首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 480 毫秒
1.
以传统湿法工艺技术制备豆乳粉为基础,为改善豆乳粉溶解性对豆浆进行微射流处理。研究不同微射流压力(0、42.5、89.0、123.5、152.0 MPa)对豆乳粉溶解特性(粒径、可溶性固形物含量、蛋白分散指数、休止角、溶解度、分散性和水合能力)的影响。结果表明:随微射流压力不断增大,豆乳粉平均粒径呈现出先下降后略有增加的趋势;可溶性固形物含量、蛋白分散指数、休止角、溶解度、分散性和水合能力呈现出先升高后降低的趋势;豆乳粉的微观结构表现为颗粒减小、趋向于均匀且分散性增加。当微射流压力为123.5 MPa时,豆乳粉具有较高的蛋白分散指数和水合能力,分别为97.35%和1.94 mL/g,豆乳粉的堆积密度较高,与对照组相比增加了25.81%。研究表明,当微射流压力为123.5 MPa时,豆乳粉具有良好的溶解特性。  相似文献   

2.
为研究超声波处理对低嘌呤脱脂豆粉性质的影响,利用可见分光光度计、激光粒度分布仪、荧光分光光度计进行了检测分析。结果表明:超声波处理样品的游离巯基含量、体积平均粒径、粒径分布宽度及蛋白质表面疏水性均显著高于未经超声波处理的样品(P<0.05)。超声波功率为405 W、超声波温度50 ℃、超声波时间30 min时,游离巯基含量达到最大值8.75 μmol/g;超声波功率为450 W、超声波温度40 ℃、超声波时间60 min时,相对表面疏水性达到3.86%。因此,超声波处理引起了低嘌呤脱脂豆粉蛋白质游离巯基含量、粒径分布和表面疏水性的变化。  相似文献   

3.
以传统湿法工艺技术制备豆乳粉为基础,对酶解后的豆乳进行高压均质处理,提高豆乳粉溶解性,并探讨酶解—高压均质工艺对制备豆乳粉的溶解性及蛋白质消化率的影响,发现酶解—高压均质后的豆粉乳液粒径减小,无聚集现象,豆乳粉的溶解性及蛋白质消化率显著提高。  相似文献   

4.
本发明是关于水分散性优良的豆乳粉的制法。 豆乳粉因蛋白质和脂肪酸的含量高,水分散性差,常可以看到原粉未溶的现象。要提高豆乳粉的水分散性,增大粉末的粒径,使粒度分布范围缩小,具有一定效果,这可以利用速溶设备使粉末颗粒化。经过速溶设备处理后的豆乳粉的粒径虽然变大,但由于此工序的加热,可能增加了豆乳粉蛋白质的不溶性,所以尽管水分散性得到改善,却降低了蛋白质的溶解性及其功能。  相似文献   

5.
邢贝贝  张亭亭  赵强  熊华 《食品科学》2019,40(3):109-115
天然大米谷蛋白通过酸法热处理(pH?2.0、90?℃、30?min)制备纤维化热聚集体,采用高压微射流处理(35、70、105、140?MPa),以未经热处理和高压处理的样品为对照,对样品形貌、粒径、ζ电位、表面疏水性、巯基含量、热特性、流变性、乳化性能及二级结构组成等进行比较分析,探究高压处理对其理化特性的影响。结果表明:高压微射流处理后,样品结构变得疏松,粒径增大,由(146.93±1.04)nm增加到(184.77±4.82)nm;总游离巯基含量先增加后减小,乳化活性指数及乳化稳定性指数先上升后下降,在70?MPa时达到最大,分别为(30.08±0.75)m2/g和(150.58±2.03)min;ζ电位和表面疏水性的变化较小;高压微射流处理对热稳定性和表观黏度均有一定影响;二级结构组成α-螺旋、β-转角含量增加,β-折叠含量减少。低压会使蛋白进一步聚集,较高的压力则会使其解聚;70?MPa处理的样品具有较好的乳化特性和热稳定性。  相似文献   

6.
本文研究不同热加工处理对豆乳蛋白质的影响,采用传统热煮浆、微波煮浆、加压高温煮浆对豆乳蛋白质氮溶解指数(nitrogen soluble index,NSI)和脲素酶活性的影响,同时对不同热加工处理的豆乳蛋白进行表面疏水性、自由巯基和透射电镜分析。结果表明:在90℃煮浆15 min的传统热煮浆条件下,蛋白质的NSI值为81.62%±1.07%;在650 W微波煮浆40 s条件下,NSI值为75.35%±0.65%;在100℃加压高温煮浆3 min,NSI值为91.31%±1.50%,均显著高于生豆乳的NSI值(69.03%±0.82%)。传统热煮浆、微波煮浆、加压高温煮浆三种热处理方式均可以降低脲素酶活性。通过对蛋白质自由巯基、表面疏水性和透射电镜观察分析,传统热煮浆、微波煮浆、加压高温煮浆与生豆乳相比,三种热处理方式均使蛋白质自由巯基含量显著降低(p0.05);表面疏水性显著升高(p0.05);豆乳体系油滴与蛋白共溶、分散性更好。由此可见,不同热加工处理的豆乳蛋白质的溶解性提高是通过深层改变蛋白的结构来实现的。  相似文献   

