首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The objective of this study was to investigate the effects of the physical forms of starter and forage sources on feed intake, growth performance, rumen pH, and blood metabolites of dairy calves. Forty male Holstein calves (41.3 ± 3.5 kg of body weight) were used (n = 10 calves per treatment) in a 2 × 2 factorial arrangement of treatments with the factors being physical forms of starter (coarse mash and texturized) and forage source [alfalfa hay (AH) and wheat straw (WS)]. Individually housed calves were randomly assigned to 1 of the 4 dietary treatments, including (1) coarsely mashed (CM; coarse ground grains combined with a mash supplement) starter feed with AH (CM-AH), (2) coarsely mashed starter feed with WS (CM-WS), (3) texturized feed starter (TF; includes steam-flaked corn, steam-rolled barley combined with a pelleted supplement) with AH (TF-AH), and (4) TF with WS (TF-WS). Both starters had the same ingredients and nutrient compositions but differed in their physical forms. Calves were weaned on d 56 and remained in the study until d 70. All calves had free access to drinking water and the starter feeding at all times. No interaction was detected between the physical forms of starter feeds and forage source concerning starter intake, dry matter intake, metabolizable energy (ME) intake, average daily gain (ADG)/ME intake, ADG, and feed efficiency (FE). The preweaning and overall starter feed intake, dry matter intake, and ME intake were greater for calves fed TF starter diets than those fed CM starter diets. The ADG/ME intake was greater for calves fed TF starter diets than that fed CM starter. The FE was greater for calves fed TF starter diets compared with those fed CM starter during the preweaning, postweaning, and overall periods. The WS improved FE during the postweaning period compared with AH. The physical form of starter, forage source, and their interaction did not affect plasma glucose, triglycerides, and very low-density lipoprotein concentrations. Ruminal pH was greater for calves fed TF starter diets than those fed CM starter on d 30 of life. An interaction was observed between the physical forms of starter diets and forage source for β-hydroxybutyrate on d 28. These results showed that when starter diets contained similar ingredients and nutrient contents, processing calf starters to reduce the number of fine particles can improve the growth performance in dairy calves. Furthermore, the provision of WS improved FE and ADG of calves during the postweaning period.  相似文献   

2.
This study evaluated the interactive effects of forage provision on performance, nutritional behavior, apparent digestibility, rumen fermentation, and blood metabolites of dairy calves when corn grains with different fermentability were used. Sixty 3-d-old Holstein calves were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement. Dietary treatments were (1) steam-flaked (SF) corn without alfalfa hay (AH) supplementation (SF-NO), (2) SF corn with AH supplementation (SF-AH), (3) cracked (CR) corn without AH supplementation (CR-NO), and (4) CR corn with AH supplementation (CR-AH). All calves received the same amount of pasteurized whole milk and weaned on d 56 of the experiment; the study was terminated on d 70. Steam-flaked corn contained higher amounts of gelatinized starch in comparison with cracked corn (44.1 vs. 12.5% of total starch, respectively). Starter intake was not affected by corn processing methods or AH provision during the pre- or postweaning periods. However, we noted an interaction between corn processing methods and forage supplementation for starter intake during d 31 to 50 of the experiment, where calves fed on SF-AH starter had greater starter intake than those fed SF-NO starter, but the starter intake was not different between CR-NO and CR-AH fed calves. Furthermore, AH increased average daily gain (ADG) of calves fed an SF-based diet but not in calves fed a CR-based diet during the preweaning and overall periods. Interaction between forage provision and time was significant for ADG and feed efficiency, as calves supplemented with forage had higher ADG (0.982 vs. 0.592, respectively) and feed efficiency compared with forage unsupplemented calves at the weaning week. Forage supplementation resulted in more stable ruminal condition compared with nonforage-fed calves, as evidenced by higher ruminal pH (5.71 vs. 5.29, respectively) at postweaning and lower non-nutritive oral behavior around weaning time (55 vs. 70.5 min, respectively). The concentration of blood β-hydroxybutyrate was also greater in calves supplemented with forage than in unsupplemented calves. Results of the present study indicated that performance response and skeletal growth were the same between 2 corn processing methods. Forage provision improved ADG of calves fed the SF-based diet, but not the CR-based diet throughout the study.  相似文献   

