首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of diclofenac with ozone in aqueous solution   总被引:2,自引:0,他引:2  
Ozonation of diclofenac in aqueous solution in the presence and absence of an *OH scavenger, tertiary butanol (t-BuOH), was studied, and the most important reaction intermediates and products were identified. The second-order O3 rate constantwas determined by competition with buten-3-ol and was found to be 6.8 x 10(5) M(-1) s(-1) at 20 degrees C. From this high rate constant, it has been concluded that O3 must initially add on the amino nitrogen. Decomposition of the adduct results in the formation of O3*- (--> *OH) and aminyl radical precursors. A free *OH yield of 30% was estimated based on the HCHO yields generated upon reaction of *OH with 0.01 M t-BuOH. Almost all diclofenac reacted when the molar ratio of O3/diclofenac was approximately 5:1 in the presence of t-BuOH and approximately 8:1 in its absence. As primary reaction products (maximum yield), diclofenac-2,5-iminoquinone (32%), 5-hydroxydiclofenac (7%), and 2,6-dichloroaniline (19%) were detected with respect to reacted diclofenac in the presence of t-BuOH. These primary products degraded into secondary ones when the O3 dose was increased. In the *OH-mediated reaction (absence of t-BuOH) small yields of 5-hydroxydiclofenac (4.5%), diclofenac-2,5-iminoquinone (2.7%), and 2,6-dichloroaniline (6%) resulted. Practically all Cl- (95%) was released in the absence of t-BuOH but only about 45% in the presence of t-BuOH at an O3/diclofenac molar ratio of 10: 1. Based on the reaction products, mechanisms that may account for the high O3 consumption during ozonation of diclofenac are suggested. For technical applications, adequate supply of O3 is needed not only to eliminate diclofenac, but also for the degradation of its potentially toxic products like diclofenac-2,5-iminoquinone and 5-hydroxydiclofenac.  相似文献   

2.
The ozone decomposition quantum yield (phi) in millimolar and higher-concentration aqueous tertiary butanol solution is 0.64 +/- 0.05 (observed over a wavelength range from 250 to 280 nm) and rises toward lower tertiary butanol concentrations (phi approximately 1.5 at 10(-5) M at pH 2) on account of the onset of the well-known *OH-radical-induced chain reaction. The destruction of the organic is initiated by hydrogen-atom abstraction through OH radicals which are produced via the reaction of the photolytically generated O(1D) with the solvent water at a quantum yield of phi(*OH) of about 0.1. There is no decomposition of ozone in the dark on the time scale of the photolysis experiment. The efficiency of tertiary butanol destruction with respect to ozone consumption ([O3]0 = 3 x 10(-4) M), defined by the ratio delta[t-BuOH]/delta[O3], termed eta(t-BuOH), is 0.26 at millimolar tertiary butanol concentrations, determined at the stage of essentially complete ozone consumption. It diminishes toward lower tertiary butanol concentrations (delta[t-BuOH]/delta[O3] approximately 0.17 at [t-BuOH]0 = 1 x 10(-4) M). Part of the effect of the ozone, apart from being a source of *OH radicals, rests on the intervention of HO2*/O2*- which is produced in the course of the peroxyl-radical chemistry of the tertiary butanol in this dioxygen-saturated environment and converted into further *OH radical by reaction with ozone. Moreover in this system, organic free radicals and peroxyl radicals react with the ozone. On the basis of the experimental and mechanistic-simulation data, the quantum yield of direct (by hv) ozone cleavage in aqueous solution is estimated at about 0.5.  相似文献   

3.
Methanol is used to measure the yield of *OH radicals produced in the photolysis of H2O2 in aqueous solutions. The UV photolysis of H202 generates *OH radicals, which in the presence of methanol, oxygen, and phosphate buffer form formaldehyde, namely, phi(HCHO) = phi(*OH). The quantum yield of *OH has been redetermined in view of literature inconsistencies resulting in phi(*OH) = 1.11 +/- 0.07 in the excitation range of 205-280 nm. The constancy of phi(*OH) and the ease and sensitivity of the formaldehyde product analysis makes the H2O2/CH3OH system suitable for polychromatic UV actinometry. In addition, the relatively low cost of the main components and the possibility of destroying the methanol before disposal qualify the system for both monochromatic and polychromatic actinometry in a large volume of water. The H2O2/CH3OH system was applied in different commercial UV photoreactors.  相似文献   

