首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Linear or nonlinear genetic relationships between productive life and functional productive life at 72 mo, with final score (SCO), stature, strength, dairyness (DAI), teat diameter, rear legs (side view), rump angle, rump width (RUW), fore udder attachment (FUA), rear udder height, rear udder arch, udder depth (UDD), suspensory ligament (SUS), and teat placement, as well as heritabilities and correlations were estimated from multibreed US dairy goat records. Productive life was defined as the total days in production until 72 mo of age (PL72) for goats having the opportunity to express the trait. Functional productive life (FPL72) was analyzed by incorporating first lactation milk yield, fat yield, protein yield, and SCO in the statistical model. Heritabilities and correlations were estimated using linear mixed models with pedigree additive genetic relationships and ASReml software. Nonlinearity of genetic relationships was assessed based on second-degree polynomial (quadratic) regression models, with the breeding values of PL72 or FPL72 as responses and the breeding values for each type trait (linear and quadratic) as predictor variables. Heritability estimates were 0.19, 0.14, 0.18, 0.20, 0.14, 0.07, 0.28, 0.20, 0.15, 0.13, 0.25, 0.18, 0.20, 0.21, 0.21, and 0.32 for PL72, FPL72, SCO, stature, strength, DAI, teat diameter, rear legs, rump angle, RUW, FUA, rear udder height, rear udder arch, UDD, SUS, and teat placement, respectively. The type traits SCO, RUW, and FUA were the most correlated with PL72 and FPL72, so these may be used as selection criteria to increase longevity in dairy goats. An increase in the coefficient of determination >1% for the second degree, compared with that for the linear model for either PL72 or FPL72, was taken as evidence of a nonlinear genetic relationship. Using this criterion, PL72 showed maximum values at intermediate scores in DAI, UDD, and RUW, and maximum values at extreme scores in FUA and SUS, whereas FPL72 showed maximum values at intermediate scores in DAI and UDD, and maximum values at extreme scores in FUA, RUW, and SUS. Selecting for increased SCO, RUW, and FUA will lead to an increase of FPL72 in goats. Consideration of nonlinear relationships between DAI, FUA, RUW, SUS, and UDD may help in the design of more efficient breeding programs for dairy goats using conformation traits.  相似文献   

3.
Heritabilities; genetic and phenotypic correlations for milk, fat, and protein production; and linear type traits were estimated from a sire model including sire relationships using multiple-trait REML. For the milk production traits, 68,109 first parity records were analyzed. Heritabilities ranged from .31 to .37, genetic correlations between the milk production traits ranged from .80 to .92, and phenotypic correlations ranged from .86 to .94. Linear type traits from 12,996 cows on 15 traits were used to estimate heritabilities and genetic and phenotypic correlations between linear type traits. The heritabilities ranged from .53 for stature to .09 for foot angle. Rear udder height and rear udder width had the highest positive genetic correlation (.85), whereas dairy form and udder depth had the highest negative genetic correlation (-.41). When the first parity production records were merged with type records for cows, 9867 records on 18 traits were obtained. Dairy form, rear udder height, and rear udder width had strong to moderate positive genetic correlations with the three production traits. Fore udder attachment and udder depth had moderate negative genetic correlations with the three milk production traits. These results suggest that selection for improvement of milk production will lead to correlated increases in dairy form, rear udder height, rear udder width, and udder depth and to correlated decreases in the strength of fore udder attachment.  相似文献   

