首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为增强增韧聚乳酸纤维,采用聚酰胺(PA)与聚乳酸(PLA)制备了PLA/PA 共混纤维,并对其热学性能、结晶、热稳定性、PA 的分散性以及PLA/PA共混纤维的力学性能进行了研究。研究结果表明:PA的加入对PLA 的玻璃化转变温度及熔融温度没有显著影响,但改善了PLA的结晶行为,结晶度提高了51.6%;PLA 热稳定性随着PA 含量的增加而提高;PA在PLA 中分散均匀;随着牵伸倍数的增加,PLA/PA 共混纤维的取向度提高,力学性能得到改善,当牵伸倍数从1.5增加到3.0 时,取向度提高了30.88%,同时纤维的断裂强度提高了48.58%;当PA 质量分数为1%和20%时,PA/PLA共混纤维的断裂强度分别提高了8.6%和25%,断裂伸长率分别提高了10.9%和55.9%。  相似文献   

2.
用丝胶蛋白对腈纶进行改性,以获得力学性能良好、吸湿性改善的纤维。通过改变拉伸倍数,研究其对纤维力学性能的影响。通过改变干燥致密化工艺,研究纤维内部结晶度的变化及其对力学性能的影响。结果表明:总拉伸倍数增大,纤维取向度增加,力学性能随之提高;两道拉伸的总倍数为6.5倍时,得到的纤维断裂强度最佳,为3.87 cN/dtex;纤维干燥致密化温度为120℃,致密化时间为110 s,所得纤维的性能最佳;致密化温度过高,纤维的结晶取向下降;在最佳致密化条件下,纤维的断裂强度为3.8 cN/dtex;丝胶蛋白改性聚丙烯腈纤维的回潮率为6.9%,较常规腈纶提高了3.5倍。  相似文献   

3.
针对溶液相转化法制备的聚氯乙烯(PVC)膜存在强度及通透性能难以同步提高的问题,以MT-I型复合粉为成孔剂,邻苯二甲酸二辛酯为稀释剂,采用螺杆挤出法制备了PVC中空纤维膜,研究了拉伸和萃取过程对纤维膜形貌及结构的影响,并通过水通量、碳素墨水截留率及拉伸强力测试分析了纤维膜的分离性能和力学性能。结果表明:随着拉伸倍数的增加,PVC中空纤维膜的断裂强度增大,断裂伸长率减小;经乙醇萃取后纤维膜表面出现了更多微孔,纤维膜的通透性能提高;当拉伸倍数为3时,纤维膜具有较高通透性和较好的力学性能,水通量为798 L/(m2·h),拉伸断裂强度为17.7 MPa,断裂伸长率为70.67%。  相似文献   

4.
为提高聚己内酰胺(PA6)纤维的结强比和勾结韧性,采用PA6/聚己二酰己二胺(PA66)共聚酰胺切片进行熔融纺丝,制备PA66质量分数分别是10%和20%的PA6/PA66共聚酰胺纤维,测试并分析不同牵伸倍数的PA6及PA6/PA66共聚酰胺纤维的物理性能(包括结晶度、取向度、线密度和回潮率)和拉伸性能(包括直接拉伸法、单勾结法和双勾结法)。结果显示:PA66共聚单体的引入使得PA6/PA66分子链规整性降低,纤维的结晶度、取向度、断裂强度均有所下降,回潮率略有上升,结强比和断裂伸长率保持率较PA6纤维的大幅度提高。PA6/PA66共聚酰胺纤维非常适合用于勾结类织物。  相似文献   

5.
为探究长碳链聚酰胺1012(PA1012)纤维在极端环境应用的可能性,借助动态热机械分析仪、X射线衍射仪和万能材料试验机系统研究了不同牵伸比的PA1012全牵伸丝(FDY)和拉伸变形丝(DTY)在不同温度下的力学性能及其变化规律。结果表明:常温下,PA1012 FDY的初始模量、屈服比强度、屈服伸长率、断裂强度随牵伸比增加呈线性增强,断裂伸长率与牵伸比之间呈负指数关系;当牵伸比为1.3时,与PA1012 FDY相比,PA1012 DTY的初始模量下降57.47%,断裂强度下降2.24%,但断裂伸长率增加1.40%;在-70~120℃温度范围内,相同牵伸比的PA1012 FDY和DTY的力学性能随温度变化趋势与常温状态下相似;特别是在-70℃,当牵伸比为2.7时,PA1012 FDY的拉伸断裂强度高达6.04 cN/dtex,其断裂伸长率为9.13%,可见PA1012 FDY在极地寒冷地域具有潜在应用前景。  相似文献   