3.
The objective of this study was to investigate the effects of grain sources and forage provision on growth performance, blood metabolites, and feeding behaviors of dairy calves. Sixty 3-d-old Holstein dairy calves (42.2 ± 2.5 kg of body weight) were used in a 2 × 3 factorial arrangement with the factors being grain sources (barley and corn) and forage provision (no forage, alfalfa hay, and corn silage). Individually housed calves were randomly assigned (n = 10 calves per treatment: 5 males and 5 females) to 6 treatments: (1) barley grain (BG) without forage supplement, (2) BG with alfalfa hay (AH) supplementation, (3) BG with corn silage (CS) supplementation, (4) corn grain (CG) without forage supplement, (5) CG with AH supplementation, and (6) CG with CS supplementation. All calves had ad libitum access to water and starter feed throughout the experiment. All calves were weaned on d 49 and remained in the study until d 63. Starter feed intake and average daily gain (ADG) was greater for calves fed barley than those fed corn during the preweaning and overall periods. Calves supplemented with CS had greater final body weight and postweaning as well as overall starter feed intake than AH and non-forage-supplemented calves. During the preweaning and overall periods, feeding of CS was found to increase ADG compared with feeding AH and nonforage diets. However, feed efficiency was not affected by dietary treatments. Calves supplemented with CS spent more time ruminating compared with AH and control groups; nonnutritive oral behaviors were the greatest in non-forage-supplemented calves. Regardless of the grain sources, the rumen pH value was greater for AH calves compared with CS and non-forage-supplemented calves. Blood concentration of BHB was greater for CS-supplemented calves compared with AH and non-forage-supplemented calves. Furthermore, body length and heart girth were greater for calves fed barley compared with those fed corn, and also in forage-supplemented calves compared with non-forage-supplemented calves. These results showed no interactions between grain sources and forage provision on calf performance; however, the inclusion of CS and barley in starter diets could enhance the growth performance of Holstein calves during the transition from liquid to solid feed.  相似文献   

4.
The present study was conducted to investigate the effects of crude protein (CP) content of starter feed and wheat straw (WS) processing on growth performance, digestibility, ruminal fermentation, and behavior of Holstein calves. Sixty calves (28 male and 32 female) were randomly assigned to 1 of 4 treatments in a randomized complete block design. Treatments in a 2 × 2 factorial arrangement were (1) lower-CP ground starter feed mixed with alkali-processed WS (LP-PWS), (2) lower-CP ground starter feed mixed with unprocessed WS (LP-WS), (3) higher-CP ground starter feed mixed with alkali-processed WS (HP-PWS), and (4) higher-CP ground starter feed mixed with unprocessed WS (HP-WS). Wheat straw was fed at 4.75% of dry matter (DM), and low-protein (LP) and high-protein (HP) starter feed contained 19.5 and 23.5% CP, respectively. The calves were weaned on d 60 and remained in the study until d 75. During the experiment, the calves received 4.2 kg of whole milk per day and had free access to fresh water and starter feed. The interaction between WS processing and protein content of starter tended to be significant for starter feed intake, average daily gain (ADG), and body weight (BW); calves fed HP-PWS tended to have greater ADG and final BW than other treatments. The results showed that feeding HP ground starter feed increased ADG and feed efficiency compared with LP groups during the preweaning and the overall periods. Moreover, weaning and final BW were higher in HP-fed calves than in LP-fed calves. Apparent digestibilities of acid detergent fiber (ADF), starch, and CP were greater in calves fed HP than in calves fed LP starter feed. The HP ground starter feed increased rumen propionate and ammonia concentrations. Wheat straw processing had no effect on intake and growth of calves but increased DM, ADF, and neutral detergent fiber digestibilities and decreased ruminal pH. Using processed wheat straw (PWS) mixed with starter feed tended to decrease rumination time and ruminal acetate concentration in calves. Final body barrel and withers height tended to be greater in calves fed PWS. Overall, the results indicated that HP content of ground starter feed (23.5%) could be recommended for Holstein calves. Furthermore, PWS inclusion in the ground starter diet increased fiber digestibility but had no effect on calf performance. Moreover, calves fed HP-PWS had greater ADG and final BW than other treatments.  相似文献   

5.
This study investigated the effects of feeding dairy calves starter diets containing 19% or 22% crude protein (CP) content on a dry matter basis and either supplemented or not with soybean oil (SBO, 0 vs. 3%, dry matter basis) on growth performance, digestibility, urinary nitrogen, and purine derivatives (PD) excretion. A total of 48 female Holstein dairy calves (mean 39.8 kg of body weight) were randomly distributed to experimental diets in a 2 × 2 factorial arrangement of treatments. The 4 dietary treatments were (1) starter diet without SBO supplement and 19% CP (NSBO-19CP), (2) starter diet without SBO supplement and 22% CP (NSBO-22CP), (3) starter diet with 3% SBO and 19% CP (SBO-19CP), and (4) starter diet with 3% SBO and 22% CP (SBO-22CP). Milk feeding value was similarly based on a constant protocol across experimental treatments and calves had ad libitum access to water and starter diets throughout the study. All calves were weaned on d 63 of age and remained in the study until d 83 of age. Calves supplemented with SBO had lower starter feed intake and average daily gain (ADG) and lower feed efficiency (FE) but had a higher fecal score indicating a higher likelihood of diarrhea occurrence compared with unsupplemented calves. Wither heights, digestibilities of organic matter, CP, and neutral detergent fiber were decreased, and ruminal volatile fatty acids tended to be reduced, and the molar proportion of ruminal butyrate (preweaning) and acetate (postweaning) reduced by supplemental SBO. The urinary allantoin and total PD excretion were reduced; however, urinary nitrogen excretion was increased when calves were supplemented with SBO. The CP amount did not affect starter feed intake, FE, or diarrhea occurrence rate, whereas the 22CP diets increased neutral detergent fiber digestibility, improved ADG (tendency), and increased allantoin and urinary PD excretion compared with the 19CP diets. The starter feed intake, ADG, FE, diarrhea occurrence rate, nutrient digestibility, and ruminal fermentation were not affected by the interaction between starter SBO and CP level; however, hip height and total PD in calves that received the SBO-22CP diets were higher than those fed the SBO-19CP diets. In conclusion, based on our experimental conditions, supplemental SBO could not be recommended for dairy calves. Furthermore, our findings indicate that SBO has negative effects on performance more attributed to reducing starter intake, digestibility, and ruminal volatile fatty acid concentration rather than because of a limitation of starter metabolizable protein supply and intestinal amino acid availability. Therefore, our results indicate that feeding the higher starter CP content is not a viable strategy to compensate for the negative effects of SBO supplementation on the growth performance of dairy calves.  相似文献   

