首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用改性Hummers法以天然鳞片石墨制备氧化石墨烯,再经水热反应在氧化石墨烯片层中原位生成纳米级TiO_2,制备TiO_2插层氧化石墨烯(TiO_2/GO)。将TiO_2/GO粉末添加到PAN溶液中,通过静电纺丝法制备含TiO_2/GO的PAN纳米纤维膜。研究了TiO_2/GO及TiO_2/GO/PAN对亚甲基蓝的降解性能。采用TEM、SEM、XRD对降解前后样品性质进行了表征。结果表明,TiO_2/GO对亚甲基蓝具有良好的重复降解性能,随着降解次数的增加,其降解效率逐渐减弱,含TiO_2/GO的PAN纳米纤维膜对亚甲基蓝具有良好的吸附和光催化效果。  相似文献   

2.
采用改进的Hummers法制备氧化石墨烯,再利用钛酸丁酯原位水解制得TiO_2插层氧化石墨烯。通过扫描电镜(SEM)、透射电镜(TEM)和X射线衍射(XRD)等表征手法对TiO_2插层氧化石墨烯的形貌、结构进行表征分析;并通过降解亚甲基蓝试验评估了样品的光催化性能。XRD与TEM表征结果表明,氧化石墨烯氧化均匀,在超声状态下,酞酸丁酯可在氧化石墨烯片层间原位生成锐钛矿相的纳米级TiO_2。降解试验结果表明:TiO_2插层氧化石墨烯对亚甲基蓝有优异的光催化降解性能,所制备的TiO_2插层氧化石墨烯重复降解亚甲基蓝4次,降解率依然可维持在99.97%,具有较高的重复使用性能。  相似文献   

3.
《印染》2018,(19)
以溶胶-凝胶法制备氧化石墨烯-TiO_2复合材料(GO-TiO_2),采用X射线衍射光谱仪(XRD),扫描电子显微镜(SEM)和全自动比表面及孔径分析仪(BET)等对样品进行了表征。探讨了在紫外光的照射下,复合材料比例、材料投加量、pH值、液层高度和光照强度等因素对亚甲基蓝溶液降解性能的影响。结果表明:TiO_2颗粒均匀地附着在GO片层表面;光催化反应60 min时,500 mg/L GO10-TiO_2对亚甲基蓝溶液的降解率达到89%;增大pH值和光照强度均能提高MB的降解率。  相似文献   

4.
采用界面聚合法制备了SiMo_(11)Ti/GO/PANI复合催化剂。用红外光谱、紫外光谱、X-射线粉末衍射对此催化剂进行了表征。研究了该催化剂对染料刚果红的光催化性能,探讨了催化剂用量、染料用量、pH、不同催化剂及不同光源对光催化降解的影响。结果表明:该催化剂对刚果红染料的最大降解率达到92.3%;在太阳光下的降解效果比在紫外光下好,达到96.2%;该催化剂对刚果红染料的降解为准一级动力学反应。  相似文献   

5.
《印染》2016,(18)
以自制氧化石墨烯和钛酸丁酯为主要原料,采用溶胶-凝胶法制备TiO_2/GO复合材料。分别采用XRD、Raman、SEM等对其进行表征,并将其用于罗丹明B溶液的光催化降解,考察氧化石墨烯含量、TiO_2/GO复合材料用量、煅烧温度等因素对光催化降解性能的影响。结果表明,生成了粒径约20 nm的锐钛矿型TiO_2球形颗粒;相同条件下,溶胶-凝胶法制备的复合材料光催化活性优于机械混合物;TiO_2/GO为20/1时光催化活性最好;复合材料质量为0.05 g时,对罗丹明B的降解率可达99%。  相似文献   

