. Other frequently used fertility characteristics, like days open or calving intervals, could easily be derived from the analyzed traits. Data included 94,250 records in parities 1 to 6 on 53,158 cows from Ontario and Quebec, born in the years 1997 to 2002. Reproductive characteristics of heifers and cows were treated as different but genetically correlated traits that gave 16 total traits in the analysis. Repeated records for later parities were modeled with permanent environmental effects. Direct and maternal genetic effects were included in linear models for traits related to calving performance. Bayesian methods with Gibbs sampling were used to estimate covariance components of the model and respective genetic parameters. Estimates of heritabilities for fertility traits were low, from 3% for nonreturn rate in heifers to 13% for age at first service. Interval traits had higher heritabilities than binary or categorical traits. Service sire, sire of calf, and artificial insemination technician were important (relative to additive genetic) sources of variation for nonreturn rate and traits related to calving performance. Fertility traits in heifers and older cows were not the same genetically (genetic correlations in general were smaller than 0.9). Genetic correlations (both direct and maternal) among traits indicated that different traits measured different aspects of reproductive performance of a dairy cow. These traits could be used jointly in a fertility index to allow for selection for better fertility of dairy cattle.  相似文献   

2.
The objectives of this study were to estimate genetic parameters for fertility of Brown Swiss cattle, considering reproductive measures in different parities as different traits, and to estimate relationships between production traits of first lactation and fertility of heifers and first-parity and second-parity cows. Reproductive indicators were interval from parturition to first service, interval from first service to conception, interval from parturition to conception, number of inseminations to conception, conception rate at first service, and nonreturn rate at 56 d after first service. Production traits were peak milk yield (pMY), lactation milk yield, and lactation length (LL). Data included 37,546 records on heifers, and 24,098 and 15,653 records on first- and second-parity cows, respectively. Cows were reared in 2,035 herds, calved from 1999 to 2007, and were progeny of 527 AI bulls. Gibbs sampling was implemented to obtain (co)variance components using both univariate and bivariate threshold and censored linear sire models. Estimates of heritability for reproductive traits in heifers (0.016 to 0.026) were lower than those in first-parity (0.017 to 0.142) and second-parity (0.026 to 0.115) cows. Genetic correlations for fertility in first- and second-parity cows were very high (>0.920), whereas those between heifers and lactating cows were moderate (0.348 to 0.709). The latter result indicates that fertility in heifers is a different trait than fertility in lactating cows, and hence it cannot be used as robust indicator of cow fertility. Heifer fertility was not related to production traits in first lactation (genetic correlations between −0.215 and 0.251). Peak milk yield exerted a moderate and unfavorable effect on the interval from parturition to first service (genetic correlations of 0.414 and 0.353 after first and second calving, respectively), and a low and unfavorable effect on other fertility traits (genetic correlations between −0.281 and 0.295). Infertility after first calving caused a strong elongation of the lactation, and LL was negatively correlated with fertility of cows after second calving, so that LL can itself be regarded as a measure of fertility. Lactation milk yield depends on both pMY and LL, and, as such, is a cause and consequence of (in)fertility.  相似文献   

3.
Genetic evaluation of female fertility in Danish, Finnish, and Swedish dairy cows was updated in 2015 to multiple-trait animal model evaluation, where heifer and cow fertility up to third parity are considered as separate traits. A model for conception rate was also developed, which required variance component estimation for Nordic Holstein and Nordic Red Dairy Cattle. We used a multiple-trait multiple-lactation sire model to determine variance components for interval from calving to first insemination, length of service period, and conception rate. Monte Carlo Expectation Maximization REML allowed estimation of all 11 traits simultaneously. Study data were sampled from Swedish Holstein (n = 140,040) and Red Dairy Cattle (n = 101,315) heifers and cows. Conception rate observations are binomial observations with various numbers of failures preceding an observation of success. Using a simulation study, we confirmed that including a service number effect into the conception rate model allowed us to model the change in expectation of successful AI with increasing number of services. Heifers outperformed cows in all fertility traits according to the phenotypic means in the records. Heritabilities for the traits varied from 3 to 7% for interval from calving to first insemination, from 1 to 5% for length of service period, and from 1 to 3% for conception rate. Genetic correlations within traits (i.e., between parities) were favorable, ranging from moderate to high; genetic correlations between heifer and cow traits were lower than between cow traits in different parities. Lowest genetic correlations between traits were for interval from calving to first insemination and conception rate, intermediate for interval from calving to first insemination and length of service period, and highest for length of service period and conception rate. The variance components estimated in this study have been used in Nordic fertility breeding value evaluations since 2016.  相似文献   