4.
The objective was to examine the direct and correlated responses of linear type, yield traits, and somatic cell scores (SCS) to divergent selection for predicted transmitting ability for type (PTAT) in Holsteins, while maintaining selection for yield traits across lines. For four generations, one-half of the University of Nebraska research Holstein herd was bred to Holstein sires with PTAT > 1.50 and the other half to sires with PTAT < 1.25, with nearly equal predicted transmitting abilities for yield traits for both groups. Estimates of genetic and residual correlations and heritabilities were obtained from REML estimates of (co)variance components. Model for type traits included fixed effect of date cows were classified, effects of age in days at freshening, and stage of lactation at classification. Year-season when cows freshened was fixed effect in model for yield and SCS. Animal genetic and residual effects were random. Final score, milk, fat, and protein yields, and SCS had heritability estimates of 0.38, 0.13,0.22, 0.09, and 0.38, respectively. Heritability estimates for type traits ranged from 0.04 to 0.52. Estimates of genetic correlations of final score with SCS and milk, fat, and protein yields were -0.64, 0.01, -0.18, and 0.06, respectively. Estimates of genetic correlations among linear type traits ranged from -0.77 to 1.00. Means of estimated breeding values for final score, stature, strength, body depth, fore udder attachment, rear udder height and width, udder cleft, udder depth, and front teat placement were significantly different between lines in the third generation. Milk, fat, and protein yields were not significantly different between lines in third generation, whereas SCS was significantly different. Estimate of genetic correlation between final score and SCS suggest that selection on PTAT would result in a change for SCS. In this study, divergent selection on PTAT of sires had a significant effect on udder and body traits, but little or no effect on feet and leg traits.  相似文献   

5.
6.
Type information collected by the Holstein Association of Canada was combined with calving ease data from the Quebec Dairy Herd Analysis Service. Type traits considered were overall score, general appearance, dairy character, capacity, rump, rump thurl width, rump pin setting, and set of rear legs. Calving ease was considered as a direct effect and as a maternal effect in both heifers and adult cows. After editing there were 24,618 type records, 47,023 direct effect calving ease records, and 37,068 maternal effect calving ease records from 107 sires in the analyses of heifer data. there were 26,996 type records, 16,4726 direct effect calvin ease records, and 45,261 maternal effect calving ease records in the analyses of calving involving adult cows. Multiple-trait REML was used to estimate genetic correlations between calving ease and type. The heritability of calving ease in heifers was approximately 4%, for both the direct and maternal effect, and in adult cows was approximately 1.5%. Heritability of the type traits ranged from 4 to 45%. There was a tendency for the genetic correlations between type and the direct effect of calving ease to be opposite in sign to the genetic correlations between type and the maternal effect of calving ease and for the absolute value of the correlations to be lower in adult cows than in heifers.  相似文献   

7.
The overall goal of this study was to investigate milk flow traits in Italian Holstein-Friesian cows and, in particular, the bimodality of milk flow, defined as delayed milk ejection at the start of milking. Using a milkometer, 2,886 records were collected from 133 herds in northern Italy from 2001 to 2007. All records included 5 time-period measurements for milk flow, somatic cell score (SCS), milk yield, 8 udder type traits, and the presence or absence of bimodality in milk flow. Genetic parameters were estimated using linear animal models for continuous traits such as milk flow, udder type, SCS, and milk production, whereas bimodality was analyzed as a categorical trait. With the exception of decreasing time (which had a very small heritability value of 0.06), heritability values for milk flow traits were moderate, ranging from 0.10 (ascending time) to 0.41 (maximum milk flow). In addition, moderate to high genetic correlations were estimated between total milking time and other time measures (from 0.78 to 0.87), and among time flow traits (from 0.62 to 0.91). The decreasing time was the trait most genetically correlated with udder type traits, with correlation values of 0.92 with rear udder height, 0.85 with rear udder width, and 0.73 with teat placement. Large udders with strong attachments were also associated with greater milk production. Heritability estimated for bimodality was 0.43, and its genetic correlation with milk flow traits and SCS indicated a sizable genetic component underlying this trait. Bimodality was negatively associated with milk production; shorter milking times and greater peak milk levels were genetically correlated with more frequent bimodal flows, indicating that faster milk release would result in an increase in bimodal patterns. The negative genetic correlation of bimodality with SCS (−0.30) and the genetic correlation between milk flow traits and SCS suggest that the relationship between milkability and SCS is probably nonlinear and that intermediate flow rates are optimal with respect to mastitis susceptibility. Quicker milk flow over a shorter period would increase the frequency of bimodal curves in milking, whereas the correlation between bimodality and both ascending and descending time was less clear.  相似文献   

