首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Pb(III) sorption to hydrous amorphous SiO2 was studied as a function of pH and ionic strength using XAS to characterize the sorption products formed. Pb sorption increased with increasing pH and decreasing ionic strength. The XAS data indicated that the mechanism of Pb(II) sorption to the SiO2 surface was pH-dependent. At pH < 4.5, a mononuclear inner-sphere Pb sorption complex with ionic character dominated the Pb surface speciation. Between pH 4.5 and pH 5.6, sorption increasingly occurred via the formation of surface-attached covalent polynuclear Pb species, possibly Pb-Pb dimers, and these were the dominant Pb complexes at pH > or = 6.3. Decreasing ionic strength from I = 0.1 to I = 0.005 M NaClO4 significantly increased Pb sorption but did not strongly influence the average local coordination environment of sorbed Pb at given pH, suggesting that the formation of mononuclear and polynuclear Pb complexes at the surface were coupled; possibly, Pb monomers control the formation of Pb polynuclear species by diffusion along the surface, or they act as nucleation centers for additional Pb uptake from solution. This study shows that the effectiveness of SiO2 in retaining Pb(II) is strongly dependent on solution conditions. At low pH, Pb(II) may be effectively remobilized by competition with other cations, whereas sorbed Pb is expected to become less susceptible to desorption with increasing pH. However, unlike for Ni(II) and Co(II), no lead phyllosilicates are formed at these higher pH values; therefore, SiO2 is expected to be a less effective sink for Pb immobilization than for these other metals.  相似文献   

2.
We investigated the influence of humic and fulvic acid concentration (in the range of 1-1000 mg/L) on the binding of the two trace metals Cu(II) and Pb(II). The ability of the non-ideal competitive adsorption (NICA)-Donnan model to correctly predict Cu and Pb binding at low humic or fulvic acid concentration and lower ionic strength (0.01 M NaNO3), based on model parameters obtained from experiments conducted at high humic or fulvic acid concentrations (approximately 1000 mg/L) and higher ionic strength (0.1 M NaNO3), was tested. The binding of Cu and Pb to humic and fulvic acid in 0.01 M NaNO3 was determined over wide ranges in proton and metal ion activities using three different methods: ligand exchange-adsorptive differential pulse cathodic stripping voltammetry at low humic or fulvic acid concentrations (1-3 mg/L), differential pulse anodic stripping voltammetry at intermediate humic or fulvic acid concentrations (10-20 mg/L), and ion-selective electrodes at high humic or fulvic acid concentrations (approximately 1000 mg/L). The results demonstrate that binding isotherms for Cu and Pb can be measured at low humic or fulvic acid concentration using suitable voltammetric techniques. The binding isotherms for Cu and Pb to humic and fulvic acid obtained at constant pH values in the range of pH 4-8 are shown to be independent of humic and fulvic acid concentration. The NICA-Donnan model, calibrated for Cu and Pb binding using data measured at high humic and fulvic acid concentrations and an ionic strength of 0.1 M, accurately predicts Cu and Pb binding at low humic and fulvic acid concentrations and lower ionic strength (0.01 M). We conclude that NICA-Donnan parameters obtained by fitting experimental data measured with ion-selective electrodes at high humic or fulvic acid concentrations can be used for geochemical modeling of soils and aquatic environments with much lower concentrations of humic or fulvic acids.  相似文献   

3.
In this research, traditional macroscopic studies were complemented with XAS analyses to elucidate the mechanisms controlling Pb(II) sorption onto ferrihydrite as a function of pH, ionic strength, and adsorbate concentrations. Analyses of XANES and XAFS studies demonstrate that Pb(II) ions predominantly sorb onto ferrihydrite via inner-sphere complexation, not retaining their primary hydration shell upon sorption. At higher pH values (pH > or = 5.0), edge-sharing bidentate complexes are mainly formed on the oxide surface with two Fe atoms located at approximately 3.34 A. In contrast, XAS studies on Pb(II) sorption onto ferrihydrite, at pH 4.5, reveal two distinct Pb-Fe bond average radial distances of 3.34 and 3.89 A, suggestive of a mixture of monodentate and bidentate sorption complexes present at the oxide surface. Interestingly, at constant pH, the configuration of the sorption complex is independent of the adsorbate concentration. Hence, Pb(II) sorption to a highly disordered adsorbent such as ferrihydrite can be described by one average type of mechanism. Overall, this information will aid scientists and engineers in improving the current models that predict and manage the fate of toxic metals, such as Pb(II), in the aquatic and soil environments.  相似文献   

