首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Screening of drug‐resistant mutants of sake yeast strains has been a major method for creation of superior strains. We attempted to create a valproic acid (VPA)‐resistant mutant strain from sake yeast Kyokai No. 7 (K7). VPA is a branched‐chain fatty acid and is an inositol synthesis inhibitor in mammals and yeast. We succeeded in isolating a mutant of strain K7 that can survive long‐term in a VPA‐containing medium. This strain, K7‐VPALS, is significantly more resistant to not only VPA‐induced cell death but also ethanol in comparison with the parent strain. Further experiments showed that the new strain is likely to have a deficiency in inositol and/or phosphatidylinositol synthesis. The major characteristics of sake brewed by strain K7‐VPALS (compared with K7) were lower amino acidity, higher isoamyl acetate content without an increase in the isoamyl alcohol level and changes in constituent organic acids, particularly higher malate and succinate but lower acetate concentrations. In addition, taste sensor analysis revealed that K7‐VPALS‐brewed sake has milder sourness and higher saltiness or richness than K7‐brewed sake does. High isoamyl acetate production may be related to a deficiency in phosphatidylinositol because this compound directly inhibits alcohol acetyltransferase, an enzyme responsible for isoamyl acetate synthesis. Strain K7‐VPALS grew more rapidly than the parental strain did in a medium containing acetate as a sole carbon source, indicating that K7‐VPALS effectively assimilates acetate and converts it to malate and succinate through the glyoxylate cycle. Thus, strain K7‐VPALS shows improved characteristics for brewing of high‐quality sake. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

2.
Beer brewing using a fusant between a sake yeast (a lysine auxotrophic mutant of sake yeast K-14) and a brewer's yeast (a respiratory-deficient mutant of the top fermentation yeast NCYC1333) was performed to take advantage of the beneficial characteristics of sake yeasts, i.e., the high productivity of esters, high tolerance to ethanol, and high osmotolerance. The fusant (F-32) obtained was different from the parental yeasts regarding, for example, the assimilation of carbon sources and tolerance to ethanol. A brewing trial with the fusant was carried out using a 100-l pilot-scale plant. The fusant fermented wort more rapidly than the parental brewer's yeast. However, the sedimentation capacity of the fusant was relatively low. The beer brewed using the fusant contained more ethanol and esters compared to that brewed using the parental brewer's yeast. The fusant also obtained osmotolerance in the fermentation of maltose and fermented high-gravity wort well.  相似文献   

3.
The ratio of organic acids in sake mash is a very important factor affecting the taste of alcoholic beverages. To alter the organic acid composition in sake and investigate the mechanism of producing organic acids in sake mash, we examined the effect of NAD+-dependent isocitrate dehydrogenase (IDH) activity deficiency in sake yeast by disrupting the IDH1 or IDH2 gene. Two haploid strains (MATa or MATa genotype) isolated from sake yeast Kyokai no. 701 (K701) were disrupted using the aureobasidin A resistant gene (AUR1-C) as a selection marker. These disruptants were defective in the activity of IDH and failed to grow on medium containing glycerol as a sole carbon source. Sake meter, alcohol concentration, and glucose consumption in sake brewed with the disruptants were reduced in comparison with those of the parental strains. The production of citrate (including isocitrate), malate, and acetate by the disruptants was increased, but succinate production was reduced to approximately half in comparison with the parental strains. These results indicate that approximately half the amount of succinate in sake mash is produced via the oxidative pathway of the TCA cycle in sake yeast. While the diploid strain constructed by mating haploid disruptants for the IDH gene exhibited stronger fermentation ability than the haploid disruptants, almost similar profiles of components in sake were obtained for both strains.  相似文献   

4.
5.
6.
Malate is an important taste component of sake (a Japanese alcoholic beverage) that is produced by the yeast Saccharomyces cerevisiae during alcoholic fermentation. A variety of methods for generating high malate‐producing yeast strains have been developed to date. We recently reported that a high malate‐producing strain was isolated as a mutant sensitive to dimethyl succinate (DMS), and that a mutation in the vacuolar import and degradation protein (VID) 24 gene was responsible for high malate productivity and DMS sensitivity. In this work, the relationships between heterozygous and homozygous mutants of VID24 and malate productivity in diploid sake yeast were examined and a method was developed for breeding a higher malate‐producing strain. First a diploid yeast was generated with a homozygous VID24 mutation by genetic engineering. The homozygous integrants produced more malate during sake brewing and grew more slowly in DMS medium than wild‐type and heterozygous integrants. Thus, the genotype of the VID24 mutation influenced the level of malate production and sensitivity to DMS in diploid yeast. Then a homozygous mutant from a heterozygous mutant was obtained without genetic engineering by ultraviolet irradiation and culturing in DMS with nystatin enrichment. The non‐genetically modified sake yeast with a homozygous VID24 mutation exhibited a higher level of malate productivity than the parent heterozygous mutant strain. These findings provide a basis for controlling malate production in yeast, and thereby regulating malate levels in sake. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