8.
The objective was to study genetic (co)variance components for binary clinical mastitis (CM), test-day protein yield, and udder health indicator traits [test-day somatic cell score (SCS) and type traits of the udder composite] in the course of lactation with random regression models (RRM). The study used a data set from selected 15 large-scale contract herds including 26,651 Holstein cows. Test-day production and CM data were recorded from 2007 to 2012 and comprised parities 1 to 3. A longitudinal CM data structure was generated by assigning CM records to adjacent official test dates. Bivariate threshold-linear RRM were applied to estimate genetic (co)variance components between longitudinal binary CM (0 = healthy; 1 = diseased) and longitudinal Gaussian distributed protein yield and SCS test-day data. Heritabilities for liability to CM (heritability ~0.15 from 0 to 305 d after calving) were slightly higher than for SCS for corresponding days in milk (DIM) in the course of lactation. Daily genetic correlations between CM and SCS were moderate to high (genetic correlation ~0.70), but substantially decreased at the very end of lactation. Genetic correlations between CM at different test days were close to 1 for adjacent test days, but were close to zero for test days far apart. Daily genetic correlations between CM and protein yield were low to moderate. For identical DIM (e.g., DIM 20, 160, and 300), genetic correlations were −0.03, 0.11, and 0.18, respectively, and disproved pronounced genetic antagonisms between udder health and productivity. Correlations between estimated breeding values (EBV) for CM from the RRM and official EBV for linear type traits of the udder composite, including EBV from 74 influential sires (sires with >60 daughters), were −0.31 for front teat placement, −0.01 for rear teat placement, −0.31 for fore udder attachment, −0.32 for udder depth, and −0.08 for teat length. Estimated breeding values for CM from the RRM were compared with EBV from a multiple-trait model and with EBV from a repeatability model. For test days covering an identical time span and on a lactation level, correlations between EBV from RRM, multiple-trait model, and repeatability model were close to 1. Most relevant results suggest the routine application of threshold RRM to binary CM to (1) allow selection of genetically superior sires for distinct stages of lactation and (2) achieve higher selection response in CM compared with selection strategies based on indicator type traits or based on the indicator-trait SCS.  相似文献   

9.
A Weibull proportional hazards model was used to analyze the effects of 13 linear type traits, final score, and inbreeding on the functional survival of 268,008 US Jersey cows in 2416 herds with first calving from 1981 to 2000. Functional survival was defined as the number of days from first calving until involuntary culling or censoring. The statistical model included the time-dependent effects of herd-year-season of calving, parity by stage of lactation interaction, and within-herd-year quintile for mature equivalent milk yield, as well as the time-independent effects of inbreeding, age at first calving, and linear type traits or final score (analyzed one at a time). Each type trait was divided into 10 classes, and the relative risk of involuntary culling was calculated for animals in each class after accounting for the aforementioned management factors. Type traits with the greatest contribution to the likelihood function were udder depth, fore udder attachment, front teat placement, and udder support. Cows with low scores for these traits had a risk of culling that was 1.3 to 1.8 times that of cows with intermediate scores. Cows with high scores for udder depth and udder support had a risk of culling only 0.7 to 0.85 as great as that of cows with intermediate scores. Intermediate scores were desirable for rear leg set, dairy form, and strength, but stature, rump angle, and rump width had negligible effects on survival. Cows with low final scores had a risk of culling that was 1.35 times that of cows with intermediate scores, whereas cows with high final scores had a risk of culling that was 0.8 times that of cows with intermediate scores. Animals with inbreeding coefficients greater than 10% had a slightly higher risk of culling than animals with inbreeding coefficients less than 5%.  相似文献   