6.
We investigated the interactive effects of forage source and forage particle size (PS) as a free-choice provision on growth performance, rumen fermentation, and behavior of dairy calves fed texturized starters. Forty-eight Holstein calves (42 ± 3 kg of body weight) were randomly assigned (n = 12 calves per treatment) in a 2 × 2 factorial arrangement of treatments with the factors of forage source [alfalfa hay (AH) and wheat straw (WS)] and forage PS [(AH: medium = 1.96 mm or long = 3.93 mm) and (WS: medium = 2.03 mm or long = 4.10 mm), as geometric mean diameters]. The treatments were (1) AH with medium PS (AH-MPS), (2) AH with long PS (AH-LPS), (3) WS with medium PS (WS-MPS), and (4) WS with long PS (WS-LPS). Regardless of forage PS, the preweaning starter intake, dry matter intake, metabolizable energy intake, weaning body weight, and forage intake were greater for AH calves than WS calves. Average daily gain, average daily gain/metabolizable energy intake, feed efficiency, and final body weight of the calves did not differ among groups. An interaction of forage source and forage PS influenced acetate, propionate, and acetate-to-propionate ratio in the rumen on d 35, with the greatest acetate proportion and acetate-to-propionate ratio, but the least propionate proportion for AH-MPS calves than the other calves. The total volatile fatty acid concentration and the rumen proportions of propionate (d 70), butyrate (d 35), and valerate (d 35) were greater in AH-MPS calves than in AH-LPS calves. Calves fed AH had greater total volatile fatty acid concentration (d 35 and 70) and propionate proportion (d 70), but lesser ruminal proportions of butyrate (d 35 and 70), valerate (d 35 and 70), and acetate-to-propionate ratio (d 70) compared with calves fed WS. The ruminal valerate proportion (d 70) was greatest in WS-MPS calves than the other calves. An interaction of forage source and forage PS influenced preweaning standing time and starter eating time, with the least standing time for WS-MPS calves and the greatest eating starter time for AH-LPS calves. Calves fed AH spent less time for rumination, but devoted more time to non-nutritive oral behaviors than WS calves. Calves fed forage with long PS spent more time for rumination, eating forage, and spent less time lying and non-nutritive oral behaviors than medium PS. In conclusion, forage source and PS interacted, affecting behavior and rumen fermentation when calves were fed texturized starters. In addition, a desirable ruminal pH in dairy calves can be obtained with texturized starters.  相似文献   

7.
This study investigated the effects of feeding finely ground starter diets containing either 18 or 22% crude protein (CP) content [dry matter (DM) basis] and high or low ratios of rumen-undegradable protein to rumen-degradable protein (RUP:RDP) on growth performance, nutrient digestibility, ruminal fermentation, blood metabolites, and urinary purine derivatives in dairy calves. A total of 48 three-day-old female Holstein dairy calves with 40.2 ± 2.5 kg of initial body weight (BW) were randomly assigned in a complete randomized block design to a 2 × 2 factorial arrangement of treatments (12 calves/treatment). Treatments were as follows: (1) finely ground starter diet (mean particle size = 0.69 mm) with 18% CP and low RUP:RDP ratio [low ratio (LR) = 26:74; 18CP-LR]; (2) finely ground starter diet with 18% CP and high RUP:RDP ratio [high ratio (HR) = 35:65; 18CP-HR]; (3) finely ground starter diet with 22% CP and low RUP:RDP ratio (22CP-LR); (4) finely ground starter diet with 22% CP and high RUP:RDP ratio (22CP-HR) on DM bases. Blocking was based on the day of treatment assignment, and treatments were randomly assigned within each block. Calves received 4 L of milk daily from d 3 to 10, 7 L/d from d 11 to 40, 4 L/d from d 41 to 49, and 2.5 L/d from d 50 to 53, and then all calves were weaned but remained in the experiment until d 83 of age. The results showed that overall average daily gain (ADG), weaning BW, and feed efficiency (FE) were greater in 22% CP treatments than in 18% CP. Increasing the starter CP content from 18 to 22% of DM did not influence overall starter feed intake, milk intake, total dry matter intake (DMI), postweaning ADG, and FE of calves. No effect of RUP:RDP ratio was observed for starter feed intake, milk intake, total DMI, preweaning ADG, FE, and grams of CP per megacalorie of metabolizable energy. The RUP intake and postweaning ADG were greater for calves fed the HR diets than for those fed the LR diets. The digestibility of neutral detergent fiber was greater, and the digestibility of OM tended to be greater, and the ruminal concentrations of total short-chain fatty acids (SCFA), acetate proportion, and acetate-to-propionate ratio were greater in 22% CP than in 18% CP. A 2-way interaction between starter protein content and time was observed for total ruminal SCFA, acetate proportion, and acetate-to-propionate ratio, indicating that starter CP concentration had more effect on ruminal parameters. Preweaning urinary purine derivatives, preweaning microbial protein synthesis, and postweaning urinary nitrogen were greater for calves fed the 22CP diets than for those fed the 18CP diets but were not affected by the different RUP:RDP ratios. The concentrations of blood glucose and insulin were greater in 22% CP than in 18% CP diets. The blood insulin concentration was greater when calves received the HR diets compared with the LR diets. Therefore, we conclude that greater starter protein content can have beneficial effects on growth performance, probably through increased microbial protein synthesized and preweaning blood insulin concentration; however, a greater RUP:RDP ratio showed marginal effects on growth performance during the postweaning period.  相似文献   

