首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diet is known to affect rumen growth and development. Calves fed an all-liquid diet have smaller and less developed rumens and a decreased ability to absorb volatile fatty acids (VFA) compared to calves fed both liquid and dry feed. However, it is unknown how rumens respond when challenged with a defined concentration of VFA. The objective of this study was to assess the effects of 2 different feeding programs on VFA absorption in preweaned calves. Neonatal Holstein bull calves were individually housed and randomly assigned to 1 of 2 diets. The diets were milk replacer only (MRO; n = 5) or milk replacer with starter (MRS; n = 6). Diets were isoenergetic (3.87 ± 0.06 Mcal of metabolizable energy per day) and isonitrogenous (0.17 ± 0.003 kg/d of apparent digestible protein). Milk replacer was 22% crude protein, 21.5% fat (dry matter basis). The textured calf starter was 21.5% crude protein (dry matter basis). Feed and ad libitum water intakes were recorded daily. Calves were exposed to a defined concentration of VFA buffer (acetate 143 mM, propionate 100 mM, butyrate 40.5 mM) 6 h before euthanasia on d 43 ± 1. Rumen fluid samples were obtained every 15 to 30 min for 6 h to measure the rate of VFA absorption. Rumen tissues were obtained from the ventral sac region and processed for morphological and immunohistochemical analyses of the VFA transporters monocarboxylate transporter 1 (MCT1) and 4 (MCT4). Body growth did not differ between diets, but empty reticulorumens were heavier in MRS than MRO calves (0.67 vs. 0.39 ± 0.04 kg) and MRS calves had larger papillae areas (0.76 vs. 15 ± 0.08 mm2). We observed no differences between diets in terms of the abundance of MCT1 and MCT4 per unit area. These results indicate that the extrapolated increase in total abundance of MCT1 or MCT4 in MRS calves was not due to increased transporter density per unit area. Modeled VFA absorption metrics (flux, mmol/h, or 6 h absorbed VFA in mmol) were not different across diets. These results demonstrate that the form of calfhood diet, whether solely MR or MR and starter, does not alter VFA absorption capacity when the rumen is exposed to a defined concentration of VFA at 6 wk of age.  相似文献   

2.
3.
The aim of this experiment was to examine the effects of concentrates in feed, differing in carbohydrate source, on the growth performance and rumen fermentation characteristics of veal calves. For this purpose, 160 Holstein Friesian × Dutch Friesian crossbred male calves were used in a complete randomized block design with a 5 × 2 factorial arrangement. Dietary treatments consisted of 1) milk replacer control, 2) pectin-based concentrate, 3) neutral detergent fiber-based concentrate, 4) starch-based concentrate, and 5) mixed concentrate (equal amounts of concentrates of treatments 2, 3, and 4). Concentrate diets were provided as pellets in addition to a commercial milk replacer. Calves were euthanized either at the end of 8 or 12 wk of age. The overall dry matter intake of the concentrate diets varied between 0.37 and 0.52 kg/d. Among the concentrate diets, the dry matter intake was lower in the starch diet (0.37 kg/d of dry matter) and differed between the NDF and pectin diets. The average daily gain for all the dietary treatments varied between 0.70 and 0.78 kg/d. The mixed- and NDF-fed calves had an increased average daily gain (0.78 and 0.77 kg/d, respectively) compared with the starch- and pectin-fed calves (0.70 and 0.71 kg/d, respectively). Rumen fermentation in the calves fed concentrates was characterized by a low pH (4.9 to 5.2), volatile fatty acid concentrations between 100 and 121 mmol/L, and high concentrations of reducing sugars (33 to 66 g/kg of dry matter). The volatile fatty acid concentrations of calves fed concentrates were higher than those of the control calves. All concentrate treatments showed a low acetate-to-propionate ratio in rumen fluid (between 1.3 and 1.9). Among the concentrates, the NDF diet had the highest (55.5%) and starch the lowest (45.5%) molar proportions of acetate. Calves fed the mixed, pectin, and starch diets had significantly higher molar proportions of butyrate (13.1 to 15.8%) than the NDF- and control-fed groups (9.9 and 9.6%, respectively). Calves fed the control diet had a higher lactate concentration (21 mmol/L) than the concentrate-fed calves (between 5 and 11 mmol/L). With the exception of the NDF diet, polysaccharide-degrading enzyme activities in the rumen contents generally showed an adaptation of the microorganisms to the carbohydrate source in the diet. The mixed diet exhibited the least variation in rumen polysaccharide-degrading enzyme activities among the enzymes systems tested. Results indicated that the carbohydrate source can influence intake, growth rate, and rumen fermentation in young veal calves.  相似文献   

