首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 102 毫秒
1.
The fate of atmospherically deposited and environmentally active Hg is uncertain in the Arctic, and of greatest toxicological concern is the transformation to monometh-ylmercury (MMHg). Lake/watershed mass balances were developed to examine MMHg cycling in four northern Alaska lakes near the ecological research station at Toolik Lake (68 degrees 38' N, 149 degrees 36' W). Primary features of the cycle are watershed runoff, sedimentary production and mobilization, burial, and photodecomposition in the water column. The principal source of MMHg is in situ benthic production with 80-91% of total inputs provided by diffusion from sediments. The production and contribution of MMHg from tundra watersheds is modest. Photodecomposition, though confined to a short ice-free season, provides the primary control for MMHg (66-88% of total inputs) and greatly attenuates bioaccumulation. Solid-phase MMHg and gross potential rates of Hg methylation, assayed with an isotopic tracer, vary positively with the level of inorganic Hg in filtered pore water, indicating that MMHg production is Hg-limited in these lakes. Moreover, sediment-waterfluxes of MMHg (i.e., net production at steady state) are related to sediment Hg loadings from the atmosphere. These results suggest that loadings of Hg derived from atmospheric deposition are a major factor affecting MMHg cycling in arctic ecosystems. However, environmental changes associated with warming of the Arctic (e.g., increased weathering, temperature, productivity, and organic loadings) may enhance MMHg bioaccumulation by stimulating Hg methylation and inhibiting photodecomposition.  相似文献   

2.
We reconstruct from lake-sediment archives atmospheric Hg deposition to Arctic Alaska over the last several centuries and constrain a contemporary lake/watershed mass-balance with real-time measurement of Hg fluxes in rainfall, runoff, and evasion. Results indicate that (a) anthropogenic Hg impact in the Arctic is of similar magnitude to that at temperate latitudes; (b) whole-lake Hg sedimentation determined from 55 210Pb-dated cores from the five small lakes demonstrates a 3-fold increase in atmospheric Hg deposition since the advent of the Industrial Revolution; (c) because of high soil Hg concentrations and relatively low atmospheric deposition fluxes, erosional inputs to these lakes are more significant than in similar temperate systems; (d) volatilization accounts for about 20% of the Hg losses (evasion and sedimentation); and (e) another source term is needed to balance the evasional and sedimentation sinks. This additional flux (1.21+/-0.74 microg m(-2) yr(-1)) is comparable to direct atmospheric Hg deposition and may be due to some combination of springtime Arctic depletion and more generalized deposition of reactive gaseous Hg species.  相似文献   

3.
Despite the importance and size of Lake Superior, little is known regarding the biogeochemical cycling or distribution of mercury within its waters. We present the results from two research cruises on total Hg (HgT) and methylmercury (MeHg) distributions in aqueous and particulate phases, and in offshore sediments. Open waters of Lake Superior are similar in HgT content to Lakes Michigan and Ontario (sub-ng L(-1)), whereas MeHg was only 1% of HgT. Seasonality in aqueous HgT distribution was observed, most likely from tributary inputs during Spring snowmelt. Suspended particles were enriched in MeHg relative to water and surficial sediments, suggesting enhanced particle partitioning followed by demethylation in the water column and in surface sediments. Distribution coefficients for mercury in surficial sediments were lower than those in suspended material, likely due to remineralization. Preliminary estimates of mass balance indicate that air-water exchange processes such as evasion and wet deposition dominate the HgT budget, due to the basin's relatively small watershed area relative to lake area. In contrast, methylmercury cycling within Lake Superior is influenced more strongly by watershed sources, as well as by sedimentary sources and photodemethylation. The Hg cycle in Lake Superior is unique in that it is more similar in many aspects to that in marine systems than in small lakes, where management data for freshwaters typically originates.  相似文献   

