首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of five pesticides, pendimethalin, trifluralin (dinitroaniline herbicides) fenitrothion, malathion, and methidathion (organophosphorus insecticides), on the fermentation of young lager beer was assessed. For this purpose, brewer wort was spiked with the pesticides to obtain a concentration of 1 μg/ml before the pitching with lager yeast (Saccharomyces carlsbergensis). The fermentation kinetic was sluggish for the samples treated with fenitrothion, malathion, and trifluralin but increased from the second to the sixth day in the methidathion and pendimethalin treatments in comparison with the blank sample. At the end of fermentation (12 days) statistically significant differences (p < 0.05) were found for the extract and attenuation values for the samples treated with fenitrothion and trifluralin. In these cases too, a higher amount of residual sugars (glucose, fructose, maltose and maltotriose) was found in the beer. Significant differences (p < 0.05) were also observed for pH and colour of the beer after fermentation among all treated samples. A good quadratic correlation (R > 0.94) was found for these parameters in all cases. The total polyphenol content was significantly lower in the fenitrothion and trifluralin treatments.  相似文献   

2.
The fate of dinitroaniline herbicides (pendimethalin and trifluralin), organophosphous insecticides (fenitrothion and malathion), and pyrimidine (nuarimol) and triazole (myclobutanil and propiconazole) fungicides from barley to malt was determined. Several samples for residue analysis were taken after each stage of malting (steeping, germination and kilning). Pesticide residue analysis was carried out by GC/ITMS in selected ion monitoring mode. Pesticides decline along the process, although in different proportions. The carryover of residues after steeping was 45-85%. A good correlation (r > 0.92) was observed between percentages removed after steeping and the P(OW) values of pesticides. The amount remaining after malting ranged from 13 to 51% for fenitrothion and nuarimol, respectively. Steeping was the most important stage in the removal of pesticide residues (52%) followed by germination (25%), and kilning (drying and curing, 23%). During malt storage (3 months) the fall in pesticide residues was not significant. Applying the standard first-order kinetics equation (r > 0.95), the half-lives obtained for the pesticides during malt storage varied from 244 to 1533 days for myclobutanil and nuarimol, respectively.  相似文献   

3.
For investigating the carryover of some organophosphorus pesticide residues in the cereal food chain from grain to consumer, a study was set up on durum wheat, semolina and pasta. Pesticide-free durum wheat was placed into a small-scale model of a commercial storage vessel and treated with pesticides (malathion, fenitrothion, chlorpyrifos methyl, and pirimiphos methyl) according to the raw material legislation of Turkey. The residue levels of insecticides were determined in wheat, semolina, and spaghetti produced from stored wheat at various time intervals during five months of storage. A multiresidue analysis was performed using GC equipped with an NPD. The confirmation was performed by GC–MS. The residue levels of insecticides in wheat exceeded the maximum residue limits (MRLs) for wheat. The storage period was generally not effective enough to reduce the residues in wheat to levels below the MRLs. Although a considerable amount of the insecticides remained in the semolina, spaghetti processing significantly reduced residue concentrations in general. Pirimiphos methyl was the most persistent of the insecticides and comparatively less substantial loss occurred during milling and spaghetti processing due to its physicochemical properties.  相似文献   

4.
In order to investigate residue levels of malathion and fenitrothion and their metabolites (malaoxon, isomalathion and fenitrooxon) during storage and malting, pesticide-free barley was treated with these insecticides. Barley was placed in a sealed plastic container and treated with a dust of malathion (2%). Fenitrothion emulsion (41.6% wettable powder) was applied onto the walls of a small-scale storage vessel. Residues were determined in barley at about 1-month intervals during storage and in malt produced from the barley stored at various times. The analysis of the residues was carried out by GC equipped with a nitrogen-phosphorus detector (NPD). Although the approved doses of insecticides for stored grain were used, the residue levels exceeded the maximum residue limits (MRLs) at the beginning of storage. While the degradation of malathion and isomalathion in barley was observed to be about 65–72% during the storage period, the malaoxon was degraded extensively (85%). A significant percentage of fenitrothion residues (80%) were dissipated from grains for the short-term storage probably because of hot weather conditions. In malt, rates of degradation and volatilisation of the residues increased by the heat involved in malting. The carryover of the residues from barley into malt was also found to be dependent on the log Pow (partition coefficient between n-octanol and water) values of the insecticides.  相似文献   