4.
Historically, mammary gland growth has been considered isometric the first 2 mo of life and then allometric until peripuberty. However, recent work indicated that the mammary gland might be responsive to nutrient intake preweaning. The objectives of this study were to describe the effects of nutrient intake preweaning on mammary gland development and to investigate cell specific proliferation during this phase of development. Twelve dairy heifer calves were fed either a fixed amount of milk replacer (MR; control, n = 6) or an amount of MR adjusted for BW (enhanced, n = 6). Control calves received a constant amount of a 28% crude protein, 15% fat milk MR per day that was equivalent to 2.8 Mcal of metabolizable energy intake per day; enhanced calves received 0.3 Mcal of metabolizable energy intake per kilogram of metabolic body weight (from 4.2 to 8.4 Mcal of metabolizable energy intake per day). All calves had constant access to water and a 22% crude protein commercial calf starter. Calves were killed at 54 ± 2 d. Control calves consumed 32.6 ± 2.4 kg of MR and 6.7 ± 0.5 kg of calf starter per calf, whereas the enhanced calves consumed 69.5 ± 2.4 kg of MR and 1.9 ± 0.5 kg of calf starter per calf over the 54-d period. Further, to evaluate putative stem cell proliferation, BrdU (5-bromo-2′-deoxyuridine; 5 mg/kg) was injected intramuscularly once per day between 12 to 15 d and again once per day between 24 to 27 d of life. Initial and final body weight for the control and enhanced treatments were 39.2, 61.0, 39.7, and 83.2 kg, respectively. At euthanasia, weights of liver, kidneys, pancreas, whole skinned mammary gland, and mammary parenchyma were measured. The growth rate of each organ was calculated using the concept of allometry as the difference in the change in organ weight as a percentage of body weight. The mammary glands of calves fed the enhanced diet were significantly heavier at euthanasia; when mammary parenchymal weight was analyzed, enhanced calves had 5.9 times greater mammary parenchymal mass, indicating the mammary gland was responsive to nutrient intake before weaning. Allometric growth of the mammary gland was initiated preweaning in the calves fed the enhanced treatment. Further characterization of mammary cells that retained BrdU label revealed no significant differences among the tissue slices analyzed between treatments; however, as calves fed the enhanced diet had more mammary parenchymal mass, if the number of label-retaining cells per counted slide were similar between treatments then the enhanced calves had a larger total population of putative mammary stem cells present in the mammary gland.  相似文献   

5.
Ten bull calves (n = 5/diet) were cannulated at 3 wk of age and used in a 2 × 2 factorial design with repeated measures over time to compare rumen and whole-tract degradability of 2 calf starter diets and to describe an in situ technique for estimating ruminal degradability of diets in calves at different ages. Calves received milk replacer and 1 of 2 starter diets through wk 7. Mean birth weight was 38.7 ± 1.3 kg. Weaning occurred in wk 8, and calves received only starter (up to 4,500 g/d) through wk 15. Starter diets were a complete pellet (PEL; 42% starch, 13% neutral detergent fiber, NDF) or texturized feed (TEX; 31% starch, 22% NDF). Portions of each diet were dried and ground through a 2-mm screen, and 1.25 g was inserted into concentrate in situ bags (5 cm × 10 cm, 50-µm porosity). Each calf received duplicate bags of each diet for a total of 8 bags/calf (2 diets × 2 time points). All bags were inserted at the time of starter feeding. Half of the bags were removed at 9 h, and the other half were removed at 24 h. After removal from the rumen, bags were rinsed, dried (55°C), and composited by diet and by calf within week for NDF, nitrogen (N), and starch analyses. This process was repeated over 3 d during wk 5, 7, 9, 11, 13, and 15. Daily starter intake and total fecal excretion were recorded during the same 3-d periods. Diets, refusals, and feces were subsampled, dried, ground, composited by calf by week, and analyzed for NDF, N, and starch content. Apparent digestibility coefficients, total intake, and fecal excretion were calculated and analyzed with a mixed models procedure. Intake and fecal excretion of all measured nutrients increased from wk 5 through wk 15 of age and were greater for calves fed TEX, whereas the proportion of dry matter (DM), N, and starch apparently digested through the total tract decreased from wk 5 to 15 and was greater in calves fed PEL. Ruminal disappearance of DM, N, and starch after 9-h incubations increased linearly with age. Likewise, DM, NDF, and N disappearance after 24-h incubations also increased. Ruminal disappearance of DM and NDF was greater for PEL than for TEX. Ruminal disappearance was estimable for DM, NDF, N, and starch. In addition, changes over time and changes due to rumen environment were clearly demonstrated. Based on these data, there is potential to design specific rations and feed processing methods for calves based on their ability to utilize nutrients.  相似文献   

6.
The objectives of this study were to determine the effects of the weaning transition and supplemental rumen-protected butyrate on subacute ruminal acidosis, feed intake, and growth parameters. Holstein bull calves (n = 36; age = 10.7 ± 4.1 d; ± standard deviation) were assigned to 1 of 4 treatment groups: 2 preweaning groups, animals fed milk replacer only (PRE-M) and those fed milk replacer, calf starter, and hay (PRE-S); and 2 postweaning groups, animals fed milk replacer, calf starter, and hay without supplemental rumen-protected butyrate (POST-S) or with supplemental rumen-protected butyrate at a rate of 1% wt/wt during the 2-wk weaning transition (POST-B). Milk replacer was provided at 1,200 g/d; starter, water, and hay were provided ad libitum. Weaning took place over 14 d by reducing milk replacer provision to 900 g/d in wk 7, 600 g/d in wk 8, and 0 g/d in wk 9. Rumen pH was measured continuously for 7 d during wk 6 for PRE-S and PRE-M and during wk 9 for POST-S and POST-B. After rumen pH was measured for 7 d, calves were euthanized, and rumen fluid was sampled and analyzed for volatile fatty acid (VFA) profile. Individual feed intake was recorded daily, whereas, weekly, body weights were recorded, and blood samples were collected. Compared with PRE-M, PRE-S calves tended to have a greater total VFA concentration (35.60 ± 11.4 vs. 11.90 ± 11.8 mM) but mean rumen pH was unaffected (6.25 ± 0.22 vs. 6.17 ± 0.21, respectively). Between PRE-S (wk 6) and POST-S (wk 9), calf starter intake increased (250 ± 219 vs. 2,239 ± 219 g/d), total VFA concentrations increased (35.6 ± 11.4 vs. 154.4 ± 11.8 mM), but mean rumen pH was unaffected (6.25 ± 0.22 vs. 6.40 ± 0.22, respectively). Compared with POST-S, POST-B calves had greater starter intake in wk 7, 8, and 9, but POST-B tended to have lower total VFA concentration (131.0 ± 11.8 vs. 154.4 ± 11.8 mM) and lower mean ruminal pH (5.83 ± 0.21 vs. 6.40 ± 0.22). In conclusion, the weaning transition does not appear to affect rumen pH and VFA profile, but supplementing rumen-protected butyrate during the weaning transition increased starter intake and average daily gain. Further, these data suggest that the ability of the rumen to manage rumen pH changes fundamentally postweaning. Why weaned calves with lower rumen pH can achieve higher calf starter intakes is unclear; these data suggest the effect of rumen pH on feed intake differs between calves and cows.  相似文献   