4.
The aim of this study was to estimate genetic parameters for fertility and production traits in the Brown Swiss population reared in the Alps (Bolzano-Bozen province, Italy). Fertility indicators were interval from parturition to first service, interval from first service to conception (iFC), and interval from parturition to conception, either expressed as days and as number of potential 21-d estrus cycles (cPF, cFC, and cPC, respectively); number of inseminations to conception; conception rate at first service; and non-return rate at 56 d post-first service. Production traits were peak milk yield, lactation milk yield, lactation length, average lactation protein percentage, and average lactation fat percentage. Data included 71,556 lactations (parities 1 to 9) from 29,582 cows reared in 1,835 herds. Animals calved from 1999 to 2007 and were progeny of 491 artificial insemination bulls. Gibbs sampling and Metropolis algorithms were implemented to obtain (co)variance components using both univariate and bivariate censored threshold and linear sire models. All of the analyses accounted for parity and year-month of calving as fixed effects, and herd, permanent environmental cow, additive genetic sire, and residual as random effects. Heritability estimates for fertility traits ranged from 0.030 (iFC) to 0.071 (cPC). Strong genetic correlations were estimated between interval from parturition to first service and cPF (0.97), and interval from parturition to conception and cPC (0.96). The estimate of heritability for cFC (0.055) was approximately double compared with iFC (0.030), suggesting that measuring the elapsed time between first service and conception in days or potential cycles is not equivalent; this was also confirmed by the genetic correlation between iFC and cFC, which was strong (0.85), but more distant from unity than the other 2 pairs of fertility traits. Genetic correlations between number of inseminations to conception, conception rate at first service, non-return rate at 56 d post-first service, cPF, cFC, and cPC ranged from 0.07 to 0.82 as absolute value. Fertility was unfavorably correlated with production; estimates ranged from −0.26 (cPC with protein percentage) to 0.76 (cPC with lactation length), confirming the genetic antagonism between reproductive efficiency and milk production. Although heritability for fertility is low, the contemporary inclusion of several reproductive traits in a merit index would help to improve performance of dairy cows.  相似文献   

5.
Data were first lactation production and reproduction records initiated from 1958 to 1981 in two experiment station Guernsey herds. Heritability estimates using paternal half sib groups were .24 +/- .12 for milk yield, .27 +/- .12 for fat yield, and .77 +/- .15 for fat percentage. Heritability estimates for reproductive traits ranged from .01 to .04 for number of services, service period, conception rate, and days open, but were higher for days in milk at first breeding (.12) and age at first calving (.13). Except for age at first calving, coefficients of additive genetic variation were larger for reproductive traits than for productive traits. Genetic correlations between measures of production and reproduction were moderate to large and antagonistic, except that the relationship between production and age at first calving was favorable. Breeding value estimates for milk yield and reproduction were negatively correlated for sires with above average breeding values for milk yield. Huge phenotypic variances for reproductive traits masked substantial additive genetic variation for these traits. When all things are considered it seems unwise to ignore reproductive performance in selection programs for dairy cattle.  相似文献   