8.
Fifteen Holstein male calves were randomly assigned to 1 of 3 dietary treatments according to age and body weight (BW) to determine the effects of feeding different forages sources on rumen fermentation and gastrointestinal tract (GIT) development. Treatments consisted of a starter (20% crude protein, 21% neutral detergent fiber) fed alone (CON) or supplemented with alfalfa (AH) or with oat hay (OH). All calves received 2 L of milk replacer (MR) at 12.5% dry matter twice daily until 49 d of age. Calves received 2 L of the same MR from 50 to 56 d of age and were weaned at 57 d of age. Individual starter, forage, and MR intakes were recorded daily and BW was recorded weekly. A rumen sample was taken weekly to determine rumen pH and volatile fatty acid concentrations. Three weeks after weaning, animals were harvested and each anatomical part of the GIT was separated and weighed with and without contents. Rumen pH was lower in CON than in OH and AH calves. Furthermore, acetate proportion in the rumen liquid tended to be greater in AH than in CON and OH treatments. Total GIT weight, expressed as a percentage of BW, tended to be greater in AH compared with the other 2 treatments. Rumen tissue tended to weigh more in CON than in OH animals. Animals with access to forage tended to have a greater expression of monocarboxylate transporter 1 than CON calves. In conclusion, calves supplemented with oat hay have a better rumen environment than calves offered no forage and do not have an increased gut fill.  相似文献   

9.
《Journal of dairy science》2022,105(12):9597-9609
The present study was intended to evaluate the effect of forage source (alfalfa hay; ALF vs. corn silage; CS) along with a supplemental fat source (soybean oil; SO vs. rumen-inert palm fatty acids; PF) on growth performance, nutrient digestibility, and ruminal fermentation in dairy calves. Forty-eight new-born Holstein female calves (3 d old) were assigned to one of 4 treatments: (1) alfalfa hay with soybean oil (ALF–SO); (2) alfalfa hay with palm fatty acids (ALF–PF); (3) corn silage with soybean oil (CS–SO); (4) corn silage with palm fatty acids (CS–PF). Starter diets had equal amounts of forage (100 g/kg dry matter; DM) and fat source (30 g/kg DM). Calves were fed a constant amount of milk (d 1 to 63) and had ad libitum access to water and starters (d 1 to 83). The lowest and greatest starter intakes during the preweaning period occurred in ALF–SO and CS–PF, respectively. This coincided with forage × fat source interaction for average daily gain (ADG) during preweaning. The forage source affected total DM intake and ADG over the entire period, body weight (BW) at weaning, and final BW with greater values in calves that received CS compared with ALF. The concentrations of total short-chain fatty acids and butyrate were increased, whereas concentration of acetate and acetate:propionate ratio were decreased in the rumen of calves fed CS compared with ALF. Feeding CS increased urinary excretion of allantoin and, as a trend, total purine derivatives (PD) and estimated microbial protein synthesis in comparison with ALF. The fat source affected starter intake, ADG, and BW postweaning with the highest values in PF. The digestibility of neutral detergent fiber, crude protein and, as a trend, organic matter were higher in calves fed PF compared with SO. Calves fed PF had lower ruminal ammonia-N concentration and urinary N excretion and greater urinary excretion of allantoin and total PD. Calves receiving SO had a lower ruminal protozoa population. In conclusion, supplementing starter diets with CS and PF is superior to ALF and SO. Interaction of the positive effects of CS and PF on performance underlines that concurrent supplementation of CS with PF is especially recommendable in young calves before weaning.  相似文献   