7.
《Journal of dairy science》2022,105(8):6710-6723
The objectives of this study were to examine the effects of pelleted starter diets differing in starch and neutral detergent fiber (NDF) content when fed differing levels of milk replacer (MR) on nutrient digestibility, whole gastrointestinal tract fermentation, pH, and inflammatory markers in dairy calves around weaning. Calves were randomly assigned to 1 of 4 dietary treatments (n = 12 per treatment) in a 2 × 2 factorial design based on daily MR allowance and amount of starch in pelleted starter (SPS): 0.691 kg of MR per day [dry matter (DM) basis] with starter containing low or high starch (12.0% and 35.6% starch on DM basis, respectively), and 1.382 kg of MR per day (DM) with starter containing low or high starch. All calves were housed in individual pens with straw bedding until wk 5 when bedding was covered. Calves were fed MR twice daily (0700 and 1700 h) containing 24.5% crude protein (DM) and 19.8% fat (DM), and had access to pelleted starter (increased by 50 g/d if there were no refusals before weaning and then 200 g/d during and after weaning) and water starting on d 1. Calves arrived between 1 and 3 d of age and were enrolled into an 8-wk study, with calves undergoing step-down weaning during wk 7. Starting on d 35, an indwelling pH logger was inserted orally to monitor rumen pH until calves were dissected at the end of the study in wk 8. Higher SPS calves showed an increase in rumen pH magnitude (1.46 ± 0.07) compared with low SPS calves (1.16 ± 0.07), a decrease in rumen pH in wk 8 (high SPS: 5.37 ± 0.12; low SPS: 5.57 ± 0.12), and a decrease in haptoglobin in wk 8 (high SPS: 0.24 ± 0.06 g/L; low SPS: 0.49 ± 0.06 g/L). The majority of differences came from increased starter intake in general, which suggests that with completely pelleted starters the differences in starch and NDF do not elicit drastic changes in fermentation, subsequent end products, and any resulting inflammation in calves around weaning.  相似文献   

8.
The objective of this experiment was to examine the effects of concentrates in feed, differing in carbohydrate source, on the rumen development of veal calves. For this purpose, 160 male Holstein Friesian × Dutch Friesian crossbred calves were used in a complete randomized block design with a 5 × 2 factorial arrangement. Dietary treatments consisted of 1) a milk replacer control, 2) a pectin-based concentrate, 3) a neutral detergent fiber-based concentrate, 4) a starch-based concentrate, and 5) a mixed concentrate (equal amounts of the concentrates in treatments 2, 3, and 4). Concentrate diets were provided as pellets in addition to a commercial milk replacer. Calves were euthanized at either 8 or 12 wk of age. Plasma acetate and β-hydroxybutyrate (BHBA) were measured as indicators of rumen development. Empty rumen weight was determined, and wall samples were taken at slaughter. In most calves, a poorly developed rumen mucosa was observed. Coalescing rumen papillae with embedded hair, feed particles, and cell debris were found in all calves fed the concentrate diets. Calves fed concentrates had significantly heavier rumens than calves fed the control diet. In the dorsal location of the rumen, calves fed concentrate diets showed an increased ratio of mucosa to serosa length compared with calves fed the control diet, whereas in the ventral location only, calves fed the pectin and mixed diets showed larger ratios of mucosa to serosa length. Mucosa thickness and muscle thickness were greater in the ventral and dorsal locations of the rumen, respectively. In both locations, the NDF diet resulted numerically in the lowest mucosa thickness and highest muscle thickness among the concentrate treatments. At 8 wk, calves fed the concentrate diets had higher plasma acetate concentrations than calves on the control treatment. However, at 12 wk, only NDF-fed calves showed significantly higher plasma acetate concentrations. The plasma BHBA concentrations of calves at 8 wk of age fed the pectin and mixed diets were higher than those of the control diet-fed calves. At 12 wk, no differences in BHBA concentrations were observed among treatments. Results of a principal component analysis indicated that, in addition to rumen volatile fatty acid concentrations, other factors were likely to affect rumen development, and that the relationships between rumen development and individual types of volatile fatty acids present in the rumen liquor were similar. Also, variations in rumen development coincided with variations in plasma acetate and BHBA concentrations.  相似文献   