7.
Sake yeast strains were improved so as to produce larger amounts of isoamyl acetate than the parental strain by isolating econazole-resistant mutants. Econazole, an imidazole antimycotic, directly interacts with unsaturated fatty acids in the yeast cell membrane, where it also inhibits the synthesis of ergosterol and decreases the ratio of unsaturated to saturated fatty acids. In contrast, alcohol acetyltransferase (AATase), which catalyzes the synthesis of isoamyl acetate, is inhibited by unsaturated fatty acids. Fifty econazole-resistant mutants were isolated from a sake yeast, Kyokai no. 701, several of which produced approximately 1.4 to 2.4 times more isoamyl acetate and an almost equal amount of isoamyl alcohol compared with the parental strain. The AATase activities of the mutants in koji extract were 1.2 to 1.4 times higher, and the unsaturated to saturated fatty acid ratios were lower, than in the parental strain.  相似文献   

8.
The sake (traditional Japanese alcoholic beverage) yeast mutant A1 was previously isolated as a strain resistant to an isoprenoid analog. This strain is used for industrial sake brewing because of its increased production of isoamyl acetate. In this study, a physiological event was identified which was closely related to the elevation of alcohol acetyltransferase (AATase) activity in strain A1. This finding was applied for the isolation of another mutant with an improved capacity for flavour compound production. Strain A1 revealed an additional phenotype showing resistance to Cu2+, as seen from its growth and isoamyl acetate production, even in a medium with the copper ion at 6 mM. Mutant strains were successfully isolated with increased isoamyl acetate production capacity from sake yeast strain 2NF on the basis of a Cu2+‐resistant phenotype at a high yield. Among them, strain Cu7 was characterized by its ability to produce isoamyl acetate at the highest concentration under condition where isoamyl alcohol (its precursor) was accumulated to the lowest extent. Such a phenotype of strain Cu7 is applicable for the practical production of an alcoholic beverage of excellent quality in terms of flavour.  相似文献   

9.
Clotrimazole-resistant mutants from sake yeasts show improved fermentative activity in sake mash and pleiotropic drug resistance (PDR). The PDR mechanism is interpreted by overexpression of ATP-binding cassette (ABC) transporters, which extrude various kinds of drugs out of a cell. In a clotrimazole-resistant mutant, CTZ21, isolated from the haploid sake yeast HL69, the levels of mRNA for three major ABC transporter genes, PDR5, SNQ2, and YOR1, markedly increased. These three genes of CTZ21 were disrupted to investigate which participated in the improved fermentative activity of CTZ21. The fermentative activities of deltapdr5 and deltasnq2 strains of CTZ21 were reduced to that of HL69 in the initial and middle stages of fermentation. In the last stage, however, the sake meter [(1/gravity - 1) x 1443] of the deltapdr5 and deltasnq2 strains rose faster than that of HL69. On the other hand, a deltayor1 strain of CTZ21 fermented sake mash in a manner nearly identical to that of CTZ21 until the last stage of fermentation. But in the last stage, fermentation of the deltayor1 slowed down compared with that of CTZ21. A deltayor1 strain of HL69 also exhibited much reduced fermentative activity in the middle and last fermentation stages. The YOR1 gene seems necessary for sake fermentation to be completed efficiently. The ATP content in sake mash brewed with CTZ21 was drastically decreased throughout the whole fermentation period. This low ATP level was restored to a medium level in the cases of both the deltapdr5 and deltasnq2 strains of CTZ21. In contrast, the deltayor1 of CTZ21 exhibited a low ATP level in sake mash in the same manner as CTZ21. These results suggest that the low ATP level of CTZ21 contributes to a certain extent its improved fermentative activity in the initial and middle stages of sake fermentation.  相似文献   

10.
A haploid sake yeast strain derived from the commercial diploid sake yeast strain Kyokai no. 7 showed better characteristics for sake brewing compared to the haploid laboratory yeast strain X2180-1B, including higher production of ethanol and aromatic components. A hybrid of these two strains showed intermediate characteristics in most cases. After sporulation of the hybrid strain, we obtained 100 haploid segregants of the hybrid. Small-scale sake brewing tests of these segregants showed a smooth continuous distribution of the sake brewing characteristics, suggesting that these traits are determined by multiple quantitative trait loci (QTLs). To examine these sake brewing characteristics at the genomic level, we performed QTL analysis of sake brewing characteristics using 142 DNA markers that showed heterogeneity between the two parental strains. As a result, we identified 25 significant QTLs involved in the specification of sake brewing characteristics such as ethanol fermentation and the production of aromatic components.  相似文献   