10.
Genetic evaluations of US dairy goats are calculated annually by USDA from records that are available through Dairy Herd Improvement programs and the American Dairy Goat Association (ADGA). The number of does in test plans used in genetic evaluations was 11,273 during 1999; participation in linear appraisal programs during 1999 was 3784 does, a decrease from the mean of 4285 does over the last 5 yr. For evaluation of yield traits, an animal model similar to that used for dairy cattle is used, but analysis is across breeds. Lactation records for the first six parities of does that were born since July 1973 and kidded since January 1976 are edited within limits appropriate for goats, projected to 305 d, and adjusted for kidding age and month. Evaluations are computed for milk, fat, and protein yields and component percentages; an economic index based on genetic merit for milk, fat, and protein yields (MFP$) is calculated, based on economic values for dairy cattle. A multitrait animal model is applied to 13 linear type traits and final score. A single-trait calculation method is accomplished by applying a canonical transformation. Annual genetic progress for does born during 1996 as a percentage of mean breed yield was lowest for Toggenburgs (−0.1%/yr, milk; 0.0%/yr, fat and protein) and highest for Saanens (0.9%/yr, milk and protein; 1.0%/yr, fat). Annual genetic trend for type traits across breeds for does born during 1996 was 0.67 for stature; 0.37 for rump angle; 0.34 for teat placement; 0.22 for suspensory ligament; 0.20 for strength; 0.16 for teat diameter; 0.12 for rump width; 0.09 for rear legs; 0.06 for dairyness; 0.05 for final score; 0.01 for fore udder attachment and udder depth; −0.1 for udder depth; and −0.12 for rear udder height. Two production-type indexes are computed by ADGA with 2:1 and 1:2 weightings for yield (represented by genetic merit for fat-corrected milk) and type (represented by genetic merit for final score).  相似文献   

11.
Anatomical and functional characteristics of the teat are supposed to have considerable influence on milk flow performance. In the present study, various teat and milking characteristics in 148 quarters of 38 cows were analyzed via 3 different approaches. Teat canal length, teat wall thickness, and teat diameter were measured by ultrasound. In addition, the vacuum needed to open the teat canal (VO) was determined and milk flow profiles were measured in each quarter separately.Rear teats were shorter and thicker than front teats, whereas teat canal length and teat wall thickness did not differ according to quarter position. Milk yield and peak flow rate (PFR) were higher in rear than in front quarters. Teat canal length and VO were negatively correlated with PFR and average flow rate (AFR) but no correlations were observed between milkability traits and externally measurable teat characteristics like teat length or teat diameter.Individual milkability at an udder level is a complex characteristic that is determined by the milkability at a quarter level and the distribution of quarter milk yields. The anatomical and functional characteristics of single teats can partly explain the milk flow characteristics of individual quarters.  相似文献   

12.
The objectives of this study were to estimate the heritability of body condition score loss (BCSL) in early lactation and estimate genetic and phenotypic correlations among BCSL, body condition score (BCS), production, and reproductive performance. Body condition scores at calving and postpartum, mature equivalents for milk, fat and protein yield, days to first service, and services per conception were obtained from Dairy Records Management Systems in Raleigh, NC. Body condition score loss was defined as BCS at calving minus postpartum BCS. Heritabilities and correlations were estimated with a series of bivariate animal models with average-information REML. Herd-year-season effects and age at calving were included in all models. The length of the prior calving interval was included for all second lactation traits, and all nonproduction traits were analyzed with and without mature equivalent milk as a covariable. Initial correlations between BCS and BCSL were obtained using BCSL and BCS observations from the same cows. Additional genetic correlation estimates were generated through relationships between a group of cows with BCSL observations and a separate group of cows with BCS observations. Heritability estimates for BCSL ranged from 0.01 to 0.07. Genetic correlation estimates between BCSL and BCS at calving ranged from -0.15 to -0.26 in first lactation and from -0.11 to -0.48 in second lactation. Genetic correlation estimates between BCSL and postpartum BCS ranged from -0.70 to -0.99 in first lactation and from -0.56 to -0.91 in second lactation. Phenotypic correlation estimates between BCSL and BCS at calving were near 0.54, whereas phenotypic correlation estimates between BCSL and postpartum BCS were near -0.65. Genetic correlations between BCSL and yield traits ranged from 0.17 to 0.50. Genetic correlations between BCSL and days to first service ranged from 0.29 to 0.68. Selection for yield appears to increase BCSL by lowering postpartum BCS. More loss in BCS was associated with an increase in days to first service.  相似文献   