6.
为实现工艺参数对纳米纤维包芯纱的结构调控,采用连续水浴静电纺丝的方法,以聚对苯二甲酸乙二醇酯(PET)纤维为芯纱,聚酰胺6(PA6)纳米纤维为包覆层,制备兼具纳米纤维特性和传统纱线力学性能的纳米纤维包芯纱。对PET/PA6纳米纤维包芯纱的形态、晶体结构和力学性能进行分析与表征。结果表明:纳米纤维包芯纱具有良好的皮芯结构;PA6包覆层的纳米纤维直径为66~80 nm,其孔隙率随喷丝速率的提高而下降,结晶度在19%~24.15%范围内,且随喷丝速率的提高而减小;PA6纳米纤维包覆层的断裂强度和断裂伸长率随喷丝速率的增大而降低,其断裂强度降为常规PA6纤维的1/5;纳米纤维包芯纱保持了芯纱的强力与断裂伸长率等力学性能。  相似文献   

7.
为提升高强高模聚甲醛纤维的可纺性,通过研究聚甲醛树脂的流变行为和热稳定性确定了聚甲醛的熔融纺丝温度,研究聚甲醛树脂的等温结晶能力以确定聚甲醛初生纤维的超高倍热拉伸温度,并分析了卷绕速度、热拉伸倍数和热定型条件对聚甲醛纤维结晶度、取向度和力学性能的影响。结果表明:聚甲醛纤维的最佳熔融纺丝温度为215 ℃,其取向度、结晶度和力学性能随着卷绕速度的增加而增加;聚甲醛初生纤维的最佳热拉伸温度为155 ℃,极限拉伸倍数可达17 倍,此时聚甲醛纤维的断裂强度为8.87 cN/etex,初始模量为108.07 cN/dte;初生纤维经过拉伸后结晶度和取向度提高,随着拉伸倍数增大,聚甲醛纤维的力学性能提高;聚甲醛初生纤维的最佳定型温度为145 ℃,定型时间为40~50 s。  相似文献   

8.
为开发高黑度的原液着色聚酰胺6(PA6)纤维,将经原位聚合法制备的炭黑质量分数为1.0%~3.0%的系列PA6/炭黑(PA6/CB)复合材料进行熔融纺丝制备PA6/CB复合纤维,并对复合材料的形貌结构、热性能、晶型结构以及纤维的力学性能、取向度、色度值和色牢度进行表征。结果表明:经原位聚合法引入的炭黑在原液着色PA6/CB复合材料和纤维中分散均匀;炭黑在基材中起异相成核作用,添加炭黑的PA6/CB复合材料的结晶度和结晶温度均得到提高;炭黑可提升复合材料的热稳定性,并可促进PA6形成热力学性能更稳定的α晶型;随着炭黑质量分数的提高,PA6/CB复合纤维的断裂强度先提高后逐渐下降,当炭黑质量分数为1.0%时达到最大,为4.07 cN/dtex; PA6/CB复合纤维的取向度均高于纯PA6纤维;炭黑质量分数越高,PA6/CB复合纤维的颜色越黑,但其质量分数超过2%后纤维的黑度提升不明显。  相似文献   

9.
本文采用3种不同相对粘度的PA6切片,与LDPE以5种不同的共混比通过熔融纺丝法纺制PA6/LDPE基体-微纤(海岛)型纤维。研究了不同相对粘度的PA6和PA6/LDPE共混质量比不同时对纺丝工艺条件的影响规律,以及对PA6/LDPE共混海岛纤维形态结构和力学性能的影响。结果表明:随着PA6相对粘度增加及共混体系中PA6比例增加,需提高纺丝温度;共混纤维的断裂强力随PA6/LDPE共混纤维中PA6组成比和PA6粘度的提高而提高。  相似文献   