4.
Humic acid was isolated from three contrasting organic-rich soils and acid-base titrations performed over a range of ionic strengths. Results obtained were unlike most humic acid data sets; they showed a greater ionic strength dependency at low pH than at high pH. Forward- and back-titrations with the base and acid revealed hysteresis, particularly at low pH. Previous authors attributed this type of hysteresis to humic acid aggregates-created during the isolation procedure-being redissolved during titration as the pH increased and regarded the results as artificial. However, forward- and back-titrations with organic-rich soils also demonstrated a similar hysteretic behavior. These observations indicate (i) that titrations of humic acid in aggregated form (as opposed to the more usual dissolved form) are more representative of the acid-base properties of humic acid in soil and (ii) that the ionic strength dependency of proton binding in humic acid is related to its degree of aggregation. Thus, the current use of models based on data from dissolved humic substances to predictthe acid-base properties of humic acid in soil under environmental conditions may be flawed and could substantially overestimate their acid buffering capacity.  相似文献   

5.
This paper examines the adsorption of Pb(II) and a natural organic macromolecular compound (humic acid, HA) on polyacrylamide (PAAM) -grafted multiwalled carbon nanotubes (denoted as MWCNTs/PAAM), prepared by an N(2)-plasma-induced grafting technique. The mutual effects of HA/Pb(II) on Pb(II) and HA adsorption on MWCNTs/PAAM, as well as the effects of pH, ionic strength, HA/Pb(II) concentrations, and the addition sequences of HA/Pb(II) were investigated. The results indicated that Pb(II) and HA adsorption were strongly dependent on pH and ionic strength. The presence of HA led to a strong increase in Pb(II) adsorption at low pH and a decrease at high pH, whereas the presence of Pb(II) led to an increase in HA adsorption. The adsorbed HA contributed to modification of adsorbent surface properties and partial complexation of Pb(II) with the adsorbed HA. Different effects of HA/Pb(II) concentrations and addition sequences on Pb(II) and HA adsorption were observed, indicating different adsorption mechanisms. After adsorption of HA on MWCNTs/PAAM, the adsorption capacity for Pb(II) was enhanced at pH 5.0; the adsorption capacity for HA was also enhanced after Pb(II) adsorption on MWCNTs/PAAM. These results are important for estimating and optimizing the removal of metal ions and organic substances by use of MWCNT/PAAM composites.  相似文献   

6.
Sulfonamides (SA), ionizable, polar antimicrobial compounds, may reach the environment in substantial amounts by the spreading of manure. The environmental behavior of SA is still difficult to predict. We investigated the influence of the main factors supposed to control SA sorption to organic materials: composition of sorbent, solute chemistry, and contact time. For that purpose, sulfathiazole (STA) sorption to compost, manure, and humic acid after 1 and 14 d was studied under sterile conditions. The experiments demonstrated that sorption was most strongly affected by contact time and pH. Irrespective of sorbent and pH, sorption continued substantially after the fast initial sorption within 1 d. For all sorbents and both contact times, STA sorption exhibited a pronounced pH dependence. Species-specific Koc values decreased in the order KoccatiOn> Kocneutral > Kocanion. Differences in sorbent composition influenced STA sorption weaker. Forthe neutral STA species, NMR chemical shift regions assignable to ketonic, carboxylic, and phenolic C as well as aromatic C-H and methoxyl/N-alkyl C seemed to control sorption. Forthe cations, sorption followed the cation exchange capacities of the sorbents. STA sorption to manure and humic acid increased with higher ionic strength (0.31 M compared to 0.06 M) at pH 7.5.  相似文献   