13.
The objectives of this study were to estimate the genetic and environmental parameters between body condition score (BCS) and 27 conformation and 3 production traits in Swiss Holstein cattle. The dataset consisted of 31,500 first-lactation cows, which were daughters of 545 sires in 1867 herds. Bivariate sire models with relationships among sires were used to estimate parameters. Least squares means for BCS by lactation stage show that cows lose BCS up to 5 mo after calving and gain BCS prior to the next calving. Regression models showed that an increase in age and percentage of Holstein genes results in an increase and decrease in BCS, respectively. Heritability (h2) was 0.24 for BCS score, which indicates good potential for selection. Sire estimated breeding values for BCS ranged from -0.46 to +0.51 units. Heritabilities ranged from 0.08 (heel depth) to 0.46 (rump width) for type traits and 0.23 to 0.29 for yield traits. Genetic correlations of BCS with 8 conformation traits were significant; stature (0.28), heart girth (0.21), strength (0.17), loin (-0.39), body capacity (0.19), dairy character (-0.35), udder quality (-0.42), and teat position rear (-0.33). Milk production and body condition have an unfavorable genetic correlation (-0.12 to -0.17). These results show that selection for good body condition, body conformation, and optimal milk production is possible and their genetic associations reported here will be useful for designing Swiss breeding goals.  相似文献   

14.
Lactation records of cows first calving between 18 and 35 mo were combined with linear type ratings assigned during the same lactation if before 43 mo. Phenotypic relationships were examined between final score and 13 type appraisal traits and first lactation milk yield from 2935 Ayrshire, 3154 Brown Swiss, 13,110 Guernsey, 50,422 Jersey, and 924 Milking Shorthorn records. Most phenotypic correlations between type and milk yield were low. Linear correlations of final score with first lactation milk yield were .18 to .38. Of the linear functional type traits, correlations with first lactation yield had greatest absolute values for dairy character (.19 to .53), udder depth (-.26 to -.30), and rear udder width (.20 to .31). Multiple correlations of all type appraisal traits with first lactation milk yield ranged from .41 to .59. Herd-year-season components of variance averaged 25% for type traits. Herd-year-season with sire interaction averaged 4%. Heritability estimates for final score from paternal half-sib analysis were from .11 to .21. Heritability estimates for linear traits ranged from .01 to .37. Genetic correlation between milk and final score was positive for Guernseys (.25) and Jerseys (.21). Genetic correlations between yield and most linear type traits were low to moderate except for dairy character (.53 to .77).  相似文献   

15.
The objectives of this study were to estimate genetic parameters for fertility of Brown Swiss cattle, considering reproductive measures in different parities as different traits, and to estimate relationships between production traits of first lactation and fertility of heifers and first-parity and second-parity cows. Reproductive indicators were interval from parturition to first service, interval from first service to conception, interval from parturition to conception, number of inseminations to conception, conception rate at first service, and nonreturn rate at 56 d after first service. Production traits were peak milk yield (pMY), lactation milk yield, and lactation length (LL). Data included 37,546 records on heifers, and 24,098 and 15,653 records on first- and second-parity cows, respectively. Cows were reared in 2,035 herds, calved from 1999 to 2007, and were progeny of 527 AI bulls. Gibbs sampling was implemented to obtain (co)variance components using both univariate and bivariate threshold and censored linear sire models. Estimates of heritability for reproductive traits in heifers (0.016 to 0.026) were lower than those in first-parity (0.017 to 0.142) and second-parity (0.026 to 0.115) cows. Genetic correlations for fertility in first- and second-parity cows were very high (>0.920), whereas those between heifers and lactating cows were moderate (0.348 to 0.709). The latter result indicates that fertility in heifers is a different trait than fertility in lactating cows, and hence it cannot be used as robust indicator of cow fertility. Heifer fertility was not related to production traits in first lactation (genetic correlations between −0.215 and 0.251). Peak milk yield exerted a moderate and unfavorable effect on the interval from parturition to first service (genetic correlations of 0.414 and 0.353 after first and second calving, respectively), and a low and unfavorable effect on other fertility traits (genetic correlations between −0.281 and 0.295). Infertility after first calving caused a strong elongation of the lactation, and LL was negatively correlated with fertility of cows after second calving, so that LL can itself be regarded as a measure of fertility. Lactation milk yield depends on both pMY and LL, and, as such, is a cause and consequence of (in)fertility.  相似文献   

