首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
将比色法引入原料乳中乳糖含量的测定,在现有基础上考察了比色法在原料乳中测得乳糖含量的反应温度、反应时间、沉淀剂使用量、精密度、重复性等。由实验结果可知,比色法的线性回归方程为y=4.3705x-0.0038,相关系数R2=0.9992,曲线的相关性很好;精密度为0.551%,重复性为1.809%,加标回收率为100.434%,乳糖盲样测定结果也与实际相符,用该方法进行原料乳中乳糖的测定是切实可行的。  相似文献   

2.
目的:实现牛乳中乳糖含量快速检测。方法:建立基于钙型糖柱和高效液相色谱测定牛乳中乳糖的新方法。牛乳通过0.2 g/mL三氯乙酸溶液沉淀蛋白质,所得滤液稀释100倍并过滤膜后进入高效液相色谱系统,经过钙型糖柱分离,蒸发光散射检测器进行检测。结果:乳糖在线性范围(20~100 mg/L)内,色谱峰面积和质量浓度之间具有较好的相关性,R2为0.999 8。乳糖加标水平为15,40,80 mg/g时,回收率为90.96%~98.23%,检出限为3.6 μg/g,定量限为12 μg/g,在6 min内实现乳糖浓度的测定。并且用该方法测定11种市售乳样品,测得结果与国标(GB 5009.8—2016)法基本一致。结论:该方法的精密度、重复性、加标回收率均符合有关规定,检测结果准确且耗时短,适用于快速检测牛乳中的乳糖含量。  相似文献   

3.
固定化酶生产低乳糖牛乳的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
以离子交换树脂D151为载体,采用吸附交联法固定化黑曲霉来源乳糖酶,并将固定化酶装填于填充床反应器中处理牛乳,研究固定化酶连续生产低乳糖乳的条件和使用稳定性.试验结果表明:在50℃下,牛乳以0.53 mL/min的流速通过反应器生产低乳糖乳效果最好,可获得79.7%的乳糖水解率,达到低乳糖乳的要求.固定化酶在最适条件下连续水解牛乳,每隔20 h用pH 6.5缓冲液清洗反应柱,其10d内酶活力丧失12%,此时乳糖水解率为70.1%,达到低乳糖乳的要求.固定化乳糖酶连续使用半衰期约为22d.该研究为工业化利用固定化酶连续生产低乳糖乳提供了技术依据.  相似文献   

4.
钙作为牛乳中一种重要的营养物质,对人体健康起着至关重要的作用,而且牛乳中钙磷比例协调,易被人体消化吸收。因此,准确分析牛乳中钙的形态并能准确测定牛乳中的各种形态的钙含量显得至关重要。有多种方法测定钙离子,但根据牛乳的流体性质以及牛乳中钙形态的特殊性,采用EDTA络合滴定法较为适宜。本研究对EDTA测定牛乳中钙的方法进行了探讨,并从消化方法、指示剂的选择、NaOH添加量、时间、温度等方面进行了深入探讨,优化并完善了EDTA测定牛乳中不同形态钙的试验测定条件。试验结果表明:牛乳中的钙主要以游离钙和蛋白钙2种状态存在,且存在比例稳定。针对牛乳中钙的特殊存在形态,牛乳中总钙含量的最优测定条件为:在260℃的条件下利用V(HNO3):V(HC lO4)=5:1的混合酸对新鲜牛乳样品进行消化分解4 h,消化后采用EDTA滴定法,在pH=12.0的条件下选用0.5%的液体指示剂对新鲜牛乳进行滴定,此条件为测定牛乳样品钙含量的最优条件。  相似文献   