6.
Thin and fat cows are often credited for low fertility, but body condition score (BCS) has been traditionally treated as a linear trait when genetic correlations with reproductive performance have been estimated. The aims of this study were to assess genetic parameters for fertility, production, and body condition traits in the Brown Swiss population reared in the Alps (Bolzano-Bozen Province, Italy), and to investigate the possible nonlinearity among BCS and other traits by analyzing fat and thin cows. Records of BCS measured on a 5-point scale were preadjusted for year-season and days in milk at scoring, and were considered positive (1) for fat cows if they exceeded the value of 1 residual standard deviation or null (0) otherwise, whereas positive values for thin cows were imputed to records below −1 residual standard deviation. Fertility indicators measured on first- and second-parity cows were interval from parturition to first service, interval from first service to conception, interval from parturition to conception, number of inseminations to conception, conception at first service, and nonreturn rate at 56 d after first service. Production traits were peak milk yield, lactation milk yield, and lactation length. Data were from 1,413 herds and included 16,324 records of BCS, fertility, and production for first-parity, and 10,086 fertility records for second-parity cows. Animals calved from 2002 to 2007 and were progeny of 420 artificial insemination bulls. Genetic parameters for the aforementioned traits were obtained under univariate and bivariate threshold and censored linear sire models implemented in a Bayesian framework. Posterior means of heritabilities for BCS, fat cows, and thin cows were 0.141, 0.122, and 0.115, respectively. Genetic correlations of body condition traits with contemporary production were moderate to high and were between −0.556 and 0.623. Body condition score was moderately related to fertility in first (−0.280 to 0.497) and second (−0.392 to 0.248) lactation. The fat cow trait was scarcely related to fertility, particularly in first-parity cows (−0.203 to 0.281). Finally, the genetic relationships between thin cows and fertility were higher than those between BCS and fertility, both in first (−0.456 to 0.431) and second (−0.335 to 0.524) lactation. Body condition score can be considered a predictor of fertility, and it could be included in evaluation either as linear measure or as thin cow. In the second case, the genetic relationship with fertility was stronger, exacerbating the poorest body condition and considering the possible nonlinearity between fertility and energy reserves of the cow.  相似文献   

7.
Relationship of fertility to milk yield in Swedish cattle   总被引:2,自引:0,他引:2  
Data consisted of 48,830 and 21,136 records of Swedish Red and White and Swedish Black and White cattle. Fertility in virgin heifers and in first lactation cows was measured by first service pregnancy rate and number of services per pregnancy. Production trait considered was FCM produced in first 100 d of lactation. The heritabilities for fertility traits in virgin heifers and first lactation cows were about .05 in both breeds. The genetic correlations between fertility measures within parity were close to one in both breeds, suggesting that these were measures of the same trait. The genetic correlations between fertility in virgin heifer and in first lactation were about .88 for Swedish Red and White breed and between .6 and .7 for Swedish Black and White breed. The association between fertility and production in first lactation cows was antagonistic, with genetic correlations between first service pregnancy rate and milk yield of -.13 and -.32 for Swedish Red and White and Swedish Black and White breed, respectively. The association between first service pregnancy rate in virgin heifers and milk yield in first lactation was also antagonistic, with genetic correlations of -.14 and -.41 for Swedish Red and White and Swedish Black and White breed, respectively.  相似文献   

8.
The objective of this study was to investigate the genetic relationship between body condition score (BCS) and reproduction traits for first-parity Canadian Ayrshire and Holstein cows. Body condition scores were collected by field staff several times over the lactation in herds from Québec, and reproduction records (including both fertility and calving traits) were extracted from the official database used for the Canadian genetic evaluation of those herds. For each breed, six 2-trait animal models were run; they included random regressions that allowed the estimation of genetic correlations between BCS over the lactation and reproduction traits that are measured as a single lactation record. Analyses were undertaken on data from 108 Ayrshire herds and 342 Holstein herds. Average daily heritabilities of BCS were close to 0.13 for both breeds; these relatively low estimates might be explained by the high variability among herds and BCS evaluators. Genetic correlations between BCS and interval fertility traits (days from calving to first service, days from first service to conception, and days open) were negative and ranged between −0.77 and −0.58 for Ayrshire and between −0.31 and −0.03 for Holstein. Genetic correlations between BCS and 56-d nonreturn rate at first insemination were positive and moderate. The trends of these genetic correlations over the lactation suggest that a genetically low BCS in early lactation would increase the number of days that the primiparous cow was not pregnant and would decrease the chances of the primiparous cow to conceive at first service. Genetic correlations between BCS and calving traits were generally the strongest at calving and decreased with increasing days in milk. The correlation between BCS at calving and maternal calving ease was 0.21 for Holstein and 0.31 for Ayrshire and emphasized the relationship between fat cows around calving and dystocia. Genetic correlations between calving traits and BCS during the subsequent lactation were moderate and favorable, indicating that primiparous cows with a genetically high BCS over the lactation would have a greater chance of producing a calf that survived (maternal calf survival) and would transmit the genes that allowed the calf to be born more easily (maternal calving ease) and to survive (direct calving ease).  相似文献   