5.
目的 对气相色谱法测定粮食中乐果、杀螟硫磷、对硫磷、马拉硫磷农药残留量的方法进行不确定度评估。方法 依据JJF 1059.1-2012《测量不确定度评定与表示》和JJF 1135-2005《化学分析测量不确定度评定》中有关规定, 建立了用气相色谱法测定粮食中4种有机磷农药残留量的不确定度评估数学模型, 对测定中的不确定度来源进行分析和评估。结果 当粮食中乐果、杀螟硫磷、对硫磷、马拉硫磷的残留量分别为0.10、0.19、0.095、0.093 mg/kg时, 扩展不确定度分别为: 0.01、0.01、0.010、0.006 mg/kg, 4种有机磷残留量分别表示为: (0.10±0.01) mg/kg (k=2)、(0.19±0.02) (k=2)、(0.095±0.006) mg/kg (k=2)、(0.093±0.007) mg/kg (k=2)。 结论 实验过程中的不确定度主要来源于标准物质配制和样品稀释过程, 本评估方法可为气相色谱法检测多组分农药残留量的不确定度评估提供依据。  相似文献   

6.
烟草中含硫有机磷杀虫剂残留量的测定   总被引:1,自引:4,他引:1  
采用德国官方食品中农药残留量通用方法测定了239个国产烟叶、49个进口烟叶、12个进口卷烟样品中二嗪磷、甲基对硫磷、毒死蜱、马拉硫磷、杀螟硫磷、乙基对硫磷和倍硫磷的残留量。结果表明,国产烟叶样品中杀螟硫磷、马拉硫磷、乙基对硫磷和倍硫磷的检出率为0.8%~2.9%,未检出二嗪磷、甲基对硫磷和毒死蜱;进口烟叶和卷烟样品中未检出这7种含硫有机磷杀虫剂。  相似文献   

7.
The applicability of three selected triticale cultivars (Trinidad, Lamberto, Fidelio) for use as brewing adjuncts was investigated in comparison with wheat adjunct and barley malt. Fermentable substance, crude protein and arabinoxylan levels of starchy materials were determined as well as their native potencies (amylolytic, proteolytic, pentosolytic) to solubilise and degrade grain components during mashing. Laboratory‐scale experiments were performed to evaluate the influence of the adjuncts (composition, enzyme potency) on beer wort quality by mashing mixed (1:1) grists of malt and adjunct. Barley malt was rated as the superior raw material, possessing considerably higher enzyme activities and yielding the lowest wort viscosity. Among the triticale cultivars cv Trinidad was identified as the most suitable to serve as a brewing adjunct due to its improved starch solubilisation properties and its ability to generate low wort viscosities. Compared with the potent malt enzymes, the enzyme activities of unmalted triticale (such as amylases, pentosanases and proteases) had little affect on the composition of the sweet worts. In contrast, the contents of crude protein and fermentable substance of the triticale varieties greatly affected wort quality. Furthermore, the adjunct moiety determined the level of wort viscosity when mashing a combination of malt and triticale. In general, the brewing properties of triticale cv Trinidad were comparable with those of wheat. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
Fungal hydrophobins have been shown to induce gushing of beer. In order to study the occurrence and fate of hydrophobins at different stages of the production chain of beer, barley samples artificially infected in the field with Fusarium culmorum, F. graminearum and F. poae were collected during the growing period as well as during various stages of the malting process. In addition, naturally infected malt was brewed in pilot scale and samples were collected throughout the process. The samples were assayed for hydrophobin content using an ELISA method. The results showed that fungi produced hydrophobins that accumulated during barley grain development in the field, but that production was more pronounced during malting. Prolonged storage of barley tended to reduce the ability of fungi to produce hydrophobins in malting. Studies on the fate of hydrophobins during the brewing process revealed that mashing released hydrophobins from the malt into the wort. Some loss of hydrophobins occurred throughout the brewing process with spent grains, cold break (wort boiling) and surplus yeast. In addition, the beer filtration step reduced hydrophobin levels. Despite the substantial loss of hydrophobins during brewing, the level was high enough to induce the gushing detected in the final beer.  相似文献   