10.
在降低熔体特性粘度、提升负荷的条件下,通过提高拉伸倍数、拉伸温度等来保证断裂强度等品质指标,改善了纤维的拉伸性能。原丝的拉伸率是确定纺丝工艺调整方向和幅度的重要依据。  相似文献   

11.
通过无针静电纺丝技术制备了锦纶(PA) 56/荧光素纳米纤维膜,研究了纺丝液性质及PA56/荧光素纤维膜的荧光特性。结果表明,PA56/荧光素溶液静电纺丝性能良好,获得的PA56/荧光素纳米纤维膜直径均匀,具有良好的荧光性能。随荧光素加入量的增加,纤维膜荧光强度增加,断裂强度有所下降。  相似文献   

12.
为更加有效地利用纤维素与蛋白质资源,采用干喷湿法纺丝方法,以1?丁基?3?甲基咪唑氯盐为共溶剂、乙醇为凝固剂制备了纤维素/ 丝素蛋白共混纤维。研究了喷丝头牵伸与塑化牵伸的倍率分配对纤维分子结构、相形态和力学性能的影响。结果表明:以纤维素为基体的纤维素/丝素蛋白共混纤维的相形态为单相连续结构;当喷丝 头牵伸倍率为3 时,丝素蛋白沿纤维轴向连续分布,其相形态呈微纤状;当喷丝头牵伸倍数增加至5 时,丝素蛋白沿纤维轴向分布出现正弦波动,其相形态呈藕节状;增加塑化浴拉伸工艺可减少纤维成形过程中丝素蛋白的流失;当喷丝头牵伸倍数为5,塑化浴拉伸倍数为1 时,共混纤维的断裂强度达到389.9 MPa,超过常规粘胶纤维。  相似文献   

13.
为了进一步提高锦纶6的综合性能,文章通过熔融纺丝制得石墨烯/锦纶6(PA6)预取向丝(POY),然后将经石墨烯改性的PA6 POY拉伸假捻变形得到具有优异性能的PA6 DTY,并进一步研究了不同规格的石墨烯改性PA6 POY在制备过程中石墨烯含量、喷丝板、纺丝温度等工艺条件对其性能的影响,及后续DTY加工过程中加弹速度、拉伸比、D/Y等工艺参数对成品丝性能的影响。经表征,发现石墨烯均匀分散于基体PA6中,石墨烯/PA6 DTY具有优异的电导率、力学性能及抗菌性能。  相似文献   

14.
静电纺PA 6纳米纤维膜的力学性能研究   总被引:1,自引:1,他引:0  
利用静电纺丝可形成由纳米级纤维组成的纳米纤维膜,由于该膜孔径小并具有高比表面积和高孔隙率,可用作组织工程支架、传感器感知膜、过滤材料和防护材料等。静电纺纳米纤维膜的力学性能对其适用性和耐用性有重要影响。以PA 6甲酸溶液进行静电纺丝,研究了纺丝液喂入速度和纺丝距离对静电纺PA 6纳米纤维膜力学性能的影响。结果表明:纺丝液喂入速度较低时,形成的纳米纤维膜力学性能差;纺丝距离增大时,纳米纤维膜的断裂强度降低;PA 6溶解于98%甲酸中配制成13%(质量分数)纺丝液,在喷嘴口径0.9 mm、电压30 kV下进行静电纺丝,纺丝液喂入速度在0.2~0.3 ml/h、纺丝距离为8~10 cm时可获得具有良好力学性能的PA 6纳米纤维膜。  相似文献   

15.
为实现乙烯-四氟乙烯(ETFE)共聚纤维工业规模开发,通过熔融纺丝法制备了ETFE共聚初生纤维,并将初生纤维在150℃条件下通过电子拉伸试验机进行定长拉伸,得到拉伸比为100%和200%的纤维。利用热重分析仪、差示扫描量热分析仪、X射线衍射仪、动态热机械分析仪和电子拉伸机等分别测试了纤维的热性能、结晶结构、力学性能。测试得出:ETFE共聚热分解温度约为477℃;不同拉伸倍率纤维的熔融温度均保持在259℃左右;拉伸200%纤维断裂强度约为160 MPa,是初生纤维的3倍。结果表明:随拉伸倍率的提高,ETFE共聚纤维玻璃化转变温度提高9℃,结晶度和晶区取向度分别提高了10.2%和5.5%;经浓硫酸、氢氧化钠溶液、丙酮和次氯酸钠试剂处理后各纤维断裂强度均无明显变化,表现出良好的耐化学试剂性能。  相似文献   