5.
牛乳及乳粉中乳糖的快速测定方法   总被引:1,自引:0,他引:1  
乳糖是牛乳或乳粉中特有的成分。一般牛乳中含有乳糖4.5~5.0%。测定牛乳或乳粉中乳糖含量可了解其成分变化,是否掺有其他代用品存在以及乳牛的健康状况。测定乳糖的方法有斐林氏容量法或重量法,旋光计法和酶化学方法等,这些方法需要较长的检验时间,复杂的设备及各种腐蚀性试剂和熟练的操作技能。因此我们这里介绍一种简便、快速和准确的比色法来测定牛乳或乳粉中乳糖的含量。试验结果与美国 A.O.A.C 方法差异性小,操作简单,便于乳品检验工作者测定。  相似文献   

6.
本实验以全脂牛奶为原料,探究低乳糖高益生菌乳粉的制备工艺,考察水解温度、pH、时间和乳糖酶添加量对水解率的影响。同时通过海藻酸钠-大豆分离蛋白复配壁材微胶囊包埋益生菌,各自制备完成后分别真空冷冻干燥低乳糖牛乳和益生菌微胶囊,干燥结束将低乳糖乳粉与益生菌微胶囊粉按质量比7∶1的比例混合制得低乳糖益生菌乳粉。结果表明,牛乳中乳糖水解的最佳条件为:乳糖酶添加量0.65%、温度40℃、pH值为7.0、水解时间2 h,在此条件下乳糖水解率为72.48%;同时通过复配壁材微胶囊包埋益生菌,复配最佳条件为:海藻酸钠用量2.0 g/100 mL,大豆分离蛋白用量2.0 g/100 mL,氯化钙溶液浓度1%,在此条件下益生菌包埋率可达89.7%;低乳糖益生菌牛乳经冷冻干燥后,产品中活菌数可达1.5×108 CFU/g。低乳糖益生菌乳粉冲调性良好,益生菌微胶囊颗粒饱满,入口滑糯,所得产品具有缓解乳糖不耐受症,调节肠道菌群平衡等功效。  相似文献   

7.
将莱因-埃农氏法引入原料乳中乳糖含量的测定,在现有基础上考察了莱因-埃农氏法在原料乳中测定乳糖含量的沉淀剂使用量、精密度、重复性等。由实验结果可知,莱因-埃农氏法的相对标准偏差(RSD)为0.398%,精密度高,重复性实验的RSD为1.374%,重复性好,加标回收率为100.34%,乳糖盲样测定结果也与实际相符,用该方法进行原料乳中乳糖的测定是切实可行的。  相似文献   

8.
以牛乳为原料,应用来源于乳酸克鲁维酵母产生的乳糖酶(MAXILACT乳糖酶)对牛乳中的乳糖进行水解,经杀菌灭酶、真空浓缩、喷雾干燥,开发了具有营养和保健功效的低乳糖奶粉。MAXILACT乳糖酶最适水解条件pH值为6.6~6.8,水解温度30~40℃。结合乳糖酶在水解过程中,由于微生物对牛乳的影响,低乳糖奶粉生产过程中,牛乳的水解温度10℃,水解时间8 h,乳糖酶添加量0.8 g/L,牛乳经乳糖酶水解,其乳糖水解率达到60%以上。利用乳糖酶对牛乳进行乳糖水解,经杀菌灭酶、真空浓缩、喷雾干燥,在工艺上可行、技术上合理、设备上可操作,产品各项指标均达到低乳糖奶粉的质量指标。  相似文献   

9.
李宏梁  高洁 《食品科技》2012,(1):243-245
酪蛋白是牛乳中的特征性成分,其含量可作为牛乳掺假检验的定量指标。实验结果表明等电点法结合凯氏定氮法能够有效地检测牛乳中酪蛋白含量,测定结果准确,重复性好。实验验证了纯牛乳中酪蛋白含量为2.5%。  相似文献   

10.
主要探讨了利用牛乳中的乳糖直接合成原生低聚半乳糖的可行性,同时低聚半乳糖(GOS)的合成量还能支持到膳食纤维(以低聚半乳糖计≥1.5%)宣称的工艺和配方。进一步,在探索酶法合成低聚半乳糖的过程中,主要通过单因素试验设计和响应面试验设计讨论了β-半乳糖苷酶添加量、牛乳中初始乳糖含量和反应时间对低聚半乳糖的合成量的影响。结果表明,在β-半乳糖苷酶添加量0.09%±0.01%、牛乳中初始乳糖含量6.0%±0.2%、反应时间4.5±0.5 h的条件下, GOS合成量达到2.07%±0.15%。试验结果可有效运用于新型乳品开发。  相似文献   