16.
A genetic evaluation system was developed for 5 fertility traits of dairy cattle: interval from first to successful insemination and nonreturn rate to 56 d of heifers, and interval from calving to first insemination, nonreturn rate to 56 d, and interval first to successful insemination of cows. Using the 2 interval traits of cows as components, breeding values for days open were derived. A multiple-trait animal model was applied to evaluate these fertility traits. Fertility traits of later lactations of cows were treated as repeated measurements. Genetic parameters were estimated by REML. Mixed model equations of the genetic evaluation model were solved with preconditioned conjugate gradients or the Gauss-Seidel algorithm and iteration on data techniques. Reliabilities of estimated breeding values were approximated with a multi-trait effective daughter contribution method. Daughter yield deviations and associated effective daughter contributions were calculated with a multiple trait approach. The genetic evaluation software was applied to the insemination data of dairy cattle breeds in Germany, Austria, and Luxembourg, and it was validated with various statistical methods. Genetic trends were validated. Small heritability estimates were obtained for all the fertility traits, ranging from 1% for nonreturn rate of heifers to 4% for interval calving to first insemination. Genetic and environmental correlations were low to moderate among the traits. Notably, unfavorable genetic trends were obtained in all the fertility traits. Moderate to high correlations were found between daughter yield-deviations and estimated breeding values (EBV) for Holstein bulls. Because of much lower heritabilities of the fertility traits, the correlations of daughter yield deviations with EBV were significantly lower than those from production traits and lower than the correlations from type traits and longevity. Fertility EBV were correlated unfavorably with EBV of milk production traits but favorably with udder health and longevity. Integrating fertility traits into a total merit selection index can halt or reverse the decline of fertility and improve the longevity of dairy cattle.  相似文献   

17.
《Journal of dairy science》2022,105(9):7550-7563
The cumulative improvement achieved in the genetic merit for reproductive performance in dairy populations will likely improve dairy cow longevity; therefore, it is time to reassess whether linear type traits are still suitable predictors of survival in an aging dairy cow population. The objective of the present study was therefore to estimate the genetic correlations between linear type traits and survival from one parity to the next and, in doing so, evaluate if those genetic correlations change with advancing parity. After edits, 152,894 lactation survival records (first to ninth parity) were available from 52,447 Holstein-Friesian cows, along with linear type trait records from 52,121 Holstein-Friesian cows. A series of bivariate random regression models were used to estimate the genetic covariances between survival in different parities and each linear type trait. Heritability estimates for survival per parity ranged from 0.02 (SE = 0.004; first parity) to 0.05 (SE = 0.01; ninth parity). Pairwise genetic correlations between survival among different parities varied from 0.42 (first and ninth parity) to 1.00 (eighth to ninth parity), with the strength of these genetic correlations being inversely related to the interval between the compared parities. The genetic correlations between survival and the individual linear type traits varied across parities for 9 of the 20 linear type traits examined, but the correlations with only 3 of these linear type traits strengthened as the cows aged; these 3 traits were rear udder height, teat length, and udder depth. Given that linear type traits are frequently scored in first parity and are genetically correlated with survival in older parities, they may be suitable early predictors of survival, especially for later parity cows. Additionally, the direction of the genetic correlations between survival and rear udder height, teat length, and udder depth did not change between parities; hence, selection for survival in older parities using these linear type traits should not hinder genetic improvement for survival in younger parities.  相似文献   