11.
Several auxotrophic mutants requiring branched chain amino acids (valine, leucine, or isoleucine) were isolated in a strain of Montrachet wine yeast. They were tested for their ability to produce lowered amounts of higher alcohols (‘fusel oil’: isobutyl, active amyl, and isoamyl alcohols) in grape juice fermentations. One strain which required leucine was especially good in this respect. This mutation is recessive and is the result of a deficiency for the enzyme α-isopropylamate dehydratase. In trial fermentations with this mutant, the resulting wines contained up to 20% less total fusel oil and 50% less isoamyl alcohol compared to the parent Montrachet strain. An experienced taste panel did not discern any gross degradation of taste quality in wine made with the mutant strain compared to that made with the parent strain. The mutant strain could be of commercial importance in preparation of distilling material for alcoholic beverages since the reduced fusel oil content would not require any special distillation procedures which are normally used to avoid the unpleasant flavour associated with concentrated higher alcohols. Reduction of the isoamyl alcohol content is particularly significant since this fusel oil component is usually present in the highest amount.  相似文献   

12.
13.
The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non‐homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR‐amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour‐intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ‐mediated integrative transformation with PCR‐amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Tolerance mechanism of the ethanol-tolerant mutant of sake yeast   总被引:2,自引:0,他引:2  
Several ethanol-tolerant mutants have been bred from industrial sake yeasts, but the mechanism of ethanol tolerance in these mutants has not been elucidated. After the determination of the entire genome sequence of Saccharomyces cerevisiae, various methods to monitor the whole-gene expression of the yeast have been developed. In this study, we used a commercially available nylon membrane on which virtually every gene of S. cerevisiae was spotted to compare expression profiles between the ethanol-tolerant mutant and its parent sake yeast to investigate the mechanism of ethanol tolerance in this mutant. As a result, we found that several genes were highly expressed only in the ethanol-tolerant mutant but not in the parent strain. These genes were known to be induced in cells that were exposed to various stresses, such as ethanol, heat, and high osmolarity, or at the stationary-phase but not at the log-phase. In the ethanol-tolerant mutant, the expression level of these stress-responsive genes was further increased after exposure to ethanol. We also found that substances such as catalase, glycerol and trehalose that may have protective roles under stressful conditions were accumulated in high amounts in the ethanol-tolerant mutant. The ethanol-tolerant mutant also exhibited resistance to other stresses including heat, high osmolarity and oxidative stress in addition to ethanol tolerance. These results indicate that the mutant exhibits multiple stress tolerance because of elevated expression of stress-responsive genes, resulting in accumulation of stress protective substances.  相似文献   

15.
高温流化α-化工艺对酿造黄酒风味的影响   总被引:1,自引:1,他引:0  
以传统蒸饭黄酒为参照,分析了高温流化α-化工艺对酿造黄酒风味的影响。结果表明:高温流化α-化米黄酒和蒸饭黄酒的酒精度、糖分、酸度和挥发酯含量基本相同,但氨基酸含量降低。呈味物质中,甜味、鲜味、涩味氨基酸含量相差不大,但苦味氨基酸含量明显低于蒸饭黄酒,有机酸含量则高于蒸饭黄酒;主要呈香物质中,酯类物质的种类增多,含量也高于蒸饭黄酒,以丙醇、异丁醇、异戊醇为代表的高级醇含量明显高于蒸饭黄酒,含氮杂环类香味化合物无论从种类上还是从含量上都明显高于蒸饭黄酒,赋予黄酒特殊的香味。由于2种黄酒的酿造工艺相同,说明大米高温流化α-化工艺是影响酿造黄酒风味的主要因素。  相似文献   

16.
Succinate and malate are the main taste components produced by yeast during sake (Japanese alcohol beverage) fermentation. Sake yeast strains possessing various organic acid productivities were isolated by gene disruption. Sake fermented using the aconitase gene (ACO1) disruptant contained a two-fold higher concentration of malate and a two-fold lower concentration of succinate than that made using the wild-type strain K901. The fumarate reductase gene (OSM1) disruptant produced sake containing a 1.5-fold higher concentration of succinate as compared to the wild-type, whereas the alpha-ketoglutarate dehydrogenase gene (KGD1) and fumarase gene (FUMI) disruptants gave lower succinate concentrations. The Deltakgd1 disruptant exhibited lower succinate productivity in the earlier part of the sake fermentation, while the Deltafum1 disruptant showed lower succinate productivity later in the fermentation, indicating that succinate is mainly produced by an oxidative pathway of the TCA cycle in the early phase of sake fermentation and by a reductive pathway in the later phases. Sake yeasts with low succinate productivity and/or high malate productivity was bred by isolating mutants unable to assimilate glycerol as a carbon source. Low malate-producing yeasts were also obtained from phenyl succinate-resistant mutants. The mutation of one of these mutant strains with low succinate productivity was found to occur in the KGD1 gene. These strains possessing various succinate- and/or malate-producing abilities are promising for the production of sake with distinctive tastes.  相似文献   