9.
The benefits of feeding elevated quantities of milk to dairy calves have been well established. However, there is a reluctance to adopt this method of feeding in commercial dairy production because of concerns around growth, health, and ruminal development during weaning. The objective of this study was to characterize the effect of an abrupt (0 d step-down) or gradual (12 d step-down) feeding scheme when calves are fed an elevated plane of nutrition (offered 1.35 kg of milk replacer/d). For this experiment, a total of 54 calves were randomly assigned to an abrupt or a gradual weaning protocol before weaning at 48 d of life. Calves were housed and sampled in individual pens for the duration of the experiment, and milk, starter, and straw intake were measured on a daily basis. Body weight was measured every 6 d, whereas blood, rumen fluid, and fecal samples were collected on d 36 (pre-step-down), 48 (preweaning), and 54 (postweaning) of the experiment. Although the growth rates of the step-down calves were lower from d 37 to weaning (0.62 ± 0.04 vs. 1.01 ± 0.04 kg/d), the postweaning average daily gain was greater compared with the group that was abruptly weaned (0.83 ± 0.06 vs. 0.22 ± 0.06 kg/d). Total ruminal volatile fatty acid was greater in the step-down group on the day of weaning (d 48; 59.80 ± 2.25 vs. 45.01 ± 2.25 mmol), whereas the fecal starch percentage was lower during postweaning compared with the abruptly weaned calves (d 54; 3.31 ± 0.76 vs. 6.34 ± 0.76%). Analysis of the digestive tract of bull calves on d 55 revealed minimal differences between gross anatomy measurements of gut compartments as well as no morphological differences in rumen papillae development, yet the total mass of rumen when full of contents was larger in the step-down calves (7.83 ± 0.78 vs. 6.02 ± 0.78 kg). Under the conditions of this study, the results showcase the benefits of a step-down feeding strategy from an overall energy balance standpoint, due to increased adaptation of the gastrointestinal tract preweaning.  相似文献   

10.
Preweaning diet and estradiol treatment alters mammary development. Our objectives were to study the effects of diet and estradiol on proliferation of mammary epithelial cells and expression of estrogen receptor α (ESR1) and progesterone receptors (PGR) in these cells. Thirty-six Holstein heifer calves were raised on (1) a control milk replacer fed at 0.44 kg of powder/head per day, dry matter (DM) basis (restricted, R; 20.9% crude protein, 19.8% fat, DM basis), or (2) an enhanced milk replacer fed at 1.08 kg of powder/head per day, DM basis (Enhanced, EH; 28.9% crude protein, 26.2% fat, DM basis). Milk replacer was fed for 8 wk. At weaning, a subset (n = 6/diet) of calves were euthanized and had tissue harvested. Remaining calves received estradiol implants (E2) or placebo and were euthanized at wk 10 to harvest tissue. Treatments were (1) R, (2) R + E2 (R-E2), (3) EH, and (4) EH + E2 (EH-E2). One day before euthanasia calves were given bromo-2′-deoxyuridine (BrdU; 5 mg/kg of body weight). At euthanization, mammary parenchyma was removed and fixed. Tissue sections from zone 1 (cisternal), 2 (medial), and 3 (distal) within the mammary gland were stained with hematoxylin and eosin and antibodies to measure expression of ESR1, PGR, and incorporation of BrdU. At wk 8, R-fed calves had more PGR-expressing cells in distal parenchyma; however, PGR expression intensity was greater in EH-fed calves. The proportion of cells expressing ESR1 was not affected by diet, but expression intensity (receptors per positive cell) was greater in EH-fed calves across all zones (62–81%). Overall, the percent BrdU-positive epithelial cells was 2 and 0.5 fold greater for EH-fed calves in zone 2 and 3. The proportion of labeled cells was greater in terminal ductal units than in subtending ducts, and treatment effects were more evident in terminal ductal units. At wk 10, calves treated with estradiol had 3.9-fold greater PGR expression intensity. The intensity and percent of cells expressing ESR1 was lowest in estradiol-treated calves. Overall, estradiol-treated calves had the greatest number of proliferating epithelial cells. Moreover, in zone 3, EH-E2 calves had a higher percentage of proliferating cells than in all other treatments. Results indicate both diet and estradiol administration alter proliferation rates of the mammary epithelium and that changes in expression of ESR1 and PGR are involved in enhanced mammary development. The data support our hypothesis that enhanced preweaning feeding increases the mammary tissue responsiveness to mammogenic stimulation.  相似文献   