9.
For investigating carryover of some organophosphorus pesticide residues in the cereal food chain from grain to consumer, a study was set up on wheat bran, flour and cookies, with and without bran. Special emphasis was given to malathion and chlorpyrifos-methyl residues in cookies for better protection of consumers. Pesticide-free wheat was placed in a small-scale model of a commercial storage vessel and treated with these pesticides. The residue levels of insecticides were determined in wheat, as well as in bran, flour and cookies produced from stored wheat at various time intervals during storage. A multiresidue analysis was performed using GC–NPD and GC–MS. Malathion and chlorpyrifos-methyl residue levels were higher than the maximum residue limits (MRLs) in wheat after 240 days of storage. MRLs established by the EC for malathion and chlorpyrifos-methyl in wheat are 8 and 3 mg kg−1, respectively. The residue levels of insecticides in flour samples also exceeded the MRL (2 mg kg−1 for both insecticides). Eight months of storage were not effective for reducing the residues in wheat to the levels below MRLs. Although, considerable amounts of the insecticides remained in the bran and flour, the cookie processing significantly reduced the concentrations in general. Chlorpyrifos-methyl was more persistent than was malathion and comparatively less degradation occurred during milling and cookie processing due to its physicochemical properties.  相似文献   

10.
A holistic view of the fate of barley starch, arabinoxylan and β-glucan throughout malting and brewing is largely missing. Here, an industrial scale malting trial and pilot brewing trial were performed, and the concentration and structural characteristics of carbohydrates were analysed at 28 key points in the process. The barley starch content decreased during malting from 75.0% to 69.7%. During mashing, malt starch was converted to fermentable sugars (75.3%), dextrin (22.8%) or was retained in spent grains (1.8%). Arabinoxylan was partially hydrolysed during malting. Despite mashing-in at 45°C, no further solubilisation of arabinoxylan was observed during mashing. However, the average degree of polymerisation of the soluble arabinoxylan fraction decreased slightly. During fermentation, the arabinoxylan content decreased to 2.5 g/L. The amount of barley β-glucan decreased gradually in time during malting. Of the solubilised β-glucan, 31% was retained in the spent grains during wort filtration, slightly lowering the β-glucan content in the wort. The β-glucan content remained at 0.5 g/L during fermentation. Sucrose was hydrolysed during mashing, probably by barley invertases. From the total amount of malt used, 41.0% was converted to fermentable sugars. This mashing yield could have been improved by the full hydrolysis to fermentable sugars of the present β-glucan (to 41.1%), the remaining starch in spent grains (to 42.0%) and dextrin in wort (to 50.3%). These results provide more insight into the carbohydrate conversions during malting and brewing and can act as a baseline measurement for future work. © 2020 The Institute of Brewing & Distilling  相似文献   

11.
As one of the major non‐starch polysaccharides in the cloudy wheat beer, arabinoxylan has a crucial influence on the wort viscosity, foam profile and stability of the beer. In this study, the cloudy wheat beer was fermented on a production scale with a ratio of barley to wheat malt of 1:1, during which the changes in arabinoxylan were monitored in order to determine the key steps which influence the content, substitution degree of arabinoxylan (A/X) and average degree of polymerization (avDP) value of crude arabinoxylan during cloudy wheat beer brewing. The results show that the total contents of crude arabinoxylan, arabinose, xylose and galactose increased until the end of mashing and then dropped with the addition of spent grain sparging water. The crude arabinoxylan decreased during the saccharification, and then stabilized at ~10.00 mg/g. During fermentation and storage, the content of crude arabinoxylan did not change remarkably. The A/X remained at ~0.50 in the process of wort preparation and brewing and the avDP value of crude arabinoxylan decreased during saccharification and then stayed at ~3.00 in the fermentation and storage phases, which was lower because the contents of free arabinose, xylose and galactose were not subtracted from the total contents of the sugars. Therefore, wort preparation is shown the key step influencing the changes in crude arabinoxylan during cloudy wheat beer brewing. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

12.
The effects of washing with tap water and different detergent solutions, storage at different temperatures and ultrasonic cleaning on organophosphorus pesticide (trichlorfon, dimethoate, dichlorvos, fenitrothion, and chlorpyrifos) residue levels in raw cucumber was investigated. Analysis was carried out by liquid chromatography–tandem mass spectrometry. Washing with detergent solutions proved more effective than tap water. The organophosphorus pesticides reduced from 31.1% to 98.8% after washing with detergent solutions for 20 min. Among detergent solutions, 5% sodium carbonate solution caused the greatest loss in trichlorfon and dimethoate, and 5% sodium bicarbonate solution caused the greatest loss in dichlorvos, fenitrothion and chlorpyrifos. Storage at 4 °C for 48 h caused pesticides reduction by 60.9–90.2%. Ultrasonic cleaning for 20 min lowered pesticides by 49.8–84.4%. The data indicated that home preparation is effective for the reduction of organophosphorus pesticide residues in raw cucumber and it is useful for reducing the dietary exposure.  相似文献   