4.
A photocatalyst of oxygen-donor coordination to iron, complex of 5-sulfosalicylic acid (SSA) with ferric ion, supported on resin to cycle Fe3+/Fe2+ center under visible irradiation can effectively generate *OH radicals from H2O2, leading to degradation of organic pollutants in water. The higher turnover number was achieved by this catalyst for the degradation of model compound than those reported for the general N-donor ligands catalysts. The reversible "on/ off" switching of Fe3+/Fe2+ complexation with SSA, coupled with the phenol/phenoxyl radical conversion of the o-phenoxyl moiety of SSA, produces an ideal catalytic system that separates the Fenton reaction and the followed oxidations by *OH radicals (in water phase) from the regeneration of the catalytic species, Fe (SSA)2-, which occurs on the surface of resin. This system not only inhibits the undesired destruction of the ligands by *OH radicals, improving the stability of the catalyst, but also avoids the unnecessary decomposition of H2O2 into HO2* that occurs in the homogeneous Fenton system. Therefore, the system suggests an efficient utilization of H2O2 for degradation of organic pollutants.  相似文献   

5.
Electrostatic effects influence the oxidation rates of charged dissolved organic compounds in systems where the hydroxyl radical (*OH) is produced by the iron oxide-catalyzed decomposition of hydrogen peroxide (H2O2). Experiments were performed using goethite and the *OH probes 14C-labeled formic acid, 2-chlorophenol (2-CP), and nitrobenzene. At pH 4 and an ionic strength of 0.01 M, formic acid (pKa = 3.745) detected a steady-state concentration of *OH ([*OH]ss, calculated as a solution average) approximately 50 times higher than the two neutral probes did in the same systems, indicating significant enrichment of formate at the surface of the positively charged iron oxide where the *OH is being produced. Increasing the pH and ionic strength decreased formic acid oxidation rates by factors consistent with predicted decreases in electrostatic effects. In the presence of high 2-CP concentrations, the [*OH]ss measured by formic acid decreased with time, and goethite coagulation increased, due to loss of positive charge on the oxide surface as the oxidation products of 2-CP complexed surface Fe species. The [*OH]ss detected by 2-CP did not change significantly, indicating that neither goethite coagulation nor surface complexation of 2-CP oxidation products interfered with the rate of *OH generation; however, such an effect could have occurred in experiments using dissolved Fe instead of goethite. Model predictions of organic compound oxidation rates in mineral-catalyzed Fenton-like systems were improved by taking electrostatic effects into account.  相似文献   

6.
7.
The photo-Fenton reaction, the reaction of photoproduced Fe(II) with H2O2 to form the highly reactive hydroxyl radical (OH*), could be an important source of OH* in sunlit natural waters. To determine if the photo-Fenton reaction is significant in mildly acidic surface waters, we conducted experiments simulating conditions representative of natural freshwaters using solutions of standard fulvic acid and amorphous iron oxide at pH 6.0. A probe method measuring 14CO2 produced by the reaction of 14C-labeled formate with OH* was used to detect small OH* production rates without otherwise influencing the chemical reactions occurring in the experiments. Net H2O2 accumulation was simultaneously measured using an acridinium ester chemiluminescence method. Measured losses of H2O2 by reaction with Fe(II) in dark experiments produced approximately the expected quantities of OH*. The difference between H2O2 accumulation in the presence and absence of Fe(III) in fulvic acid solutions exposed to light was interpreted as the loss of H2O2 by reaction with photoproduced Fe(II), consistent with measured OH* production rates. The Fe ligand desferrioxamine mesylate eliminated both OH* production and H2O2 photoloss induced by Fe. Our results imply that when Fe is a major sink of H2O2, the photo-Fenton reaction is likely to be the most important source of OH*, leading to a significant sink of organic compounds in a wide variety of sunlit freshwaters.  相似文献   

8.
Oxidative degradation of aqueous organic pollutants, using 4-chlorophenol (4-CP) as a main model substrate, was achieved with the concurrent H(2)O(2)-mediated transformation of Cr(III) to Cr(VI). The Fenton-like oxidation of 4-CP is initiated by the reaction between the aquo-complex of Cr(III) and H(2)O(2), which generates HO(?) along with the stepwise oxidation of Cr(III) to Cr(VI). The Cr(III)/H(2)O(2) system is inactive in acidic condition, but exhibits maximum oxidative capacity at neutral and near-alkaline pH. Since we previously reported that Cr(VI) can also activate H(2)O(2) to efficiently generate HO(?), the dual role of H(2)O(2) as an oxidant of Cr(III) and a reductant of Cr(VI) can be utilized to establish a redox cycle of Cr(III)-Cr(VI)-Cr(III). As a result, HO(?) can be generated using both Cr(III)/H(2)O(2) and Cr(VI)/H(2)O(2) reactions, either concurrently or sequentially. The formation of HO(?) was confirmed by monitoring the production of p-hydroxybenzoic acid from [benzoic acid + HO(?)] as a probe reaction and by quenching the degradation of 4-CP in the presence of methanol as a HO(?) scavenger. The oxidation rate of 4-CP in the Cr(III)/H(2)O(2) solution was highly influenced by pH, which is ascribed to the hydrolysis of Cr(III)(H(2)O)(n) into Cr(III)(H(2)O)(n-m)(OH)(m) and the subsequent condensation to oligomers. The present study proposes that the Cr(III)/H(2)O(2) combined with Cr(VI)/H(2)O(2) process is a viable advanced oxidation process that operates over a wide pH range using the reusable redox cycle of Cr(III) and Cr(VI).  相似文献   