18.
Data on 13 traits of 11,260 progeny of 775 sires in the Carnation Genetics linear type appraisal program were analyzed to determine the association between sire dystocia transmitting ability and progeny linear type traits. Mean linear type scores ranged from 25.0 to 29.8 on a scale of 1 to 50. Parity, stage of lactation, and interactions of evaluator by parity and evaluator by stage were sources of variation for most traits. First quartile (easy) and fourth quartile (most difficult) sires grouped by dystocia transmitting ability differed in daughter linear type scores for stature, dairy character, rump angle, center ligament, udder depth, teat length, teat placement, and rump width. Differential use of easy calving bulls on heifers might result in progeny with lower type scores for stature, dairy character, rump angle, legs, and rump width. Average type scores differed by less than 1 unit for all traits, indicating little correlated response in linear type traits through use of bulls whose progeny are born with least difficulty.  相似文献   

19.
Pedigree information of 852,443 registered Holstein cows and bulls, collected by the Animal Breeding Center of Iran from 1971 to 2007, was used to calculate inbreeding coefficients and their effect on production, reproduction, somatic cell count, calving ease, and longevity traits. The average inbreeding coefficient for the entire population was 2.90%, ranging from zero to 47.03%. The rates of inbreeding from 1989 to 2007 were 0.22 and 0.15% per year for females and males, respectively. The rates were higher after 2000, being 0.31 and 0.21% per year for females and males, respectively. Inbreeding had a deleterious effect on most traits. For the first 3 lactations, the inbreeding depression per 1% increase in inbreeding was −18.72, −16.19, and −27.38 kg for milk yield, −0.443, −0.367, and −0.690 kg for fat yield, and −0.476, −0.425, and −0.66 kg for protein yield, respectively. For all reproductive traits, the observed undesirable effect of inbreeding was not significant, except for the calving interval (0.53 d per 1% increase in inbreeding) in the third parity and age at first calving (0.45 d per 1% increase in inbreeding). Calving ease in heifers and cows was significantly influenced by the inbreeding of the dam, indicating that highly inbred cows had a higher incidence of difficult calvings. The estimate of inbreeding depression for somatic cell score was low and significant only for the third lactation. However, animals with high inbreeding coefficient tended to have higher somatic cell scores than animals with low inbreeding coefficients. For type traits, the influence of inbreeding was significant only for stature, chest width, body depth, size, rear udder height, suspensory ligament, udder depth, and front and rear teat placement. Cows with high levels of inbreeding coefficient were at higher relative risk of being culled.  相似文献   

20.
Genetic improvement is a crucial tool to deal with the increasing demand for high quality, sustainably produced dairy. Breeding programs are based on genetic parameters, such as heritability and genetic correlations, for economically important traits in a population. In this study, we estimated population genetic parameters and genetic trends for 67 traits evaluated on heifers and first-lactation Canadian Holstein cows. The data consisted of approximately 500,000 records with pedigree information collected from 1980 to 2019. Genetic parameters were estimated using bivariate linear animal models under a Bayesian approach. Analyses for the 67 traits resulted in 2,211 bivariate combinations, from which the estimated genetic parameters are reported here. The most highly heritable traits were fat percent (0.66) and protein percent (0.69), followed by stature (0.47). Lowest heritabilities (0.01) were observed for disease-related traits, such as lameness and toe ulcer, and calf survival. The genetic correlations between gestation length, calf size, and calving ease measured on both heifer and cows were close to unity. On the other hand, traits such as body condition score and pin width, cystic ovaries and sole ulcer, rear teat placement, and toe ulcer were genetically unrelated. This study reports genetic parameters that have not been previously published for Canadian Holstein cows, and provides updates of those previously estimated. These estimates are useful for building new indexes, updating existing selection indexes, and for predicting correlated responses due to inclusion of novel traits in the breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号