11.
《Journal of dairy science》2022,105(5):4099-4115
The objectives of this study were to investigate how milk replacer (MR) allowance and differing concentrations of starch and neutral detergent fiber in starter alters visceral tissue and overall growth of the calf. Calves were randomly assigned to 1 of 4 dietary treatments (n = 12 per treatment) arranged in a 2 × 2 factorial based on daily MR allowance (MRA) and amount of starch in pelleted starter (SPS) as follows: 0.691 kg of MR/d [dry matter (DM) basis] with starter containing low or high starch (12.0% and 35.6% starch, respectively) and 1.382 kg of MR/day (DM) with starter containing low or high starch. All calves were housed in individual pens with straw bedding until wk 5 when bedding was covered to minimize intake. Calves were fed MR twice daily (0700 and 1700 h) containing 24.5% crude protein (DM) and 19.8% fat (DM), and had access to pelleted starter (increased by 50 g/d if there were no refusals before weaning, and then 200 g/d during and after weaning) and water starting on d 1. Calves arrived between 1 and 3 d of age and were enrolled into an 8-wk study, with calves undergoing step-down weaning during wk 7. Intakes were measured daily, and body weight (BW) and blood samples were recorded and collected weekly. Calves were dissected in wk 8 for visceral tissue measurements. Overall, there was increased MR DM intake for the high- (0.90 ± 0.01 kg/d; ± SE) compared with the low-MRA (0.54 ± 0.01 kg/d) calves, whereas starter DM intake increased in low- (0.47 ± 0.05 kg/d) compared with high-MRA (0.20 ± 0.05 kg/d) calves, which was driven by increases in wk 6, 7, and 8. High-MRA calves had increased BW during wk 2, 3, 4, 5, 6, and 7. The difference in BW disappeared by wk 8, with overall average daily gain having a tendency to be increased in high (0.57 ± 0.04 kg/d) compared with low-MRA (0.50 ± 0.04 kg/d) calves, whereas average daily gain was increased in high-MRA calves during wk 2 and 3 and increased in low-MRA calves during wk 7 and 8. There were several differences throughout visceral tissue measurements, but most notably, an increase in rumen mass (i.e., full, empty, and digesta weights) in low- compared with high-MRA calves, as well as in low- compared with high-SPS calves was observed. The length, width, and 2-dimensional area of rumen papillae were also increased in low- (area: 0.88 ± 0.03 mm2) compared with high-MRA (0.46 ± 0.03 mm2) calves. The majority of differences were attributed to increased MR allowance, which contributed to reduced pelleted starter intake by more than 50% and reduced rumen development, whereas differences in starch intake from the completely pelleted starter had minimal effects on overall growth and tissue measurements.  相似文献   

12.
Lysolecithin is an antiinflammatory emulsifier associated with improved apparent digestibility of total dietary fat and improved feed efficiency in dairy cattle. However, it is unknown if lysolecithin (LYSO) improves performance in calves. Moreover, since many conventional milk replacers use vegetable-sourced fat (e.g., palm oil), nutrient absorption and fecal score may be affected in neonatal calves. Thus, the objective of this study was to evaluate the effects of LYSO supplemented in milk replacer on performance, metabolites, and gut health of preweaned dairy calves. Holstein calves (n = 32) with adequate passive transfer were assigned in pairs (16 blocks) balanced by birth weight, date of birth, and sex at 1 d of age to randomly receive either LYSO (mixed in 2 milk replacer feedings at a rate of 4 g/d Lysoforte, Kemin Industries Inc., Des Moines, IA) or a milk replacer control (nothing added). Both treatments were fed 6 L/d milk replacer [22.5% crude protein, 16.2% crude fat (vegetable oil fat source) on a dry matter basis with 14% solids] by bucket in 2 daily feedings for 56 d. Calves were individually housed in wooden hutches and offered a commercial calf starter (24.6% crude protein and 13.9% neutral detergent fiber) and water by bucket ad libitum. Feed refusals and calf health was assessed daily. Weights and blood metabolites (glucose, total serum protein, albumin, creatinine, triglycerides, and cholesterol) were sampled weekly, and calves completed the study before weaning at 56 d of age. The effects of LYSO on calf average daily gain, feed efficiency, and blood metabolites were evaluated using a linear mixed model with time as a repeated measure, calf as the subject, and block as a random effect in SAS (SAS Institute Inc., Cary, NC). The effect of LYSO to improve the odds of abnormal fecal score was evaluated using a logistic model. Supplementation of LYSO increased average daily gain (control 0.28 ± 0.03 kg; LYSO 0.37 ± 0.03 kg; least squares means ± standard error of the mean) and increased feed efficiency (gain-to-feed; control 0.25 ± 0.03; LYSO 0.32 ± 0.03). Similarly, LYSO calves had a higher final body weight at d 56 (control 52.11 ± 2.33 kg; LYSO 56.73 ± 2.33 kg). Interestingly, total dry matter intake was not associated with LYSO despite improved average daily gain (total dry matter intake control 1,088.7 ± 27.62 g; total dry matter intake LYSO 1,124.8 ± 27.62 g). Blood glucose, albumin, creatinine, triglycerides, and cholesterol were not associated with LYSO. Indeed, only total serum protein had a significant interaction with LYSO and age at wk 5 and 6. Moreover, control calves had a 13.57 (95% confidence interval: 9.25–19.90) times greater odds of having an abnormal fecal score on any given day during the diarrhea risk period from d 1 to 28. The inclusion of LYSO as an additive in milk replacer in a dose of 4 g/d may improve performance, and calf fecal score, preweaning. Further research should investigate the mechanisms behind the effects of LYSO on fat digestibility in calves fed 6 L/d of milk replacer with vegetable-sourced fat.  相似文献   