7.
高静压处理对花生蛋白的改性研究   总被引:1,自引:0,他引:1  
研究高静压(300 MPa~600 MPa)处理对花生分离蛋白、花生球蛋白的溶解性、乳化性(EAI)、乳化稳定性(ESI)、表面疏水性、巯基含量等性质的影响,并对各功能性质的相互关联性进行了分析。结果表明:高静压处理可有效的改善花生分离蛋白和花生球蛋白的溶解性和乳化性,但是会降低其乳化稳定性。在400 MPa,花生分离蛋白具有最大的乳化性和表面疏水性,花生球蛋白具有最大的溶解性。在500 MPa,花生球蛋白具有最大的乳化性和表面疏水性,花生分离蛋白具有最大的溶解性;随着压力的升高,花生球蛋白和花生分离蛋白的游离巯基含量呈下降趋势。表面疏水性与乳化性存在一定的正相关。结果表明,高静压处理可以有效改善花生蛋白的功能性质。  相似文献   

8.
以传统湿法工艺技术制备豆乳粉为基础,对浆渣分离后的豆乳进行超高压-限制性酶解处理,降低豆乳粉致敏性。在单因素试验基础上,采用响应面分析法对超高压-限制性酶解制备低致敏性豆乳粉工艺进行优化,确定最优超高压-限制性酶解的工艺参数为超高压处理压强320.00?MPa、超高压处理时间15?min、酶解时间60?min、酶添加量0.3?U/g,此条件下致敏性降低率为88.09%,但制备的豆乳粉具有微苦味,需要进一步调配以改善口感。超高压处理与酶解具有协同效应,可显著提高豆乳粉蛋白质体外消化率、显著降低豆乳粉致敏性,对不同加工工艺豆乳粉进行蛋白质体外消化率、蛋白质分散指数、过敏原含量及蛋白电泳分析,进一步证明超高压与酶解的协同效应。  相似文献   

9.
为探明大豆蛋白11S/7S比值对豆乳乳液特性的影响,选取7个不同11S/7S比值(0.55~5.09)的大豆品种制备豆乳,并检测豆乳中蛋白溶解度、粒径、Zeta电位、豆乳粘度、游离巯基、表面疏水性和沉淀率等与豆乳乳液特性紧密相关的指标。结果表明:大豆中11S/7S比值较小时,豆乳中蛋白溶解度高,粒径小,豆乳粘度小,蛋白Zeta电位绝对值高,游离巯基含量多,表面疏水性高,豆乳沉淀率低,豆乳稳定性高。反之,大豆中11S/7S比值较大时,蛋白溶解度低,粒径偏大,豆乳粘度大,蛋白Zeta电位绝对值低,游离巯基含量少,表面疏水性低,造成豆乳沉淀率高,豆乳稳定性低。但当原料中11S/7S比值处于3.0~3.49时,各豆乳上述指标之间差异不显著(P>0.05)。  相似文献   

10.
采用高压微射流技术在不同压力条件下对大豆分离蛋白(SPI)进行处理,分析处理前后SPI结构、功能特性以及乳液性质的变化。结果表明:低压均质处理可使SPI的粒径降低,当均质压力增加至一定程度时,蛋白间的相互作用增加,颗粒粒径增加;均质压力在0~95 MPa范围内随着压力逐渐升高,SPI的溶解性得到了显著改善,而当均质压力增加到125 MPa和155 MPa时,溶解性反而降低;高压均质处理对乳化性的影响与溶解性变化趋势基本吻合;表面疏水性随着压力的增大而增大;内源荧光光谱结果表明,随着均质压力的增大,最大吸收波长红移,荧光强度降低,色氨酸残基暴露于极性环境中; SPI乳液粒径随着均质压力的增大(95 MPa除外)整体依次变小,SPI乳液在压力65 MPa处理时油脂氧化速率最快,SPI乳液在压力125、155 MPa处理时的初级氧化速率要低于未处理的乳液。  相似文献   

11.
Average diameters and particle size distributions in fluid milks with different fat contents and subjected to various homogenization pressures with a "microfluidizer" were evaluated. Skim, 2%, and whole milks were microfluidized at 50, 100, 150, and 200 MPa. Cream containing 41% milk fat was microfluidized at 50, 100, and 150 MPa. Particle sizes were determined by laser light scattering. As microfluidization pressure was increased from 50 to 100 MPa, particle sizes in skim, 2%, and whole milks decreased. Microfluidization at pressures greater than 100 MPa had little additional effect on reducing the particle sizes in skim and 2% milks compared with microfluidization at 100 MPa, but the particle sizes in whole milk increased as the microfluidization pressure was increased from 100 to 200 MPa due to formation of homogenization clusters. The particle sizes in cream increased as the microfluidization pressure was increased from 50 to 150 MPa. When the microfluidization pressure was held constant, the particle sizes increased as the milk fat concentration was increased. The coefficients of variations of the volume-weighted particle size distributions for cream were higher than for skim, 2%, and whole milks. Larger "big" particles and smaller "small" particles were formed in whole milk after microfluidization at 200 MPa than at 100 MPa. Although microfluidization can be used to produce small particles in skim, 2%, and whole milks, a higher than optimum pressure (above 100 MPa) applied to whole milk will not lead to the minimum d(43) (volume-weighted average diameter) due to formation of clusters.  相似文献   