9.
Although it is well-known that As(III) is oxidized to As(V) in the UV/TiO2 system, the main oxidant for that reaction is still not clear. Accordingly, the present study aims at reinvestigating the TiO2-photocatalyzed oxidation mechanism of As(III). We performed a series of As(II) oxidation experiments by using UV-C/H2O2 and UV-A/TiO2, focusing on the effects of competing compounds. The experiment with UV-C/H2O2 indicated that HO2*/O2-* is not an effective oxidant of As(III) in the homogeneous phase. The effects of oxalate, formate, and Cu(II) on the photocatalytic oxidation of As(III) contradicted the controversial hypothesis that HO2*/ O2-* is the main oxidant of As(III) in the UV/TiO2 system. The effect of As(III) on the TiO2-photocatalyzed oxidations of benzoate, terephthalate, and formate was also incompatible with the superoxide-based As(II) oxidation mechanism. Instead, the experimental observations implied that OH* and/or the positive hole are largely responsible forthe oxidation of As(III) in the UV/TiO2 system. To determine which species plays a more significant role, the effects of methanol and iodide were tested. Since excess methanol did not retard the oxidation rate of As(III), OH* seems not to be the main oxidant. Therefore, the best rationale regarding the oxidation mechanism of As(III) in the UV/TiO2 system seems to be the direct electron transfer between As(III) and positive holes. Only with this mechanism, it was possible to explain the data of this study. Besides the mechanistic aspect, an application method for this technology was sought. The usage of UV/TiO2 for oxidizing As(II) requires a posttreatment in which both As(V) and TiO2 should be removed from water. For this objective, we applied FeCl3 and AIK(SO4)2 as coagulants, and the result implied that the combined usage of TiO2 and coagulation might be a feasible solution to treat arsenic contamination around the world.  相似文献   

10.
Most studies on zerovalent iron (ZVI) were mainly focused on the reductive transformation of halo- or nitrocompounds. Oxidation reactions occurring on ZVI have been recently recognized. In this study, we demonstrate that the oxidation pathways on ZVI can be accelerated by the presence of polyoxometalate (POM: nanosized metaloxygen cluster anion) serving as an electron shuttle. The ions, SiW12O40(4-) and PW12O40(3-), can mediate the electron transfer from the Fe0 surface to 02 while enhancing the production of H2O2, which subsequently initiates the OH radical-mediated oxidation through a Fenton-type reaction. The oxidation reaction was completely quenched by adding methanol as an OH radical-scavenger. On the other hand, PMo12O40(3-) completely inhibited the oxidative degradation by irreversibly scavenging an electron and holding it. We systematically investigated the effects of iron loading, the concentration of POM, and pH on the oxidative degradation kinetics of 4-chlorophenol in the POM-mediated ZVI system. The POM-mediated oxidations on ZVI were additionally tested for 12 organic contaminants and the rates were compared. Their oxidative degradation on ZVI was mostly enhanced in the presence of POM (SiW12O40(4-)). The present study provides a good model system upon which the ZVI-based oxidation technologies can be successfully enhanced and modified for further developments.  相似文献   

11.
A novel catalyst was synthesized by direct exchange of ferric ions onto a cationic resin (Amberlite IRA200). Upon visible light irradiation (lambda > 420 nm) in the presence of H2O2, this catalyst was found to be highly effective for the degradation of nonbiodegradable cationic dyes, Malachite green, Rhodamine B, and Methylene blue, even at neutral pH values. It was also easy to separate from the degraded solution. By total organic carbon, FT-IR, and GC-MS analysis, the degradation process of Malachite green was shown to proceed with demethylation and phenyl ring openings into CO2 and small molecular compounds. EPR studies revealed that *OH radicals, other than *OOH/O2*-, were involved as the active species. A possible reaction mechanism is proposed on the basis of all the information obtained under various experimental conditions.  相似文献   