13.
《Journal of dairy science》2021,104(12):12486-12495
We aimed to evaluate the effects of feeding super-conditioned corn at different temperatures on intake, growth performance, total-tract starch digestibility, rumen fermentation, blood metabolites, and feeding behavior of dairy calves. Thirty-six Holstein female dairy calves (40 ± 1.72 kg of body weight, ± SD) were randomly assigned to 1 of the following 3 treatments: (1) ground corn (control; CON; n = 12), (2) corn super-conditioned at 75°C (T-75; n = 12), and (3) corn super-conditioned at 95°C (T-95; n = 12). Three mash starter feeds with an identical nutritional composition were blended with 5% chopped alfalfa hay and fed to individually-housed calves from d 3 to 77 of their birth. All calves were fed 4 L/d of pasteurized whole milk twice daily since d 3 to 56, followed by 2 L/d of morning feeding from d 57 to 63 of age. Calves were weaned on d 63 and remained in the study until d 77. The T-75 and T-95 diets increased total-tract starch digestibility compared with the CON diet. Dry matter intake and weaning or final BW were not affected by treatments; however, average daily gain and feed efficiency increased in calves fed T-95 in the overall period. The T-95 diet increased withers height and tended to increase hip height compared with other diets, but feeding behavior did not change throughout the experimental period. Ruminal pH decreased in calves fed the T-95 diet compared with T-75 and CON diets. The molar proportion of ruminal propionate increased, whereas the acetate-to-propionate ratio tended to decrease in calves fed the T-95 compared with CON diet. Calves fed the T-95 diet had the highest blood glucose concentration, whereas a trend for increased insulin concentration was observed in calves fed T-95 compared with other diets. In conclusion, super-conditioning temperature of corn (T-95 vs. T-75 and CON) improved the average daily gain, feed efficiency, and skeletal growth, but did not influence dry matter intake during the first 77 d of age. Finally, the total-tract starch digestibility increased, whereas ruminal pH dropped during the postweaning period as super-conditioning temperature elevated.  相似文献   

14.
Twelve Holstein bull calves were ruminally cannulated at 5 d of age and assigned to 0 or 1 mg of lasalocid/kg of BW daily, administered postruminally via milk replacer or into the ruminal cannula. Calves were fed milk replacer for 8 wk and calf starter for 12 wk. Lasalocid administration was terminated at weaning in calves fed lasalocid in milk replacer. Ruminal pH tended to be higher in calves fed lasalocid ruminally than in calves on control treatment and averaged 5.9 and 5.6 and 5.4 and 5.1 during wk 1 to 8 and 9 to 12, respectively. Molar proportion of ruminal butyrate tended to be lower when lasalocid was added to the rumen, particularly after weaning. Blood beta-hydroxybutyrate and acetoacetate were lower when lasalocid was administered into the rumen after weaning and averaged .897 and .646 and .026 and .015 mM in calves on control and ruminal treatments, respectively. No effects of lasalocid administered via the milk replacer were observed, except for plasma NEFA, which were reduced postweaning. These data suggest that lasalocid reduces blood beta-hydroxybutyrate by changes in ruminal fermentation and subsequent metabolism of butyrate by ruminal epithelium.  相似文献   

15.
《Journal of dairy science》2022,105(3):2256-2274
Providing adequate concentrations of AA in the prepartum diet is pivotal for the cow's health and performance. However, less is known about the potential in utero effects of particular AA on early-life performance of calves. This experiment was conducted to determine the effects on dairy calves when their dams were fed rumen-protected lysine (RPL; AjiPro-L Generation 3, Ajinomoto Heartland Inc.; 0.54% dry matter of total mixed ration as top dress) from 26 ± 4.6 d (mean ± standard deviation) before calving until calving. Seventy-eight male (M) and female (F) Holstein calves were assigned to 2 treatments based on their dams' prepartum treatment, RPL supplementation (PRE-L) or without RPL (CON). At the time of birth (0.5–2 h after calving), before colostrum was fed, blood samples were collected. An initial body weight was obtained at 1 to 3 h after birth. Calves were fed 470 g of colostrum replacer (Land O'Lakes Bovine IgG Colostrum Replacer, Land O'Lakes, Inc.) diluted in 3.8 L of water. Calves were provided water ad libitum and fed milk replacer (Advance Excelerate, Milk Specialties Global Animal Nutrition; 28.5% crude protein, 15% fat) at 0600 h and 1700 h until 42 d of age. Calves were measured weekly, at weaning (d 42), and at the end of the experimental period (d 56). Plasma concentrations of AA were measured on d 0, 7, and 14 d using ultra-performance liquid chromatography–mass spectrometry (Waters) with a derivatization method (AccQ-Tag Derivatization). Final body weight was greater for M (87 ± 11 kg) than F (79 ± 7 kg). Calves in PRE-L tended to have greater dry matter (814 ± 3 g/d) and crude protein (234 ± 6 g/d) intakes than those in CON (793 ± 9 g/d and 228 ± 11 g/d, respectively). Calves in PRE-L had greater average daily gain (0.96 ± 0.04 kg/d) than calves in CON (0.85 ± 0.03 kg/d) during wk 6 to 8. Calves in PRE-L tended to be medicated fewer days than CON (4.7 ± 1.2 d vs. 6.2 ± 3.4 d, respectively). Calves in PRE-L-M and CON-F (2,916 ± 112 µM and 2,848 ± 112 µM, respectively) had greater total AA concentration in plasma than calves in PRE-L-F and CON-M (2,684 ± 112 µM and 2,582 ± 112 µM, respectively). Calves in PRE-L-F and CON-M (4.09 ± 0.11% and 4.16 ± 0.11%, respectively) had greater concentration of Lys as a percentage of total AA compared with calves in CON-F and PRE-L-M (3.91 ± 0.11% and 3.90 ± 0.11%, respectively). Calves in PRE-L tended to have greater percentage of phagocytic neutrophils (39.6 ± 1.59%) than calves in CON (35.9 ± 1.59%). In conclusion, increasing the metabolizable lysine provided to prepartum dairy cows had modest effect over offspring performance, with the major result being a greater average daily gain for calves in PRE-L during the preweaning phase (wk 6–8).  相似文献   