11.
离子色谱法测定人乳中乳糖   总被引:1,自引:1,他引:0  
目的建立人乳中乳糖的离子色谱检测方法。方法采用阴离子交换柱CarboPac PA20(3 mm×150 mm)进行分离,对淋洗液梯度进行优化分离乳糖标准,建立了人乳中乳糖糖含量的自动分析方法并采用外标法进行定量分析。结果在最佳实验条件下,乳糖方法的线性范围为0.2~20 mg/L,相关系数大于0.999;方法检出限(信噪比为3)为10 mg/kg,定量限(信噪比为10)为30 mg/kg;人乳中乳糖含量日内精密度的RSD为0.72%~1.53%。结论方法优化后,排除了杂质干扰,使乳糖定量更为准确。本方法操作简单、精确、快速,可用于人乳中乳糖的定量。  相似文献   

12.
酵母乳糖酶对牛乳乳糖水解作用的研究   总被引:2,自引:0,他引:2  
采用乳酸克鲁维酵母的乳糖酶(β-乳糖苷酶)对乳糖溶液、喷雾干燥脱脂奶以及全脂奶进行了试验,以确定将乳糖转化成单糖的最适条件。当牛奶中酶浓度为3u/ml时,于40℃反应2小时或4℃反应24小时,约60%的乳糖得以水解。随着乳糖浓度的增高,水解程度也有所提高。当酶浓度为10U/ml时,于40℃反应2小时,90%乳糖得以水解。用自制的乳酸克鲁维酵母的乳糖酶和加拿大lactaid Inc.生产的乳糖酶制剂lactaid水解乳糖无大的差异。  相似文献   

13.
牛奶及乳制品营养丰富,容易消化吸收,人称"白色血液",是最理想的天然食品。近年来我国乳业发展迅速,但与世界平均水平仍存在巨大的差距,制约我国乳业发展的一个重要原因就是乳糖不耐症。利用β-半乳糖苷酶对牛奶进行水解可生成易被人体吸收的葡萄糖、半乳糖及"双歧因子"低聚半乳糖,不仅能解决乳糖不耐症问题,还能增加牛奶的营养价值。本文在单因素初步试验的基础上,以低聚半乳糖合成率为响应指标,通过响应分析法对低乳糖水解工艺进行优化。结果表明,当反应温度为45.3℃、加酶量为2.5mL及反应时间为69.7min时,低聚半乳糖得率达到最大值6.15%。通过乳果糖试剂盒测定水解后低乳糖奶中乳果糖含量,平均含量为158.17mg/L。  相似文献   

14.
旨在探讨乳糖水解程度及热处理方法与Maillard反应的关系,鲜牛乳用中性乳糖酶处理获得不同水解程度的低乳糖牛乳,然后对牛乳进行不同的热处理,处理后的样本进行Maillard反应程度评价。采用葡萄糖氧化酶法测定不同水解时间的牛乳中葡萄糖质量浓度和乳糖水解率,用高效液相色谱法和紫外分光光度法分别测定水解后牛乳经不同热处理后的糠氨酸和5-羟甲基糠醛(5-hydroxymethylfurfural,5-HMF)含量及牛乳褐变程度的OD值。结果表明,随着乳糖水解时间的延长,牛乳中的葡萄糖含量呈增加的趋势,葡萄糖质量浓度从0.00 mg/100 m L增加到1 721.33 mg/100 m L,但增加趋势逐渐变缓;乳糖水解率从0%增加到70.33%,水解时间2.0 h后的牛乳水解率达到了50%以上。糠氨酸含量呈上升的趋势(P0.05),水解时间在3.0 h以上并经75℃、30 min热处理的牛乳,糠氨酸含量超过了190 mg/100 g pro;水解时间为0.5 h及以上并经75℃、15 s热处理的牛乳,糠氨酸含量超过了12 mg/100 g pro。生鲜牛乳和水解后经75℃、30 min热处理的牛乳,均未检测到5-HMF,水解后经75℃、15 s热处理的牛乳,随乳糖水解时间的延长,牛乳中5-HMF含量增加显著(P0.05)。牛乳的褐变程度随乳糖水解时间显著增加(P0.05),且乳糖酶水解后75℃、30 min热处理的牛乳的褐变程度明显高于75℃、15 s热处理的牛乳。本研究结果说明,乳糖经过酶水解后的牛乳,长时间热处理会加重乳Maillard反应,影响乳的蛋白质品质。  相似文献   