13.
In this study, the effects of mashing variables such as mashing-in temperature, time and pH, mash thickness, grist coarseness and composition, and stirring regime on the release of ferulic acid were examined. Ferulic acid is a precursor for the formation of flavour-active volatile phenols and a potent natural antioxidant in beer. Given one barley malt variety, the multitude of choice in setting various process parameters and adding brewery adjuncts during brewhouse operations can give rise to worts with widely varying ferulic acid levels. A clear difference in temperature- and pH-dependence between the release of the water-extracted and the enzymatically hydrolyzed fraction was found. The T,t-dependencies of arabinoxylan-degrading enzyme activities were correlated with ferulic acid release during mashing. Results from laboratory-scale mashing experiments were validated with those from a pilot-scale (5 h) wort production process. Enhancing the enzymatic release of phenolic flavour precursors from bound forms during mashing can greatly enhance the phenolic aroma potential of wort. Optimising this precursor release during mashing may be a means for controlling final volatile phenol levels in beer.  相似文献   

14.
The Svalbard archipelago in arctic Norway receives considerable semivolatile organic contaminant (SOC) inputs from the atmosphere. To measure the history of net SOC accumulation there, we analyzed the upper 40 m of an ice core from Austfonna, the largest ice cap in Eurasia, for several legacy organochlorine (OC) compounds and current-use pesticides (CUPs) including organophosphorus (OP), triazine, dinitroaniline, and chloroacetamide compounds. Five OP compounds (chlorpyrifos, terbufos, diazinon, methyl parathion, and fenitrothion), two OCs (methoxychlor and dieldrin), and metolachlor--an herbicide--had historical profiles in the core. The highest OC concentration observed was aldrin (69.0 ng L(-1)) in the surface sample (1992-1998). The most concentrated OP was dimethoate (87.0 ng L(-1)) between 1986 and 1992. The surface sample also had highest concentrations of pendimethalin (herbicide, 18.6 ng L(-1)) and flutriafol, the lone observed fungicide (9.6 ng L(-1)). The apparent atmospheric persistence of CUPs likely results from little or no oxidation by OH* during the dark polar winter and in spring. Long-range atmospheric pesticide transport to Svalbard from Eurasia is influenced by the positive state of the North Atlantic Oscillation Index since 1980 and also by occasional fast-moving summer air masses from northern Eurasian croplands.  相似文献   

15.
The headspace solid-phase microextraction was developed to examine the organophosphorus (diazinon, malathion, chloropyrifos, quinalphos, profenofos) and organochlorine (chlorothalonil, α-endosulfan and β-endosulfan) pesticide residues in vegetable (cucumber) and fruit (strawberry) samples. The effects of washing by different solutions were evaluated for the reduction of organophosphorus and organochlorine pesticide residues contents. Gas chromatography with electron capture detection was used to analysis the investigated pesticides. The results showed that washing by a non-toxic solution can decrease the concentration of pesticide residues in the fruit and vegetable samples. The data further indicated that acetic acid was the most effective solution in removing the residues of the investigated pesticides from the fruit and vegetable samples when compared to sodium carbonate, sodium chloride and tap water. The amount of pesticides removed by solution washing is related to their water solubility and vapour pressure properties.  相似文献   

16.
The impact of using different combinations of unmalted barley, Ondea Pro® and barley malt in conjunction with a 35% rice adjunct on mashing performance was examined in a series of small scale mashing trials. The objective was to identify the potential optimal levels and boundaries for the mashing combinations of barley, Ondea Pro®, malt and 35% rice (BOMR) that might apply in commercial brewing. Barley and malt samples used for the trials were selected from a range of Australian commercial barley and malt samples following evaluation by small‐scale mashing. This investigation builds on previous studies in order to adapt the technology to brewing styles common in Asia, where the use of high levels of rice adjunct is common. Mashing with the rice adjunct, combined with differing proportions of barley, Ondea Pro® and malt, resulted in higher extract levels than were observed for reference mashing, using either 100% malt reference or 100% barley reference and Ondea Pro® enzymes. Synergistic mashing effects between barley, Ondea Pro® and malt were observed for mash quality and efficiency parameters, particularly wort fermentability. The optimum levels of barley in the grist (with the relative level of Ondea Pro®) were assessed to be in the range 45–55% when paired with 10–20% malt and 35% rice. When the proportion of malt was reduced below 10% of the grist, substantial reductions in wort quality were observed for wort quality parameters including extract, lautering, fermentability, free amino nitrogen and haze. Extension of this new approach to brewing with rice adjuncts will benefit from further research into barley varietal selection in order to better meet brewer's quality requirements for the finished beer. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