16.
The objective was to determine the relationships between early-life parameters [including average daily gain (ADG), body weight (BW), milk replacer intake, starter intake, and birth season] and the first-lactation performance of Holstein cows. We collected data from birth years 2004 to 2012 for 2,880 Holstein animals. Calves were received from 3 commercial dairy farms and enrolled in 37 different calf research trials at the University of Minnesota Southern Research and Outreach Center from 3 to 195 d. Upon trial completion, calves were returned to their respective farms. Milk replacer options included varying protein levels and amounts fed, but in the majority of studies, calves were fed a milk replacer containing 20% crude protein and 20% fat at 0.57 kg/calf daily. Most calves (93%) were weaned at 6 wk. Milk replacer dry matter intake, starter intake, ADG, and BW at 6 wk were 21.5 ± 2.2 kg, 17.3 ± 7.3 kg, 0.53 ± 0.13 kg/d, and 62.4 ± 6.8 kg, respectively. Average age at first calving and first-lactation 305-d milk yield were 715 ± 46.5 d and 10,959 ± 1,527 kg, respectively. We conducted separate mixed-model analyses using the REML model-fitting protocol of JMP (SAS Institute Inc., Cary, NC) to determine the effect of early-life BW or ADG, milk replacer and starter intake, and birth season on first-lactation 305-d milk, fat, and true protein yield. Greater BW and ADG at 6 wk resulted in increased first-lactation milk and milk component yields. Intake of calf starter at 8 wk had a significant positive relationship with first-lactation 305-d yield of milk and milk components. Milk replacer intake, which varied very little in this data set, had no effect on first-lactation 305-d yield of milk and milk components. Calves born in the fall and winter had greater starter intake, BW, and ADG at 8 wk. However, calves born in the summer had a higher 305-d milk yield during their first lactation than those born in the fall and winter. Improvements were modest, and variation was high, suggesting that additional factors not accounted for in these analyses affected first-lactation performance.  相似文献   

17.
This study aimed to evaluate intake, body growth, and the development of the rumen, mammary gland, and immune system in Holstein Friesian calves reared for 100 d on the commercially available feed FiberStart (conserved alfalfa, Medicago sativa; Fiber Fresh Feeds Ltd., Reporoa, New Zealand) and fed calf milk replacer (CMR) for either 56 or 91 d. Eighty calves (40 bulls and 40 heifer calves) were reared indoors in groups (n = 5 of the same sex/pen). All calves were fed 4 L of CMR/d (175 g/L of CMR) in 2 feeds/d for the first 10 d and then 1 feed/d until d 49 or 84. The calves were gradually weaned by d 56 (earlier weaned; n = 8 pens) and d 91 (later weaned; n = 8 pens). All calves were fed FiberStart ad libitum as the only solid feed source from d 1 to 100 of the study. Irrespective of treatment, all calves had similar body weights at d 0 (40.9 ± 3.0 kg) and d 49 (74.2 ± 5.1 kg) of the study. Calf sex had no effect on intake, growth, blood, and immune system parameters. Earlier-weaned calves consumed 18% more solid feed dry matter but had 16% lower body weight gain (28.9 vs. 38.5 kg, respectively) from d 56 to 100 relative to later-weaned calves, resulting in different body weight at 100 d (104 vs. 121 ± 1.3 kg). Although earlier-weaned calves could compensate for the loss of CMR dry matter and crude protein intake from d 56 to 100 by increasing forage intake, they were unable to compensate for the loss of energy from the CMR by increasing solid feed consumption. Plasma β-hydroxybutyrate concentrations were 52% greater in earlier-weaned calves than in later-weaned calves at d 84, indicating greater metabolic activity of the rumen wall. The duration of CMR feeding had no influence on humoral or cell-mediated immune functions of the calves, as evidenced by a lack of effect on antivaccine antibody responses as well as on immune gene expression. Earlier- versus later-weaned heifer calves had 5% lower mammary gland mass, indicating that greater energy supply increased mammary mass. The results of this experiment demonstrate the ability to artificially rear dairy calves on a conserved alfalfa as the only solid feed. Furthermore, earlier weaning off CMR promotes solid feed intake and an associated increase in blood β-hydroxybutyrate, an indicator of rumen development, but increasing the duration of CMR feeding improves growth and mammary gland mass by d 100. The implications of these findings on lifetime growth, health, and milk production in dairy heifers warrant further investigation.  相似文献   