10.
A feeding regimen that allows a smooth transition from milk to solid feed is vital for successful heifer-rearing programs. In the past, research efforts have focused on the development of feeding methods that allow early weaning, perhaps because the risk of disease is highest during the milk feeding stage. To encourage early intake of calf starter, conventional feeding programs have limited the supply of milk (often to 10% of BW at birth). However, dairy calves provided free access to milk will typically consume more than twice this amount. We critically review the available literature examining the relationship between milk feeding method, solid feed consumption, and rumen development in young dairy calves and identify areas where new work is required. We conclude that milk-fed dairy calves can safely ingest milk at approximately 20% of body weight (BW)/d, and greater milk consumption supports greater BW gain, improved feed efficiency, reduced incidence of disease, and greater opportunity to express natural behaviors, which in combination suggest improved welfare. Method of weaning greatly influences feed consumption, rumen development, and growth check in calves provided higher amounts of milk. Gradual weaning encourages starter intake during the preweaning period, and both weaning age and duration of weaning influence this consumption. Increased solid feed consumption during the weaning process contributes to rumen development, permitting higher starter intake and BW gain after weaning. Growth factors in milk may also enhance the growth and maturation of the gastrointestinal tract, but more research is required to understand the role of these factors. Greater nutrient supply through increased amount of milk appears to improve immune function and long-term performance of heifer calves; for example, reducing the age at first breeding and increasing first-lactation milk yield, but more research is needed to confirm these effects.  相似文献   

11.
《Journal of dairy science》2022,105(4):3113-3128
Early development of the rumen, rumination, and fermentation is highly important in dairy calves. Yet, common rearing practices with feeding of concentrate-rich starters may jeopardize them because of lacking physically effective fiber (peNDF). The main objective of this study was to establish the influence of the composition of the calf starter feed (only forage with 2 different qualities or concentrate-rich starter diet) on chewing behavior, rumen development, rumen and hindgut fermentation, and selected systemic health and stress variables of dairy calves. The experiment was carried out with 40 newborn Holstein-Friesian calves, randomly assigned to 4 different solid feed treatments: MQH = 100% medium-quality hay (9.4 MJ metabolizable energy, 149 g of crude protein, and 522 g of neutral detergent fiber/kg of dry matter); HQH = 100% high-quality hay (11.2 MJ of metabolizable energy, 210 g of crude protein, 455 g of neutral detergent fiber/kg of dry matter); MQH+C = 30% MQH + 70% starter concentrate; HQH+C = 30% HQH + 70% starter concentrate). All calves were up to 14 wk in the trial and received acidified whole milk ad libitum in the first 4 wk of life, thereafter in reduced quantity until weaning on 12 wk of age. Water and the solid feed treatments were available ad libitum throughout the trial. Chewing activity was measured in wk 4, 6, 10, and 12 using RumiWatch halters. Until wk 3, rumen fluid, feces and blood were sampled weekly, thereafter every 2 wk. Rumen mucosal thickness (RMT) was measured on the same days with rumen fluid samples. Data showed that calves fed the HQH diet consumed more peNDF and this was associated with longer rumination time (591 min/d) and more ruminating boli (709 boli/d) than calves fed concentrate-rich diets (MQH+C: 430 min/d, 518 boli/d; HQH+C: 430 min/d, 541 boli/d), whereas the MQH group was intermediate (539 min/d, 644 boli/d). Ruminal and fecal pH were higher in calves fed only hay (especially MQH) compared with calves with concentrate supplementation. In both hay-fed groups, ruminal and fecal short-chain fatty acids were shifted toward acetate, whereas only the HQH diet increased the butyrate proportion in the ruminal short-chain fatty acids profile. Ruminal ammonia concentration was at a high level only in the first 3 wk and decreased thereafter. Feeding HQH tended to increase ruminal ammonia, likely because of its high crude protein content and ruminal degradability as well as lower assimilation from rumen microbes. The RMT similarly, though nonlinearly, increased in all groups over the course of the experiment. When using RMT as an indicator of rumen development in dairy calves in the practice, our data suggest an RMT of 1.7 mm and >2 mm at wk 5 and 10 of life, respectively. Feeding did not affect the blood levels of aspartate aminotransferase, gamma glutamyl transferase, glutamate dehydrogenase, and cortisol. In conclusion, feeding high-quality hay, instead of concentrate-rich starter feeds, resulted in improved rumination and ruminal fermentation profile, without affecting ruminal pH and systemic and stress health variables.  相似文献   