6.
以钛酸丁酯[Ti(OC_4H_9)_4]作为钛源,采用溶胶-凝胶法制备二氧化钛(TiO_2)光催化剂。以甲基橙降解率为评价指标,检测无水乙醇、冰乙酸、蒸馏水与钛酸丁酯物质的量比、煅烧温度、煅烧时间等因素对TiO_2光催化降解性能的影响,以确定TiO_2优化制备工艺,并通过XRD、TEM进行表征。结果表明,TiO_2的优化制备工艺为:无水乙醇、冰乙酸、蒸馏水与钛酸丁酯物质的量比15∶3∶8∶1,煅烧温度550℃,煅烧时间3 h;在此工艺下制得的TiO_2为锐钛矿型,颗粒大小为10~25 nm,对甲基橙的降解率在3 h内可达79.7%,比工业TiO_2(P25)的降解率高9.9%。  相似文献   

7.
为了提高羊毛角蛋白(KE)对亚甲基蓝及重金属离子Pb^2+、Cu^2+的吸附性能,将羊毛角蛋白与氧化石墨烯(GO)进行复合,自组装形成水凝胶,冷冻干燥后制得KE与GO质量比为9∶1的复合材料。分别采用红外光谱、扫描电镜、X-射线衍射、热重分析等方法对复合材料的结构进行表征。得出,复合材料具有大量的极性含氧官能团,有利于吸附污染物分子;呈层状多孔(10μm)、片层褶皱的有序结构,提供了多的活性位点和大的比表面积;复合材料中GO片层均匀地分散在羊毛角蛋白基质中;加入GO对复合材料中KE的热稳定性影响较小。结果表明:与纯羊毛角蛋白相比,KE/GO复合材料吸附速率和吸附性能均大幅提高,对100 mg/L的亚甲基蓝去除率达96%,对100 mg/L重金属离子Pb2+和Cu2+的去除率分别为75%和74%。  相似文献   

8.
《印染》2016,(10)
以钛酸丁酯为前驱体,采用溶胶-凝胶法制备TiO_2溶胶。探讨了染料的初始质量浓度、TiO_2溶胶合成温度等对活性红3BS降解脱色率的影响,分析了TiO_2溶胶光催化降解活性红3BS的反应动力学。结果表明,染料初始质量浓度高,降解率低;不同温度下制备的TiO_2溶胶均具有光催化活性,能够有效降解活性红3BS;合成温度高,TiO_2溶胶光催化降解脱色效果好;TiO_2溶胶对活性红3BS染液的光催化降解脱色反应遵循一级反应动力学。  相似文献   

9.
《印染》2021,(12)
采用Hummers法制备氧化石墨烯(GO),然后以二氧化钛(TiO)为钛源,采用水热法制备二氧化钛改性石墨_2烯(TiO_2/r GO),再以直接灰D为改性剂,将其重氮化后接枝到TiO_2/r GO上,得到染料共价改性二氧化钛/石墨烯复合材料(D-TiO_2/r GO)。以亚甲基蓝(MB)水溶液模拟染料污水,氙灯模拟太阳光,考察D-TiO_2/r GO的光催化效果。与TiO_2和TiO_2/r GO相比,相同条件下D-TiO_2/r GO对MB的去除率分别提高了76.62%和47.78%。当复合材料中r GO质量分数为20%、催化剂为50 mg/L、p H为7、温度为40℃、光源距离为10 cm时,D-TiO_2/r GO对MB去除效果最佳,MB的去除率可达97.67%;5次重复试验后,对MB的去除率仍可达到90%以上。  相似文献   

10.
以活性红染料废液作为研究对象,脱色率作为考察标准,探讨了TiO_2/壳聚糖/明胶复合棉织物对活性红染料废液进行吸附降解的最佳条件及重复使用效果。试验结果表明,当活性红染液初始质量浓度为20 mg/L和染液pH=3,采用试验所制复合棉织物对100 mL活性红染液室温紫外光照射180 min时,活性红染液脱色率约为100%;重复使用性较好。  相似文献   

11.
以NH_4VO_3和Bi(NO_3)_3·5H_2O及TiO_2为原料,采用溶胶-凝胶法制备BiVO_4及BiVO_4/TiO_2复合光催化剂。利用XRD、SEM、TEM、UV-Vis、BET、XPS等进行表征。通过氙灯下对亚甲基蓝模拟染料废水的降解,考察pH、煅烧温度对BiVO_4形貌、结晶性和光吸收性能的影响,以及TiO_2掺杂量对复合材料光催化活性的影响。结果表明:pH为7、煅烧温度为500℃时制备的单斜型BiVO_4光催化活性最高;TiO_2的掺入会改变BiVO_4形貌,适量TiO_2能拓宽催化剂的光吸收范围,提高复合材料的耐用性;掺杂量为30%时,产物具有较高的光催化活性,在氙灯下照射3 h后亚甲蓝降解率达77.3%,循环回收3次后,降解率仍达71.0%。  相似文献   