17.
建立了气相色谱同时测定小麦胚片中敌敌畏、灭线磷、硫线磷等26种有机磷农药残留量的方法,并通过考察基质效应比较了两种不同前处理方式对测定结果的影响。通过选用DB-17型毛细管色谱柱和程序升温实现目标物的分离,采用火焰光度检测器进行定量测定。结果表明,26种有机磷农药在0.010~1.0 μg/mL的浓度范围内与其对应的峰面积呈线性关系,线性相关系数均大于0.999,方法定量限在0.005~0.010 mg/kg之间。对样品进行三个水平的加标回收试验,结果表明,加标回收率在80.61%~116.19%之间,测定结果的相对标准偏差在0.62%~6.83%之间,该方法可应用于小麦胚片中26种有机磷农药的定性筛查和定量测定,在实际样品测定中筛查出马拉硫磷、甲基毒死蜱和杀螟硫磷,含量分别为0.074±0.005、0.062±0.004、0.043±0.002 mg/kg。  相似文献   

18.
为建立气相色谱技术同时测定茶叶中多种有机磷农药残留的方法,并用该方法检测来自云南省5 个普洱茶主产区的30 个普洱茶样品中的有机磷农药残留量,为其安全性评价提供科学数据。样品以乙酸乙酯为提取剂经超声波萃取,提取液用活性炭小柱净化,采用气相色谱火焰光度检测器检测,外标法定量。该方法在3 个添加水平下,9 种组分的平均回收率为71.1%~113.8%,相对标准偏差为0.9%~13.3%。方法的检测限为1.0~2.5μg/kg。普洱茶样品检出的农药有敌敌畏、乙酰甲胺磷、乐果、杀螟硫磷、马拉硫磷、喹硫磷、三唑磷,其中杀螟硫磷和乐果的检出率较高,但含量均低于欧盟限量标准。从茶叶中有机磷农药残留量来看,普洱茶具有较高的食用安全性。  相似文献   

19.
To investigate differences in protein content, all barley malt beer, wheat/barley malt beer and all wheat malt beer were brewed, and the protein during mashing, wort, fermentation and beer determined. It was shown that protein was mainly extracted during mashing and the protein rest phase, decreased in the early stages of fermentation and remained almost steady during wort boiling and cooling, in the middle and late stages of fermentation. By separating beer foam from beer, similar protein bands of 51.7, 40.0, 27.3, 14.8, 6.5 and < 6.5 kDa appeared in the three beers, defoamed beers and beer foams using the sodium dodecyl sulphate polyacrylamide gel electrophoresis. Quantitatively, protein bands of 6.5–14.8 and <6.5 kDa had the highest contents in the three beers. Unique bands at 34, 29.2, 23.0, 19.7 and 17.7 kDa were found in beer, defoamed beer and beer foam from wheat beer and all‐wheat malt beer, respectively. Wheat beer foam showed the best foam stability and the protein in all barley malt beer showed the best migration to the foam. The beer foam properties were influenced by not only protein content but also protein characteristics and/or origin. It is suggested that the barley malt contributed the beer foam ‘skeleton protein’ while protein components from wheat malt kept the foam stable. © 2018 The Institute of Brewing & Distilling  相似文献   

20.
Incompletely degraded corn starch particles often seriously inhibit wort filtration and decrease a brewery’s beer productivity. Herein, the inhibiting factors of starch hydrolysis and the application of amylases to degrade residual starch were evaluated. The results showed that resistant starch and the amylopectin of corn starch were not the inhibiting factors. Almost all residual starch left in the spent grain layer was proved to be degradable by amylases. Mesophilic α-amylase was selected through a comparison of nine amylases, which increased the wort filtration rate by 44%. However, >6% of corn starch was still left after mashing when a high ratio of corn starch to water (>1:3.5) was used in liquefaction. The low water content in liquefaction was proved to be the key inhibiting factor. Considering the existing equipment and brewing technology, the application of mesophilic α-amylases should be a simple and effective method for enhancing the hydrolysis of corn starch and accelerating the wort lautering process during a high-adjunct-ratio beer brewing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号