12.
《Journal of dairy science》2022,105(5):3988-3996
Early life milk intake can influence the survival and future productivity of replacement heifers. The present study determined the effects of different amounts of milk through step-up/step-down or conventional feeding methods on the performance of dairy calves. Thirty-nine Holstein calves (18 male and 21 female) were used in a completely randomized design. Calves were randomly allocated to 1 of 3 treatments: (1) conventional milk feeding (CONV; 4.5 L/d of milk from d 1 to 50 and 2 L/d of milk at d 51 and 52 of the study; total milk intake = 229 L); (2) low milk intake with step-up/step-down method (L-SUSD, 4 L/d of milk from d 1 to 10, 6 L/d from d 11 to 20, 8 L/d from d 21 to 30, 6 L/d from d 31 to 40, 4 L/d from d 41 to 50, and 2 L/d milk at d 51 and 52 of the study, total milk intake = 284 L); (3) high milk intake with step-up/step-down method (H-SUSD, 6 L/d of milk from d 1 to 10, 8 L/d from d 11 to 20, 10 L/d from d 21 to 30, 8 L/d from d 31 to 40, 6 L/d from d 41 to 50, 4 L/d milk at d 51, and 2 L/d milk at d 52 of the study, total milk intake = 386 L). All calves were weaned at d 52 and followed until d 70. Performance data (every week), skeletal growth (d 52 and 70), and ruminal fermentation parameters and digestibility (d 35, 55, and 70) were analyzed as repeated measurements with PROC MIXED of SAS version 9.3 (SAS Institute Inc.). A treatment × time interaction was observed for total dry matter intake (TDMI) as follows: TDMI differed among all treatments where H-SUSD > L-SUSD > CONV from d 11 to 38 of study, greater for H-SUSD versus other treatments from d 3 to 10 and d 39 to 70 of study. Starter feed intake and average daily gain (ADG) were greater in H-SUSD calves than in CONV calves, and L-SUSD treatment was intermediate for those traits. The H-SUSD calves tended to have greater body weight (BW) and lower feed efficiency than calves fed CONV or L-SUSD treatments. The treatments did not affect structural growth parameters, except for hip width, which tended to be greater in H-SUSD calves than CONV calves. Regardless of treatments, ADG, starter feed intake, BW, and body measurements increased as calves aged, whereas feed efficiency increased from d 1 to 52 of study and decreased from d 52 to 70 of study. The treatments had no effect on digestibility, rumen parameters, or fecal score. Overall, in calves that were weaned at 52 d and fed milk 3 times daily, the high milk intake (386 L) through the SUSD method did not increase diarrhea or decrease digestibility but increased starter feed intake and ADG.  相似文献   

13.
The effect of form of starter grain (coarse vs. ground) and inclusion of various levels of hay on body weight gain and rumen development was evaluated. Two experiments were conducted to determine the effect of form of diet and forage inclusion on intake, growth, feed efficiency, and weaning age in dairy calves. Diets consisted of commercial coarse starter (C), ground starter (G), coarse starter with 7.5% bromegrass hay of consistent particle size (8 to 19 mm) (H1), and coarse starter with 15% hay (H2). In experiment 1, intake was held constant across treatments until weaning, when feed was offered ad libitum. Calves receiving H1 and H2 were heavier and had greater body weight gain and greater feed efficiency than calves receiving C. There were no differences in intake. Total volatile fatty acid concentrations were higher, and the proportion of acetate was lower for calves fed G vs. C. In experiment 2, calves (n = 56) were offered diets on an ad libitum basis and weaned according to intake. There were no differences in body weight gain, average daily gain, feed efficiency, and age at weaning with respect to treatment. Starter and total dry matter intake tended to be greater in calves fed H1 and H2 vs. C. The addition of controlled particle size hay to diets of young calves appears to favorably alter rumen environment, resulting in increased intake and improved feed efficiency. Forage of a consistent particle size can be successfully utilized in starter rations of young calves.  相似文献   

14.
Eight rumen-cannulated Holstein dairy heifers [beginning body weight (BW) 340 (±5) kg and age 14.5 (±1) mo] were fed a high forage diet at 4 levels of intake. Diets were composed of grass silage, grass hay, and corn silage as the forage components and offered at 1.25, 1.50, 1.75, and 2.00% of BW to heifers in a replicated Latin square design. Diets were incubated in situ in heifers receiving all 4 levels of feed. Blood and rumen were sampled at 2-h intervals for 24 h, rumen contents were emptied, and total fecal and urine collection was made. Dietary intake increased in proportion to feed offered until dry matter intake (DMI) was 1.92% BW, after which a statistically determined plateau was evident due to greater refusals when feed was offered at 2.00% BW. In situ degradation of feed was not affected by intake level, which, combined with the greater turnover rate of rumen contents, leads to the inference that rate of passage was increased with increasing intake. Rumen pH decreased and rumen volatile fatty acid concentration and microbial protein flow to the small intestine (estimated using urinary purine derivative excretion) increased as intake increased. Manure excretion increased as DMI increased at a rate 2.54 times greater than increases in DMI; this increase was entirely due to greater excretion of wet feces because urine excretion did not change with intake level. Nitrogen digestibility decreased and N retention increased linearly as the level of feed offered increased. Efficiency of N retention was minimized when feed was offered at 1.25% BW; all levels of feed offered above this level resulted in equivalent efficiencies. From the results of this experiment it can be concluded that when dairy heifers are limit-fed a high forage diet, the efficiency of nutrient utilization is increased as intake decreases, but reducing DMI below 1.50% BW reduced efficiency.  相似文献   

15.
The objective of this study was to test if body weight (BW) and starter intake increased and reaction to novelty decreased for preweaning Holstein heifer calves pair housed in modified hutches (n = 8 pairs) versus individually housed in a single hutch (n = 14 calves). Calves were alternately assigned to housing treatment at d 5 of age. Cross sucking was recorded in 5-min scans for 30 min after milk feeding once per week over 14 wk. Calf health and BW were measured weekly from birth until approximately 88 d. When calves were 60 d old they underwent a food neophobia test where they were exposed to a novel feed for the first time. Cross sucking was observed only 5 times (in 4 different pairs) over the entire milk-feeding period. Pair-housed calves ate more starter than individually housed calves [0.89 (0.72–1.08) vs. 0.48 (0.42–0.56) kg/d; median and confidence interval], these calves also consumed 2.6 times more novel feed in the neophobia test (150 ± 27 vs. 58 ± 20 g/30 min). We observed no effect of treatment on BW. We concluded that social housing in modified hutches promotes solid feed intake and decreases fearfulness in dairy calves.  相似文献   