12.
为提高SnO_2基纳米材料的光催化活性,以结晶四氯化锡和钛酸正啶酯分别为SnO_2前驱体和TiO_2前驱体,调节二者比例,利用静电纺丝协同煅烧技术制备出具有不同含量TiO_2掺杂的SnO_2/TiO_2复合纳米纤维。采用X射线衍射仪表征纳米纤维的晶型结构,利用扫描电镜观察复合纳米纤维的形貌,并将其应用到光催化降解亚甲基蓝溶液中,分析其光催化活性。结果表明:当结晶四氯化锡和钛酸正啶酯的质量比为2.5∶1、2∶1和3∶2时,纳米纤维表面由粗糙向光滑过渡;而且当前驱体的质量比为3∶2时,除了具有金红石型SnO_2晶相,复合纳米纤维还呈现出金红石型TiO_2和锐钛矿型TiO_2晶相并存的状态,在降解亚甲基蓝溶液中表现出优异的光催化活性,即光催化10 min后亚甲基蓝溶解液的降解率已达到79.5%。  相似文献   

13.
采用原位沉积法制备Ag_3PO_4/TiO_2复合光催化剂,并经浸轧工艺整理1,2,3,4-丁烷四羧酸(BTCA)处理的棉织物,制备可见光光催化功能棉织物。采用X-射线衍射仪(XRD)、紫外-可见漫反射光谱(DRS)以及扫描电镜(SEM)表征复合光催化剂的晶型、光学性能以及整理织物的表面形貌,并研究了光催化功能织物催化降解模拟染料罗丹明B和甲醛的性能。结果表明,BTCA处理棉织物可以明显提高复合光催化剂在棉织物表面的负载量,所制得的可见光光催化功能棉织物对罗丹明B的降解率可达100%,对甲醛的降解率可达70%,具有良好的可见光光催化降解性能。  相似文献   

14.
以钛酸丁酯、五水硝酸铋、偏钒酸铵为主要原料制备TiO_2-BiVO_4复合光催化剂,并用X射线衍射仪、扫描电镜、紫外-可见分光光度计、X射线光电子能谱仪和光致发光荧光光谱仪进行表征。结果表明,与TiO_2和BiVO_4相比,TiO_2-BiVO_4复合光催化剂具有更窄的禁带宽度,光生电子-空穴的复合概率更低。TiO_2-BiVO_4复合光催化剂具有更高的光催化活性,60 min后对罗丹明B溶液的降解率达到87.3%。TiO_2-BiVO_4复合光催化剂具有良好的光催化稳定性,经过5次光催化降解实验后,对罗丹明B溶液的降解率为81.7%。  相似文献   

15.
通过溶胶-凝胶法制备掺杂Ni-Zr共掺纳米TiO_2,采用XRD、TEM和DRS等方法对光催化剂的晶向结构、显微形貌和光响应特性进行表征,并以罗丹明B为目标降解物,测试其光催化性能。结果表明Zr掺杂能够降低TiO_2光催化剂的粒径,改善其光响应特性。Ni~(2+)和Zr~(4+)共掺杂可以通过协同作用提高样品的光催化活性。Ni-Zr共掺TiO_2比纯TiO_2具有更好的光催化效果,2%Zr和Ni共掺杂TiO_2光照60min后对罗丹明B的降解率达到92%,比纯TiO_2提高30%以上。  相似文献   