12.
Dynamic high-pressure microfluidization (DHPM) technology was used to treat oat protein isolate (OPI) to improve its functional properties and broaden its application in food processing. Results showed that the particle size of OPI was significantly reduced by 70.96%, and the absolute zeta potential increased by 33.51% at a DHPM pressure of 120 MPa. The major subunits of OPI were not degraded, but the secondary structures of OPI were altered with increasing α-helix, β-sheet, and β-turn structures and decreasing random coil after DHPM treatment. In addition, the significant increase in the surface hydrophobicity and free sulfhydryl content, as well as fluorescence quenching of OPI indicated the conformational expansion and rearrangement of OPI. Additionally, the changes in OPI structures affected its functional performance. DHPM treatment at 120 MPa significantly improved the solubility, water and oil holding properties, and emulsifying and foaming abilities of OPI. Therefore, DHPM treatment can improve the functional properties of OPI, which provides a new idea for expanding the application of OPI in food processing.  相似文献   

13.
以添加2%浓缩乳清蛋白的豆乳为原料,经过不同压力的微射流处理后,利用瑞士乳杆菌(Lactobacillus helveticus LH-B02)和干酪乳杆菌(Lactobacillus casei L.casei-01)组合发酵制备发酵豆乳,研究了微射流处理对发酵豆乳流变特性和微观结构的影响。结果表明,豆乳经过微射流处理后,制备的发酵豆乳持水力增大,同时表现出较强的粘弹性以及剪切稀化特性,表观粘度和屈服应力也有所增加,并且随处理压力的增加,这种趋势愈发明显。此外,微射流处理后,发酵豆乳的微观结构中孔隙变小,蛋白之间交联增多,整体呈现出更加均一致密的凝胶网络结构。  相似文献   

14.
We investigated the surface hydrophobicity index based on different fluorescence probes [1-anilinonaphthalene-8-sulfonic acid (ANS) and 6-propionyl-2-(N,N-dimethylamino)-naphthalene (PRODAN)], free sulfhydryl and disulfide bond contents, and particle size of 80% milk protein concentrate (MPC80) powders prepared by adding various amounts of NaCl (0, 50, 100, and 150 mM) during the diafiltration process. The solubility of MPC80 powder was not strictly related to surface hydrophobicity. The MPC80 powder obtained by addition of 150 mM NaCl during diafiltration had the highest solubility but also the highest ANS-based surface hydrophobicity, the lowest PRODAN-based surface hydrophobicity, and the least aggregate formation. Intermolecular disulfide bonds caused by sulfhydryl-disulfide interchange reactions and hydrophobic interactions may be responsible for the lower solubility of the control MPC80 powder. The enhanced solubility of MPC80 powder with addition of NaCl during diafiltration may result from the modified surface hydrophobicity, the reduced intermolecular disulfide bonds, and the associated decrease in mean particle size. Addition of NaCl during the diafiltration process can modify the strength of hydrophobic interactions and sulfhydryl-disulfide interchange reactions and thereby affect protein aggregation and the solubility of MPC powders.  相似文献   

15.
Effect of Soybean-to-Water Ratio and pH on Pressurized Soymilk Properties   总被引:2,自引:0,他引:2  
ABSTRACT:  The influence of soybean-to-water ratio (1:6 and 1:8) and pH (6 and 7) on characteristics of soymilk treated by high pressure processing (HPP, 500 and 600 MPa, 10 min, 25 °C) or thermal treatment (95 °C for 30 min) was investigated. Changes in the soymilk appearance were observed only for the 1:6, pH 6 soymilk that underwent a sol formation after HPP treatment and was apparently more viscous after thermal treatment. These changes were reflected in the viscosity values of these soymilks, which were increased by a factor of 4.3 and 3.6, after HPP and thermal treatment, respectively. After HPP treatment at pH 7 at both 1:6 and 1:8 ratios, the viscosity of the soymilks was unchanged compared to the controls. HPP treatment significantly increased the emulsion stability for all soymilks tested except for the 1:6, pH 7 soymilk. Peptide profiles of thermal- and pressure-treated samples were not affected; however, aggregates were observed in the soluble protein fraction after thermal and pressure treatment. Surface free and total free sulfhydryl content, surface hydrophobicity, and solubility of the proteins were decreased after HPP and thermal treatment regardless the soybean-to-water ratios and pH values of the soymilk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号