16.
Research to date has suggested that access to forage before weaning can limit rumen development in calves, but no research has yet addressed the role of forage for calves fed higher quantities of milk. This study compared performance and rumen development of calves provided high volumes (equivalent to approximately 20% of calf birth weight) of milk with and without access to hay. At d 3 of age, individually housed calves were randomly assigned to treatment (either ad libitum access to chopped grass hay or no forage; n = 15 calves per treatment, 10 heifers, and 5 bulls). All calves were provided ad libitum access to water and starter throughout the study. All calves were offered 8 L of milk/d from a nipple bottle from d 3 to 35, 4 L/d from d 36 to 53, and 2 L/d until weaning at d 56. Solid feed intake and growth parameters were monitored from d 3 to 70. At d 70, males from both treatments were slaughtered to measure rumen development parameters. Overall dry matter (DM) intake from solid feed did not differ between treatments before wk 5. However, during wk 6 to 10, calves fed forage consumed more total DM (starter plus hay) than did calves fed no forage. Hip and wither height, heart girth, and body barrel at d 3, 56, and 70 did not differ between treatments. Reticulorumen weight was heavier in calves fed hay versus those fed only starter (12.77 ± 1.29 vs. 7.99 ± 0.69 kg with digesta; 1.89 ± 0.05 vs.1.60 ± 0.09 kg without digesta). Body weight without digesta was similar in calves fed forage or no forage. Mean rumen pH was higher in calves fed hay compared with those fed no forage (5.49 ± 0.08 vs. 5.06 ± 0.04). In conclusion, provision of chopped hay to calves fed high volumes of milk can promote solid feed DM intake and rumen development without affecting BW gain.  相似文献   

17.
One hundred seventy-nine Holstein male calves [44.7 kg of body weight (BW) and 8.3 d of age] participated in a series of 3 experiments to evaluate the effect of different forage sources on performance, apparent digestibility, and feeding behavior. Animals in each study were randomly assigned to 1 of 3 different dietary treatments: control (CON) calves were fed starter feed without any forage provision (this treatment was repeated in each of the 3 experiments), and the 2 other treatments consisted of the same starter feed plus a forage source: chopped alfalfa (AH) or rye-grass hay (RH) in the first study; chopped oat hay (OH) or chopped barley straw (BS) in the second study; corn silage (CS) or triticale silage (TS) in the third study. All calves were offered 2L of milk replacer (MR) at 12.5% dry matter (DM) twice daily via a bottle until 50 d of age, and 2L of MR at 12.5% DM during the week before weaning (57 d of age). The study finished when calves were 71 d old. Starter feed, MR, and forage intakes were recorded daily and BW weekly. Calves were individually housed and bedded with wood shavings. Compared with CON, animals receiving OH, TS, and BS consumed more starter feed (0.88 vs. 1.14, 1.17, 1.06 kg/d, respectively) and had greater average daily gain (0.72 vs. 0.93, 0.88, 0.88 kg/d, respectively). Animals in treatments RH, BS, CS, and TS consumed less forage (51 g/d) than AH (120 g/d) and OH (101 g/d) calves. Apparent organic matter, DM, and neutral detergent fiber digestibilities did not differ among treatments (81.5, 81.1, and 54.4%, respectively). Apparent crude protein digestibility was greater in RH, CS, and AH treatments than in CON (80.5 vs. 76.4%, respectively). Compared with CON calves, animals in the AH treatment spent less time eating starter feed and lying, animals in AH and RH treatments spent more time ruminating, with odds ratios (OR) of 5.24 and 5.40, respectively. The AH and RH calves devoted less time to performing nonnutritive oral behaviors (OR: 0.38 and 0.34, respectively), and TS calves tended to devote less time to perform nonnutritive oral behaviors (OR: 0.21) 1h after being offered MR and solid feed. In conclusion, free-choice provision of a forage source to young calves improves feed intake and performance without impairing digestibilities of DM, organic matter, crude protein, and neutral detergent fiber, and, depending on forage source, reduces nonnutritive oral behaviors and stimulates rumination.  相似文献   