16.
本研究以氮掺杂酶解玉米芯残渣碳量子点(E-N-CQDs)和介孔TiO_2进行复合,构建了介孔TiO_2/E-N-CQDs复合光催化剂体系,对其进行了分析表征,并探讨了其对水相中亚甲基蓝(MB)的降解能力。结果表明,E-N-CQDs具有良好的荧光性能,且其表面羧基、氨基等发色基团和助色基团增强了其荧光特性;介孔TiO_2具有较大的比表面积,孔径8~32 nm;与介孔TiO_2相比,光照300 min时,介孔TiO_2/E-N-CQDs对MB的降解率达到89%,提高了59%。由此可见,碳量子点的加入可显著提高介孔TiO_2的光催化降解能力,提高了对可见光的利用率。  相似文献   

17.
以海藻酸钠(SA)、氧化石墨烯(GO)、端氨基超支化聚合物(HBP-NH_2)为基材,采用溶胶-凝胶法和冷冻干燥技术制备了SA/GO/HBP-NH_2复合气凝胶。对复合气凝胶的制备机理、形貌特征、力学性能以及金属离子吸附能力进行了分析与测试。研究结果表明:SA/GO/HBP-NH_2复合气凝胶3组分之间主要通过SA与GO间的氢键及GO与HBP-NH_2间的酰胺键作用而结合,GO-HBP-NH_2均匀地分散在气凝胶体系中。当复合气凝胶体系质量浓度为2.0%,3组分SA、GO、HBP-NH_2质量配比为2.00∶0.06∶0.08时,复合气凝胶的压缩强度可达593.91 kPa,密度为23.06 mg/cm~3,孔隙率为82.09%。在3组分的协同作用下,复合气凝胶对于Cu~(2+)、Pb~(2+)、Co~(2+)、Cd~(2+)这4种金属离子的吸附效果明显优于单一组分的气凝胶材料。  相似文献   

18.
为了解负载型TiO_2对乌龙茶中三唑磷紫外光催化降解的影响,在自制的光催化反应器中,采用负载型TiO_2对三唑磷进行光催化降解。考察了煅烧温度、TiO_2浓度和TiO_2与聚乙烯吡咯烷酮(PVPK30)的含量比对三唑磷降解效果的影响,探究了三唑磷的降解途径,并通过X射线衍射和X射线光电子能谱对TiO_2进行表征。结果表明,光催化降解三唑磷符合一级动力学方程,最佳制备参数为煅烧温度500℃,TiO_2浓度0.15%,TiO_2与PVPK30的含量比1∶1 (m/m),反应时间10 min,在此条件下,三唑磷降解率可达98%。经气相色谱-质谱(GC-MS)联用技术分析可知光催化降解反应打断了三唑磷P-O酯键。XRD和XPS分析表明煅烧可影响纳米二氧化钛的粒径和晶型,温度越高,锐钛矿质量分数越小;500℃时,TiO_2羟基氧和Ti~(3+)的含量均较高。  相似文献   

19.
采用溶胶-凝胶法制备了CaSO_4晶须负载纳米TiO_2催化剂(CaSO_4-TiO_2),并用Raman、BET、XRD和AFM等技术对样品的形态和结构进行了表征,优化了CaSO_4-TiO_2纳米催化剂制备条件,并以罗丹明B(RB)印染废水作为探针,分别在紫外光和可见光照下评价了其光催化性能。结果表明:当物质的量比n(CaSO_4)∶n(TiO_2)=1∶5,500℃时,CaSO_4-TiO_2催化效果最佳,在可见光照下180 min的染料降解率达到96%。  相似文献   

20.
以锰取代杂多硅钨酸盐β_2-K_8[SiW_(11)Mn(H_2O)O_(39)]·xH_2O作为活性组分,TiO_2作为载体,通过浸渍法制备了复合光催化剂β_2-SiW_(11)Mn/TiO_2。用FT-IR、UV-Vis、XRD、SEM和X射线光电子能谱对复合催化剂进行了表征。研究了纯二氧化钛TiO_2、杂多酸盐β_2-SiW_(11)Mn及制备的催化剂β_2-SiW_(11)Mn/TiO_2对结晶紫的催化降解性能。结果表明,相比于二氧化钛和杂多酸盐,复合光催化剂表现出更佳的光催化活性,杂多酸盐与二氧化钛产生了协同作用使结晶紫的降解率达90.19%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号