15.
选用市售同种品牌不同年龄段的奶粉,采用莱茵—埃农氏法和高效液相色谱—示差折光检测法对其乳糖和蔗糖进行测定,分析乳糖和蔗糖的差异,并对两种分析方法的结果进行比较,为奶粉中乳糖和蔗糖的检测方法提供依据。结果表明,莱茵—埃农氏法和高效液相色谱—示差折光检测法相比,高效液相色谱—示差折光检测法测定乳糖和蔗糖含量的准确度更高,蔗糖和乳糖的线性范围均为2~12 mg/mL,相关系数分别为0.999 3、0.999 6,精密度实验结果表明,相对标准偏差分别为2.53%、3.81%,平均加样回收率分别为99.70%、101.06%。高效液相色谱—示差折光检测法结果准确、分析时间短、前处理简单,适用于快速测定奶粉中蔗糖和乳糖含量。  相似文献   

16.
应用高效液相色谱快速测定奶粉中的乳糖,蔗糖,葡萄糖   总被引:7,自引:0,他引:7  
讨论了应用高效液相色谱(HPLC)对奶粉及调制奶粉中的乳糖,蔗糖,葡萄糖的一种快速测定方法。样品经简单的前处理后由Carbohydrate Analysis柱分离,流动相为乙腈/水,示差折光检测,奶粉中乳糖,蔗糖,葡萄糖完全分离并定量测定。方法简便,快速,结果令人满意。  相似文献   

17.
Changes in the concentrations of glucose and galactose were measured in the peripheral blood of ten piglets after they had ingested milk during a natural sucking. In addition, the mild stress associated with the experimental procedure was determined by sampling nine fasted piglets over a period of 9 to 12 min. During this period there was a significant increase in the concentration of glucose in the blood of the piglets but no change in the concentration of galactose. After milk ingestion during a natural sucking the concentrations of both glucose and galactose increased from 5.7 mM and 19 microM to reach peak values of 7.7 mM and 122 microM, respectively, by 30 to 35 min. The concentrations of glucose and galactose returned to initial values in 60-80 min and 80-100 min, respectively, after sucking. Since the change in the concentration of galactose in the peripheral blood was much lower than the change in the concentration of glucose, we conclude that galactose was rapidly removed by the livers of sucking piglets. However, after the ingestion of milk the percentage increase (from initial to peak values) in the concentration of galactose in the blood was much larger (650%) than the increase in the concentration of glucose (43%). Thus, we propose that the determination of galactose in the peripheral blood may provide a qualitative method for monitoring the digestion and absorption of milk lactose in sucking piglets.  相似文献   