4.
Rivers receive a significant fraction of the anthropogenic nitrogen applied to the world's watersheds. Environmental conditions in rivers should be conducive to the formation of N2O, and recent models suggest that rivers could constitute up to 25% of the anthropogenic contribution of N2O to the atmosphere. Few direct measurements exist, however, of N2O flux between rivers, especially large rivers, and the overlying atmosphere. We measured the concentration of N2O over a 2-year period in a large, tidal, freshwater river. We coupled these measurements with a physical model of gas exchange based on inert gas tracer additions to this river and computed the flux of N2O to the atmosphere. The tidal, freshwater Hudson River is persistently supersaturated in N2O with respect to the atmosphere, with average partial pressure of N2O (pN2O) of 0.58 muatm or about 185% of atmospheric equilibrium. At all times during a 2-year cycle and at all locations sampled along a 200 km stretch of the river, the river was a net source of N2O to the atmosphere. We estimate that the tidal, freshwater Hudson River contributes 0.056 g of N2O-N m(-2) to the atmosphere annually. Despite relatively high concentrations of NO3 in the Hudson River, the tidal, freshwater river is a minor source of N2O in comparison to other rivers for which estimates exist and to components of its own watershed. The river itself accounts for only 1.3% of the total N2O contribution to the atmosphere that occurs in the Hudson watershed.  相似文献   

5.
The wind-generated pressure coefficients likely to be encountered in a free standing cylindrical grain storage with a conical roof are presented as measured from model experiments in a wind tunnel. These take into account the turbulent flow and vertical wind velocity profile likely to be found around such structures. The influence of pulsating wind flows is discussed theoretically and the practical consequences of wind-generated gas losses are detailed for fumigation or controlled atmosphere storage of grain.  相似文献   

6.
A direct sensitivity analysis technique is extended to calculate higher-order sensitivity coefficients in three-dimensional air quality models. The time evolution of sensitivity coefficients of different order is followed alongside that of the concentrations. Calculation of higher-order sensitivity coefficients requires few modifications to the original (first-order) sensitivity modules and is carried out efficiently and with minimal computational overhead. The modeling results (first-, second-, and third-order sensitivity coefficients) for an ozone episode in central California are shown and discussed. Second-order sensitivity coefficients of ozone concentration with respect to domain-wide NO emissions show reasonable agreement with brute-force results and exhibit less noisy behavior. By using second-order sensitivity coefficients the nonlinear responses are better captured and described. For a Taylor series projection from the base case, including the second-order term improves the accuracy. In general, higher-order sensitivity analysis shows a noticeable improvement in terms of accuracy over the conventional first-order analysis. Of particular interest, second-order sensitivity analysis is better equipped to address the nonlinear behavior around the peak ozone in NO(x)-rich plumes.  相似文献   

7.
Mercury (Hg) and methylmercury (MeHg) are flushed from watersheds during hydrological events, contaminating downstream surface waters and resident fish populations. We monitored total mercury (THg), MeHg, and ancillary water chemistry parameters in two streams (Cedar Creek and Trott Brook) in east-central Minnesota on a weekly or semiweekly basis from April through October 2003. Heavy precipitation in late June resulted in discrete episodes of high concentrations (>1.2 ng/L) of MeHg in both streams in early July. The MeHg/THg ratio increased from 0.15 to 0.36 in Cedar Creek and from 0.13 to 0.46 in Trott Brook during the event. The high MeHg concentrations were accompanied by low dissolved oxygen concentrations and increased concentrations of dissolved organic carbon, Mn, Fe, and orthophosphate. A prolonged absence of precipitation during August and early September brought stream levels back to baseflow values, and MeHg concentrations decreased to less than 0.1 ng/L. These results suggest that warm-weather, high-discharge events are the primary route of export of MeHg from these watersheds, and baseflow contributes much less MeHg to downstream waters. The redox water chemistry during the,events sampled here suggests that MeHg in these streams is discharged from wetland areas where anoxic/anaerobic conditions prevail.  相似文献   