16.
分析探讨了纺制PET/PA6米字型POY复合纤维的生产工艺,组分质量比PET∶PA6为82∶18,结果表明,当纺丝温度PET为285~295℃,PA6为260~270℃,箱体温度为265~292℃,纺丝速度为2 900~3 200 m/min,侧吹风速为0.40~0.65 m/min,风温为18~22℃时,可纺制出性能较好的POY用于后道加工,所得纤维的规格为285 dtex/72 f,断裂强度(2.3±0.2)c N/dtex,断裂伸长率(135±5)%。  相似文献   

17.
文章选用聚合度为3 500、全水解(醇解度99.9%)的聚乙烯醇(PVA)为原料,以二甲基亚砜(DMSO)作为溶剂,以一定比例的甲醇和异丙醇混合溶液为凝固浴,采用干湿法纺丝方法制备出综合性能良好的PVA纤维。通过对纺得的初生纤维进行形态和拉伸力学性能的测试,研究了纺丝液的PVA质量分数和凝固浴组分对PVA纤维性能的影响。在实验范围内的最佳条件下,PVA初生纤维表面光滑无沟槽,断裂强度最大可达到(1.1±0.04)c N/dtex。同时,热处理后,PVA纤维的断裂强度提高到(3.7±0.2)c N/dtex,热稳定性也增强。  相似文献   

18.
为了纺制高品质聚乙醇酸(PGA)长丝,研究了熔融纺丝工艺路线中全流程纺丝工艺参数,包括泵供量、纺丝速度、热拉伸倍数对PGA长丝力学性能的影响,并结合直径、结晶度、取向度等数据确定了最佳的纺丝工艺。研究了PGA初生纤维和牵伸纤维的体外降解性能。试验结果表明:当泵供量为22 mL/min,纺丝速度为600 m/min,热拉伸倍数为5.0时,PGA长丝的断裂强度达到6.09 cN/dtex,断裂伸长率为24.26%;纤维的结晶度越高,相同降解时间内质量损失率越小。  相似文献   

19.
为提高聚酰胺66(PA66)纤维的力学性能,将羧基化碳纳米管(CMWNTs)与乙二胺(EA)进行功能化反应得到氨基化碳纳米管(AMWNTs),再将AMWNTs与PA66盐原位聚合制备AMWNTs掺杂PA66材料(PACNTs),并通过熔融纺丝制备成纤维。采用热重分析仪、差示扫描量热仪、X射线衍射仪及单纤维强力仪等对PA66和PACNTs纤维进行结构和性能表征。结果表明:PACNTs纤维的熔点随着AMWNTs的加入向低温方向移动,AMWNTs的加入使PA66分子质量下降,PACNTs纤维的结晶温度向高温方向移动,AMWNTs起到异相成核作用;随着AMWNTs的加入,PACNTs纤维的拉伸强度和弹性模量增加,当AMWNTs质量分数为0.5%时,PACNTs纤维的拉伸强度和弹性模量达到最大,比纯PA66纤维分别提高了约157%和455%。  相似文献   

20.
为得到兼具光致变色性能与力学性能的光致变色聚乳酸(PLA)纤维,将PLA和光致变色微胶囊通过熔体纺丝及热拉伸工艺制备出光致变色PLA纤维,并系统分析了纤维的形貌、结晶及热学性能,着重研究了光致变色微胶囊对纤维力学及可逆变色行为的影响,揭示纤维性能差异对其内部结构的影响。结果表明:光致变色PLA纤维的断裂强度随着光致变色微胶囊质量分数的增加而减小,结晶度呈先上升后下降趋势,当光致变色微胶囊质量分数为2%时具有与纯PLA相当的断裂强度,为4.15 cN/dtex,且结晶度达到最大55.42%;光致变色PLA纤维的光致变色性能呈现出高灵敏度、优异褪色性及光稳定性,且变色强度随光致变色微胶囊质量分数的增加而提高,但非线性上升,通过调整光致变色微胶囊的质量分数,可以达到纤维变色功能与力学性能兼具的目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号