18.
The valuable lactose derivatives lactulose and epilactose can be derived from lactose either by the Lobry de Bruyn-Alberda van Ekenstein transformation during heat treatments or by enzymatic conversion using cellobiose 2-epimerases (EC 5.1.3.11). The chromatographic determination of lactose, lactulose, and epilactose in milk is challenging, due to the variable ratio of the three saccharides and their similar retention properties. In this work, a dual high-performance liquid chromatography (HPLC) analysis for the quantification of lactose, lactulose, and epilactose in milk samples was developed and validated. The samples originated from an enzymatic lactose conversion using the cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Application of this enzyme led to the formation of high lactulose concentrations (28.0 g/L) in milk. The dual HPLC analysis utilized a combination of two chromatographic separation techniques, configured in two parallel systems. After precolumn derivatization, the samples were analyzed as follows: Method 1 determined the concentration of lactose and epilactose using a C18 column with an ion-pair reagent as eluent, coupled with a UV detector. Method 2 determined the concentration of lactulose using a trimodal stationary phase (hydrophilic interaction, anion- and cation-exchange properties) with acetonitrile/ammonium formiate buffer as eluent, coupled with an evaporative light scattering detector. Both methods were validated in terms of linearity, precision and recovery. The revealing detection limits in the milk samples were 3.32 mg/L for lactose, 4.73 mg/L for epilactose and 139 mg/L for lactulose. The dual HPLC analysis presented allows accurate lactose, lactulose, and epilactose separation in complex food matrices such as milk.  相似文献   

19.
Lactose has different uses in the dairy, food, and pharmaceutical industries. Being aware of the different forms of lactose and their concentrations can be very helpful in managing dairy product quality, properties, and manufacturing efficiency. Correct measurement and reporting of lactose concentration in milk and other dairy products will be of increased importance in the future as more value-added uses of lactose are developed and as milk lactose data are used in farm management decision making. Lactose should be reported as anhydrous lactose because lactose data will be used to make increasingly important decisions in dairy processing, dairy product labeling, and milk production in the future. Lactose also plays an important role in milk synthesis within a cow. Milk production factors and dairy cattle breed selection influence the amount of high value fat and protein produced per unit of lactose. If the off-farm value of lactose remains low, more attention may be focused on using ultrafiltration to process milk and leave 50 to 60% of the lactose and water from milk at the farm to recover the energy value of the lactose as feed and reduce the hauling cost of the high value components of milk to a dairy product manufacturing factory. Many methods exist to determine lactose concentration, but the most important methods are enzymatic assays, HPLC, and mid-infrared analysis. New, value-added uses for lactose need to be developed. Consistent and accurate methods of lactose measurement and consistent expression of lactose results will support this development process. Starting in January 2017, the USDA Federal Milk Market Laboratories began reporting lactose content of milk as anhydrous lactose and discontinued the reporting of lactose by difference.  相似文献   

20.
Changes in milk composition during a milking are well characterized, but variation in milk fatty acid (FA) profile is not well described and may affect the accuracy of in-line milk composition analyzers and could potentially be used for selective segregation of milk. Within-milking samples were collected from 8 multiparous high-producing Holstein cows (54.86 ± 6.8 kg of milk/d; mean ± standard deviation). A milk-sampling device was designed to allow collection of multiple samples during a milking without loss of vacuum or interruption of milk subsampling. Milk was collected during consecutive morning and afternoon milkings (12-h intervals) and was replicated 1 wk later. Each sample represented approximately 20% of the milking and was analyzed for fat, true protein, and lactose concentration and FA profile. Milk fat concentration markedly increased over the course of milk let down (4.4 and 4.2 percentage units at the a.m. and p.m. milking, respectively), whereas milk fat globule size did not change. Milk protein and lactose concentration decreased slightly during milking. Modest changes in milk FA profile were also observed, as milk de novo and 16-C FA concentrations increased approximately 10 and 8%, respectively, whereas the concentration of preformed FA decreased about 7% during the milking. In agreement, mean milk FA chain length and unsaturation modestly decreased during milking (0.59 and 0.014 U, respectively). The observed changes in milk fat concentration during a milking are consistent with previous reports and reflect the dynamic nature of milk fat secretion from the mammary gland. Changes in milk FA profile are not expected to practically affect the accuracy of spectroscopy methods for determination of milk fat concentration. Furthermore, the small variation in FA profile during a milking limits the use of within-milking milk segregation to tailor milk FA profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号