17.
Aroma‐active higher alcohols and esters are produced intracellularly in the cytosol by fermenting lager yeast cells, which are of major industrial interest because they determine aroma and taste characteristics of the fermented beer. Wort amino acid composition and their utilization by yeast during brewer's wort fermentation influence both the yeast fermentation performance and the flavour profile of the finished product. To better understand the relationship between the yeast cell and wort amino acid composition, Plackett–Burman screening design was applied to measure the changes in nitrogen composition associated with yeast amino acids uptake and flavour formation during fermentation. Here, using an industrial lager brewing strain of Saccharomyces pastorianus , we investigated the effect of amino acid composition on the accumulation of higher alcohols and volatile esters. The objective of this study was to identify the significant amino acids involved in the flavour production during beer fermentation. Our results showed that even though different flavour substances were produced with different amino acid composition in the fermentation experiments, the discrepancies were not related to the total amount of amino acids in the synthetic medium. The most significant effect on higher alcohol production was exercised by the content of glutamic acid, aromatic amino acids and branch chain amino acids. Leucine, valine, glutamic acid, phenylalanine, serine and lysine were identified as important determinants for the formation of esters. The future applications of this information could drastically improve the current regime of selecting malt and adjunct or their formula with desired amino acids in wort. Copyright © 2017 The Institute of Brewing & Distilling  相似文献   

18.
We constructed self-cloning diploid sake yeast strains that accumulate proline. The appropriate proline level is important for its protective effect against ethanol stress in yeast cells. Sake brewed with the proline-accumulating strains contained two- to threefold more proline than the sake brewed with the parent strain. It was also suggested that intracellular proline does not affect overall fermentation profiles, but reduces fermentation time in terms of ethanol production rate.  相似文献   

19.
The result of sensory evaluation of sake showed that acetic acid imparted desirable acidity when the proportion of acetic acid to lactic acid was about 1/3, even if the concentration of acetic acid was 0.75 g/l. Glycerol balanced the acidity and brought about a harmony between sweetness and acidity in sake. A high-acetate producing sake yeast (MHA-3) was isolated from mutants having low NADH dehydrogenase (NDE) activity. MHA-3 produced 15 times more acetate and 5 times more lactate than the parental strain Kyokai no. 901 (K-901) in a small-scale sake brewing test using 10 kg of rice. In addition, the concentrations of glycerol in sake brewed with MHA-3 were approximately 1.5-fold higher than in that brewed with K-901. The proportion of acetic acid to lactic acid was about 1/3 in sake fermented with MHA-3 and it exhibited a good balance between sweetness and acidity. The activities of glycerol-3-phosphate dehydrogenase (GPD) and aldehyde dehydrogenase (ALD) in MHA-3 were 1.4-fold and 3.1-fold, respectively, higher than those in K-901 while the activity of NDE was 40% that of K-901. MHA-3 accumulated higher amounts of acetate and glycerol than K-901 in static YNB10 medium. The concentrations of acetic acid produced, depending on the quantity of yeast cells added, increased in conjunction with increases in glycerol produced. We suggest that NDE might be linked with GPD and that the nde mutants, which can be used in sake brewing, produced higher amounts of acetate and glycerol.  相似文献   

20.
Low‐alcohol beer (0.5–1.2% v/v ethanol) is a less common brewing industry output than standard beer but there is an increasing interest in this product, as evidenced by increased attention to health and safety and government policies on alcohol and diet. The main challenge in the production of low‐alcohol beer is the achievement of a product as similar as possible to regular beer, particularly concerning the content of the volatile compounds. These compounds can be lost during the physical removal of alcohol by dialysis, reverse osmosis and vacuum rectification. Consequently, an alternative technique is the use of biological methods, which involve the employment of non‐conventional yeasts. In this paper, 11 non‐conventional yeast strains were tested for low‐alcohol beer production. The strains used belonged to two different species: Saccharomycodes ludwigii and Zygosaccharomyces rouxii. The beer samples produced by these strains were analysed for their ethanol content and main volatile compounds. The S. ludwigii strains were more suitable for brewing low‐alcohol beer, especially strain DBVPG 3010, which also showed a higher content of esters and a lower amount of diacetyl compared with previous reports. The Z. rouxii strains produced an ethanol and diacetyl content above the taste threshold. This screening project can be considered as a first step towards the production of low‐alcohol beer by means of new selected non‐conventional yeasts. Copyright © 2015 The Institute of Brewing & Distilling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号