7.
Carbon nanotubes have attracted great interest in multidisciplinary study since their discovery. Herein, radionuclide 243Am(III) sorption to uncapped multiwall carbon nanotubes (MWCNTs) was carried out at 20+/-2 degrees C in 0.01 and 0.1 M NaClO4 solutions. Effects of 243Am(III) solution concentration, ionic strength, and pH on 243Am(III) sorption to MWCNTs were also investigated. The sorption is strongly dependent on pH values and weakly dependent on the ionic strength in the experimental conditions. The results show that MWCNTs can adsorb 243Am(III) with extraordinarily high efficiency by forming very stable complexes. Chemisorption or chemicomplexation is the main mechanism of 243Am(III) sorption on the surface of MWCNTs. MWCNTs can be a promising candidate for the preconcentration and solidification of 243Am(III) or its analogue lanthanides and actinides from large volumes of aqueous solution, as required for remediation purposes, and perhaps also as a sorbent for the removal of heavy metal ions from the industry wastewater.  相似文献   

8.
Contaminant-soil interaction studies have indicated that physical conformation of organic matter atthe solid-aqueous interface is important in governing hydrophobic organic compound (HOC) sorption. To testthis, organo-clay complexes were constructed by coating montmorillonite and kaolinite with peat humic acid (PHA) in Na+ or Ca2+ dominated solutions with varying pH and ionic strength values. The solution conditions encouraged the dissolved PHA to adopt a "coiled" or "stretched" conformation prior to interacting with the clay mineral surface. Both kaolinite and montmorillonite organo-clay complexes exhibited higher phenanthrene sorption (Koc values) with decreasing pH, indicating that the coiled configuration provided more favorable sorption conditions. Evidence from 1H high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) indicated that polymethylene groups were prevalent at the surface of the organo-clay complexes and may enhance sorptive interactions. Preferential sorption of polymethylene groups on kaolinite and aromatic compounds on montmorillonite may also contribute to the difference in phenanthrene sorption by PHA associated with these two types of clay. This study demonstrates the importance of solution conditions in the sorption of nonionic, hydrophobic organic contaminants and also provides evidence for the indirect role of clay minerals in sorption of contaminants at the soil-water interface.  相似文献   

9.
In this study, batch sorption experiments and X-ray adsorption spectroscopy (XAS) were utilized to investigate selenate sorption onto Shewanella putrefaciens 200R. Selenate sorption was studied as a function of pH (ranging from 3 to 7), ionic strength (ranging from 0.1 to 0.001 M), and initial selenate concentration (ranging from 10 to 5000 microM) in the absence of external electron donors. The results show that the extent of selenate sorption is strongly dependent on pH and ionic strength, with maximum sorption occurring at low pH (pH = 3) and low ionic strength (0.001 M NaCl) conditions. The strong dependence of Se sorption with ionic strength suggests the formation of outersphere complexes with the cell wall functional groups. Langmuir isotherm plots yielded log Kads values from 2.74 to 3.02. Desorption experiments demonstrated thatthe binding of selenate onto S. putrefaciens was not completely reversible. XANES analysis of the cells after sorption experiments revealed the presence of elemental selenium, indicating that S. putrefaciens has a capacity to reduce Se(VI) to Se(0) in the absence of external electron donors. We conclude that Se sorption onto S. putrefaciens cell walls is the result of the combination of outer-sphere complexation and cell surface reduction. This sorption process leads to a complex reservoir of bound Se which is not entirely reversible.  相似文献   

10.
A combination of dispersive micro solid-phase extraction (DMSPE), based on graphene as a solid sorbent, with energy dispersive X-ray fluorescence spectrometry (EDXRF) is proposed for preconcentration and determination of Co(II), Ni(II), and Cu(II) ions in wine samples. In the developed procedure, cupferron complexes of metal ions are adsorbed on graphene dispersed in aqueous samples. After the adsorption process, aqueous samples are passed through a membrane filter with the use of filtration assembly, and then loaded filters are directly measured using EDXRF. In order to obtain high recovery of the metal ions, various analytical parameters influencing sorption were optimized, such as pH, amount of graphene, Triton X-100 and cupferron, sample volume, and sorption time. Under optimal conditions, the calibration plots cover the 2 to 100 ng mL?1 range for Co(II) and Ni(II), and 2 to 150 ng mL?1 for Cu(II). The detection limits of 0.08, 0.08, and 0.07 ng mL?1 for Co(II), Ni(II), and Cu(II) were obtained using 50 mL sample volume and 200 μg of graphene. The precision (at a 20 ng mL?1 level for n?=?10) is lower than 3.5 %. The proposed method was successfully applied to determination of Co, Ni, and Cu in wine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号