8.
Variability of the gaseous elemental mercury sea-air flux of the Baltic Sea   总被引:1,自引:0,他引:1  
The importance of the sea as a sink for atmospheric mercury has been established quantitatively through models based on wet and dry deposition data, but little is known about the release of mercury from sea areas. The concentration of elemental mercury (Hg0) in sea surface water and in the marine atmosphere of the Baltic Sea was measured at high spatial resolution in February, April, July, and November 2006. Wind-speed records and the gas-exchange transfer velocity were then used to calculate Hg0 sea-air fluxes on the basis of Hg0 sea-air concentration differences. Our results show that the spatial resolution of the surface water Hg0 data can be significantly improved by continuous measurements of Hg0 in air equilibrated with water instead of quantitative extraction of Hg0 from seawater samples. A spatial and highly seasonal variability of the Hg0 sea-air flux was thus determined. In winter, the flux was low and changed in direction. In summer, a strong emission flux of up to 150 ng m(-2) day(-1) in the central Baltic Sea was recorded. The total emission of Hg0 from the studied area (235000 km2) was 4300 +/- 1600 kg in 2006 and exceeded deposition estimates.  相似文献   

9.
Speciation of mercury and mode of transport from placer gold mine tailings   总被引:1,自引:0,他引:1  
Historic placer gold mining in the Clear Creek tributary to the Sacramento River (Redding, CA) has highly impacted the hydrology and ecology of an important salmonid spawning stream. Restoration of the watershed utilized dredge tailings contaminated with mercury (Hg) introduced during gold mining, posing the possibility of persistent Hg release to the surrounding environment, including the San Francisco Bay Delta. Column experiments have been performed to evaluate the extent of Hg transport under chemical conditions potentially similar to those in river restoration projects utilizing dredge tailings such as at Clear Creek. Physicochemical perturbations, in the form of shifts in column influent ionic strength and the presence of a low molecular weight organic acid, were applied to coarse and fine sand placer tailings containing 109-194 and 69-90 ng of Hg/g, respectively. Significant concentrations of mercury, up to 16 microg/L, leach from these sediments in dissolved and particle-associated forms. Sequential chemical extractions (SCE) of these tailings indicate that elemental Hg initially introduced during gold mining has been transformed to readily soluble species, such as mercury oxides and chlorides (3-4%), intermediately extractable phases that likely include (in)organic sorption complexes and amalgams (75-87%), and fractions of highly insoluble forms such as mercury sulfides (6-20%; e.g., cinnabar and metacinnabar). Extended X-ray absorption fine structure (EXAFS) spectroscopic analysis of colloids obtained from column effluent identified cinnabar particles as the dominant mobile mercury-bearing phase. The fraction of intermediately extractable Hg phases also likely includes mobile colloids to which Hg is adsorbed.  相似文献   

10.
We develop an improved treatment of the surface ocean in the GEOS-Chem global 3-D biogeochemical model for mercury (Hg). We replace the globally uniform subsurface ocean Hg concentrations used in the original model with basin-specific values based on measurements. Updated chemical mechanisms for Hg?/Hg(II) redox reactions in the surface ocean include both photochemical and biological processes, and we improved the parametrization of particle-associated Hg scavenging. Modeled aqueous Hg concentrations are consistent with limited surface water observations. Results more accurately reproduce high-observed MBL concentrations over the North Atlantic (NA) and the associated seasonal trends. High seasonal evasion in the NA is driven by inputs from Hg enriched subsurface waters through entrainment and Ekman pumping. Globally, subsurface waters account for 40% of Hg inputs to the ocean mixed layer, and 60% is from atmospheric deposition. Although globally the ocean is a net sink for 3.8 Mmol Hg y?1, the NA is a net source to the atmosphere, potentially due to enrichment of subsurface waters with legacy Hg from historical anthropogenic sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号