9.
Genetic correlations among female fertility traits (linear and binary) were estimated using 225,085 artificial insemination records from 120,713 lactations on 63,160 Holstein cows. Fertility traits were: calving interval, days open, a linear transformation of days open, days to first insemination, interval between first and last insemination, number of inseminations per service period, pregnancy within 56 and 90 d after first insemination, and success in first insemination. A bivariate animal model was implemented using Bayesian methods in the case of binary traits. Low heritabilities (0.02 to 0.06) were estimated for these fertility traits. Strong genetic correlations (0.89 to 0.99) were found among traits, except for days to first service, where the genetic correlation with other fertility traits ranged from −0.52 to −0.18 for binary traits, and from 0.50 to 0.82 for days to first service, calving interval, and days open. Four fertility indices were proposed utilizing information from insemination records; these indices combined one indicator of the beginning of the service period and one indicator of conception rate. Two additional indices used information from the milk-recording scheme, including calving interval and a linear transformation of days open. The fertility index composed of days to first service and pregnancy within 56 d achieved the highest genetic gain for reducing fertility cost, reducing days to first service, and reducing the number of inseminations per lactation ($8.60, −1.31 d, and −0.03 AI, respectively). This index achieved at least 15% higher genetic gain than obtained from indices with information from the milk recording scheme only (calving interval and days open).  相似文献   

10.
The objectives of this study were to estimate the heritability of body condition score loss (BCSL) in early lactation and estimate genetic and phenotypic correlations among BCSL, body condition score (BCS), production, and reproductive performance. Body condition scores at calving and postpartum, mature equivalents for milk, fat and protein yield, days to first service, and services per conception were obtained from Dairy Records Management Systems in Raleigh, NC. Body condition score loss was defined as BCS at calving minus postpartum BCS. Heritabilities and correlations were estimated with a series of bivariate animal models with average-information REML. Herd-year-season effects and age at calving were included in all models. The length of the prior calving interval was included for all second lactation traits, and all nonproduction traits were analyzed with and without mature equivalent milk as a covariable. Initial correlations between BCS and BCSL were obtained using BCSL and BCS observations from the same cows. Additional genetic correlation estimates were generated through relationships between a group of cows with BCSL observations and a separate group of cows with BCS observations. Heritability estimates for BCSL ranged from 0.01 to 0.07. Genetic correlation estimates between BCSL and BCS at calving ranged from -0.15 to -0.26 in first lactation and from -0.11 to -0.48 in second lactation. Genetic correlation estimates between BCSL and postpartum BCS ranged from -0.70 to -0.99 in first lactation and from -0.56 to -0.91 in second lactation. Phenotypic correlation estimates between BCSL and BCS at calving were near 0.54, whereas phenotypic correlation estimates between BCSL and postpartum BCS were near -0.65. Genetic correlations between BCSL and yield traits ranged from 0.17 to 0.50. Genetic correlations between BCSL and days to first service ranged from 0.29 to 0.68. Selection for yield appears to increase BCSL by lowering postpartum BCS. More loss in BCS was associated with an increase in days to first service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号