18.
This study evaluated pre- to postweaning ruminal structural development, fermentation characteristics, and acute-phase protein levels in calves with a high milk replacer (MR) feeding rate prior to weaning. Six ruminally cannulated Holstein bull calves were fed MR (150 g/L) at 15% of body weight (BW) in 2 equal volumes daily. Volumes were adjusted weekly based on BW. Calves were weaned using a 1-step weaning method, with MR decreased by 50% at the end of wk 5 and full weaning at the end of wk 6. Calf starter, chopped straw, and water were offered ad libitum. Intake was recorded daily, and BW was recorded weekly. From wk 5 to 12, ruminal pH was continuously measured using a ruminal pH bolus. Ruminal fluid was collected weekly from wk 5 to 12 for measurement of short-chain fatty acid concentrations and quantification of total bacteria and protozoa. Rumen papillae were obtained at wk 5, 6, 7, 8, and 12 for histological analysis. Serum amyloid A and lipopolysaccharide-binding protein were measured weekly. Data were analyzed using GLIMMIX procedure of SAS (SAS Institute Inc., Cary, NC), with week as a fixed effect and calf as a random effect. During the weaning step-down, starter intake was 3-fold higher and continued to increase until wk 12. Body weight increased from birth to wk 12; however, BW did not change during wk 6, 7, and 8, possibly due to low metabolizable energy intake caused by the weaning strategy. Preweaning ruminal pH was below 5.8 for approximately 936.3 ± 125.99 min/d, implying ruminal acidosis. Furthermore, ruminal pH below 5.8 reached a peak at wk 8 with 1,203.9 ± 227.65 min/d below pH 5.8 and slowly decreased to 388.1 ± 189.82 min/d below pH 5.8 at wk 12. Papillae surface area, length, and width increased during wk 12 compared with wk 5. Corneum thickness increased by week, whereas spinosum/basale thickness only increased during wk 8 compared with wk 5. The acute-phase protein concentration was highest at wk 1 and then decreased and remained constant until wk 12. In conclusion, even before step-down weaning, calves experienced ruminal acidosis despite low starter intake. Further, the observed prolonged ruminal pH depression suggests that dietary rumen adaptation after weaning can take several weeks in calves with a high MR feeding rate preweaning. The prolonged depressed ruminal pH did not affect acute-phase proteins and this finding, along with the other results, suggests that rumen epithelium barrier integrity is not compromised during weaning.  相似文献   

19.
Replacement of forage with cereal byproducts may be a viable alternative for feeding dairy cows. The objective of this experiment was to evaluate total tract digestion and rumen fermentation profile when diets were formulated to contain low-forage neutral detergent fiber (NDF) (12.6% forage NDF, 18.8% total NDF), adequate NDF from forages (20% forage NDF, 24.4% total NDF) or low-forage NDF with high levels of NDF from cereal byproducts (12.7% forage NDF, 35.1% total NDF). Sodium bicarbonate (0.8% of dry matter) was factorialized over these diets. Total tract apparent digestibilities of organic matter (OM) and carbohydrates were determined in 73 Holsteins. Eight rumen-cannulated cows were used concurrently to evaluate rumen fermentation profile and in situ degradation of forages. Bicarbonate did not increase NDF or OM digestibility, but increased intake of digestible OM. Rumen fermentation parameters were determined by dietary alfalfa NDF content. Adding alfalfa NDF to the low-forage, high-starch diet increased in situ degradation of forage NDF more than adding byproduct NDF. However, increased ruminal forage NDF degradability was not reflected in greater total tract NDF digestibility. Replacement of dietary starch with NDF from byproducts decreased OM digestibility, but energy intake was similar across diets due to increased intake.  相似文献   

20.
This study assessed the carryover effects of providing forage during the milk-feeding period on postweaning feed intake and growth of heifers. At 11 wk of age, heifers previously (3 to 77 d of age) reared on starter (n=8) or starter plus grass hay (n=8) were switched to a single diet consisting of restricted amounts of concentrate [60% of the starter required to support daily body weight (BW) gain of 800 g] with ad libitum access to coarsely chopped orchardgrass hay. Feed intake and growth were measured from 11 to 18 wk of age. Starter dry matter (DM) intake averaged 2.14 ± 0.15 kg/d for both treatments. Forage consumption and total (starter plus hay) DM, neutral detergent fiber, crude protein, and metabolizable energy intakes were greater in heifers previously fed forage compared with those provided no forage. Initial and final BW were similar for the 2 treatments (108.2 ± 9.1 and 149.6 ± 9.3 kg, respectively). Overall average daily gain in heifers previously fed starter alone (0.92 ± 0.05,kg/d) tended to be greater than those previously fed starter plus hay (0.79 ± 0.06,kg/d). Total DM intake (starter plus hay) was lower in heifers previously fed starter alone than those fed starter plus hay (3.55 ± 0.13 vs. 4.08 ± 0.15 kg/d, respectively). Feed efficiency (BW gain/DM intake) after switching to a common diet was greater in calves previously fed starter alone than in those previously fed starter plus hay (0.26 ± 0.01 vs. 0.19 ± 0.01, respectively). However, heifers provided access to hay had a smaller body barrel (an indicator of gut fill) at 15 wk (127.7 ± 1.7 vs. 134.3 ± 2.7 cm) and 17 wk (132.4 ± 1.9 vs. 141.0 ± 2.2 cm) of age and had greater blood β-hydroxybutyrate (0.22 ± 0.04 vs. 0.32 ± 0.04 mmol/L) compared with heifers that did not have access to hay earlier in life. These results indicate that provision of hay early in life promotes forage intake when heifers are switched to a high forage diet. However, greater feed consumption did not translate into live BW gain. Higher feed efficiency after switching to a common diet in heifers previously fed starter alone compared with those fed starter plus hay must be viewed with caution because intestinal content likely varied between treatment groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号