18.
Fecal starch (FS) has been used as a tool to evaluate starch and diet digestibility in lactating dairy cows and feedlot steers. Some on-farm advisors also use FS to evaluate calf starter digestibility in preweaned dairy calves. Our objective was to evaluate the influence of starter intake (SI), starch and organic matter digestibility, milk replacer (MR) feeding rate, and age on FS concentrations in preweaned dairy calves. Male Holstein calves (43 ± 2.9 kg of body weight; n = 35) from a single farm were fed different amounts of MR ranging from 0.44 to 1.10 kg of dry matter (DM) daily (27% crude protein, 17% fat) and weaned by 7 wk of age. Starter ingredient composition was 37% whole corn, 20% whole oats, 35% protein pellet, and 3% molasses and contained 43 ± 1.9% starch. Fecal grab samples were taken at 3 (n = 20), 6 (n = 20), and 8 wk (n = 35) of age. Twelve fecal samples per calf were taken via rectal palpation over a 5-d period each week, frozen daily, combined on an equal wet-weight basis, and subsampled for analysis. Chromic oxide was used as an external digestibility marker at 3 and 6 wk (included in MR), whereas acid-insoluble ash was used as an internal marker at 8 wk. Milk replacer and starter intakes (offered and refused) were recorded daily during collection periods. Multiple and linear regression of organic matter digestibility (% of DM), total-tract starch digestibility (TTSD; % of DM), MR intake (kg/d), SI (kg/d), and age (week) versus FS (% of fecal DM) were determined using PROC REG of SAS (version 9.2, SAS Institute Inc., Cary, NC). Prior to weaning, SI, age, and MR rate explained 89% of the variation in TTSD, where TTSD = [19.7 × SI (±4.25)] + [3.8 × age (±0.79)] – [24.8 × MR (±3.19)] + 56.2 (±3.39). At 3 wk of age, TTSD increased (coefficient of determination = 0.53) and SI decreased (coefficient of determination = 0.20) with increasing FS. At 6 wk of age, TTSD and SI were unrelated to FS. In 8-wk-old calves (with 2 trials), SI, MR rate, FS, and trial explained 92% of the variation in TTSD, where TTSD = –[2.6 × SI (±0.67)] – [2.4 × MR (±0.56)] – [0.6 × FS (±0.04)] + [1.1 × trial (±0.33)] + 100.4 (±1.02). Postweaning, TTSD decreased linearly as FS increased (coefficient of determination = 0.86), whereas FS and SI were unrelated, a relationship in contrast to the previously observed result in calves still consuming milk replacer. In the current study, FS was not a good estimate of TTSD or dry feed intake in the preweaned calf, but has potential for evaluating TTSD in calves after weaning.  相似文献   

19.
Liquid egg as an alternative protein source in calf milk replacers   总被引:1,自引:0,他引:1  
The use of alternative proteins in milk replacer has been evaluated for their ability to decrease the cost of milk replacers without negatively impacting performance of the calf. Three studies were conducted to evaluate the performance of calves fed milk replacer utilizing liquid egg as an alternative protein and to determine the optimal concentration of liquid egg to include in milk replacers. Calves in trials 1 and 2 were assigned to a control diet of all milk protein replacer (MILK) or a diet formulated to contain 5% of the diet (13.5% of the protein) from liquid egg (5% EGG). Calves in trial 3 were assigned to one of four diets: the control (MILK) and 5% EGG diets fed in trials 1 and 2, or diets formulated to contain either 10 or 15% of the diet (27 or 40.5% of the protein) from liquid egg (10% EGG, 15% EGG). For all experiments, milk replacers were formulated to contain 20% protein, 20% fat and were fed at 454 g/d reconstituted to 12% DM. Production of the diets containing egg protein utilized breaker eggs that were pasteurized during manufacturing. Holstein bull calves (n = 44 for experiment 1, n = 38 for experiment 2, and n = 120 for experiment 3), were purchased from an area sale barn. Calves were housed in individual hutches with water available free choice starting on d 0. A commercially available calf starter was offered free choice beginning on d 7 for experiments 1 and 2 and on d 1 for experiment 3. Feed intake, scour scores, and antibiotic treatments were recorded daily. For experiment 1, calves fed 5% EGG had greater weight gains than calves fed MILK. No differences in average daily feed intake were observed. For experiment 2, weight gains tended to be lower with 5% EGG, whereas feed intakes and gain to feed ratios were similar between calves fed MILK or 5% EGG. For experiment 3, as the amount of egg in the diet increased, weight gain decreased in a linear fashion during the milk replacer feeding period, but the decrease in gain was significant only with the 15% EGG diet. These results indicate that egg is an effective alternative protein source to milk protein in calf milk replacers when fed at levels up to 10% of the diet in a conventional feeding program of 0.45 kg per head per day.  相似文献   

20.
The objective of this study was to evaluate the effects of supplementing a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) during the periparturient period (d ?28 ± 3 to 44 ± 3 relative to calving) on mRNA abundance of genes in the rumen epithelium, inflammation indicators, oxidative status, and adaptive immunity of dairy cows fed diets with different starch content after calving. From d 28 ± 3 (± standard deviation) before the expected calving date to calving, Holstein cows (n = 38) received a common basal controlled-energy close-up diet (1.43 Mcal/kg, net energy for lactation; 13.8% starch) with (SCFP; n = 19) or without (CON; n = 19) SCFP, and cows within each treatment (CON or SCFP) were fed either a low- (LS; 22.1% starch) or high-starch (HS; 28.3% starch) diet from d 1 to 23 ± 3 after calving (fresh period). There were 4 treatment groups: LS + CON (n = 9), LS + SCFP (n = 10), HS + CON (n = 10), and HS + SCFP (n = 9). From d 24 ± 3 to 44 ± 3 after calving, all cows were fed the HS diets (post-fresh period). Animal assignment to treatments was balanced for parity, body condition score, and expected calving date. An interaction was observed between dietary starch content and SCFP on indices of oxidative stress; plasma concentrations of total antioxidant capacity tended to be reduced on d 21 after calving for SCFP compared with CON cows when a LS fresh diet was fed, but did not differ for cows fed HS fresh diets. Regardless of starch content, SCFP supplementation increased plasma concentrations of malondialdehyde at d 21 after calving compared with CON. Supplementing with SCFP reduced serum concentrations of haptoglobin on d 7 after calving, indicating reduced inflammation, and feeding LS fresh diets reduced mRNA abundance of IL receptor associated kinase-1 in rumen tissue at d 21 after calving, suggesting reduced immune activation in rumen tissue. Other than the anti-inflammatory effects indicated by lower serum haptoglobin concentration, no other effects of treatment on adaptive immunity were detectable. These results indicate that supplementing SCFP through the transition period and feeding low-starch diets during the fresh period may reduce inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号