12.
Electrochemical disinfection has emerged as one of the most promising alternatives to the conventional disinfection of water in many applications. Although the mechanism of electrochemical disinfection has been largely attributed to the action of electro-generated active chlorine, the role of other oxidants, such as the reactive oxygen species (ROS) *OH, O3, H2O2, and *O2- remains unclear. In this study, we examined the role of ROS in the electrochemical disinfection using a boron-doped diamond (BDD) electrode in a chloride-free phosphate buffer medium, in order to avoid any confusion caused by the generation of chlorine. To determine which species of ROS plays the major role in the inactivation, the effects of several operating factors, such as the presence of *OH scavenger, pH, temperature, and the initial population of microorganisms, were systematically investigated. This study clearly showed that the *OH is the major lethal species responsible for the E. coli inactivation in the chloride-free electrochemical disinfection process, and that the E. coli inactivation was highly promoted at a lower temperature, which was ascribed to the enhanced generation of O3.  相似文献   

13.
Degradation of trichloroethylene (TCE) in simulated groundwater by Pd and electro-generated H(2) and O(2) is investigated in the absence and presence of Fe(II). In the absence of Fe(II), hydrodechlorination dominates TCE degradation, with accumulation of H(2)O(2) up to 17 mg/L. Under weak acidity, low concentrations of oxidizing ?OH radicals are detected due to decomposition of H(2)O(2), slightly contributing to TCE degradation via oxidation. In the presence of Fe(II), the degradation efficiency of TCE at 396 μM improves to 94.9% within 80 min. The product distribution proves that the degradation pathway shifts from 79% hydrodechlorination in the absence of Fe(II) to 84% ?OH oxidation in the presence of Fe(II). TCE degradation follows zeroth-order kinetics with rate constants increasing from 2.0 to 4.6 μM/min with increasing initial Fe(II) concentration from 0 to 27.3 mg/L at pH 4. A good correlation between TCE degradation rate constants and ?OH generation rate constants confirms that ?OH is the predominant reactive species for TCE oxidation. Presence of 10 mM Na(2)SO(4), NaCl, NaNO(3), NaHCO(3), K(2)SO(4), CaSO(4), and MgSO(4) does not significantly influence degradation, but sulfite and sulfide greatly enhance and slightly suppress degradation, respectively. A novel Pd-based electrochemical process is proposed for groundwater remediation.  相似文献   

14.
Microporous solid K3PW12O40 is prepared by precipitation of phosphotungstic acid and potassium ion, followed by calcination. Using this material as photocatalyst, a series of dye pollutants, such as rhodamine B, malachite green, rhodamine 6G, fuchsin basic, and methyl violet, were efficiently degraded in the presence of H202 under visible light irradiation (lambda > 420 nm). The photocatalyst was characterized via SEM, BET surface area, FT-IR, and XRD. The photocatalyst has relative large surface area, and the Keggin structure of phosphotungstic ions is intact during the precipitation and calcination. The degradation kinetics, TOC changes, degradation products, ESR detection of active oxygen species, and the effect of radical scavengers are also investigated to clarify the degradation process and the reaction pathway. The dyes can be facilely bleached and mineralized (ca. 40% of TOC removal for RhB), and the main degradation products of RhB detected, besides CO2, are the small organic acids. They are released from the surface of the catalyst to the bulk solution during the degradation of the dye, which avoids the poisoning of photocatalyst by the intermediates. The formation of active oxygen species such as the O2-*/ HO2* and *OH are detected during the degradation of dye, and they are proposed to be responsible for the degradation of dyes. The K3PW12040 catalyst is very stable and very easily separated from the reaction system for reuse.  相似文献   

15.
Epidemiological studies suggest exposure to airborne particles is responsible for a wide range of adverse health effects, potentially arising from particle-induced oxidative stress. A highly sensitive fluorescence method was employed to measure the production of hydroxyl radical by a broad range of particle types including urban dust, diesel particulate matter, coal fly ash, kaolinite, and silica. Little or no production of *OH was observed in the absence of an added electron donor or H202. In the presence of a biological electron donor (NADPH, 3 mM), the rate of *OH production (ROH) for 3 mg/mL of these particles varied from 23 nM s(-1) for diesel particulate matter (SRM 2975) to 0.20 nM s(-1) for coal fly ash (SRM 2689). No detectable *OH was produced by kaolinite or silica. Hydroxyl radical formation was eliminated under anaerobic conditions and in the presence of catalase, indicating that 02 and H202 are required for its generation. Partial inhibition of *OH formation by superoxide dismutase (SOD) was also observed in some cases, suggesting that superoxide (O2*-) is also involved. The metal chelator deferoxamine mesylate (DFX) in most cases suppressed *OH formation, but diethylenetriaminepentaacetic acid (DTPA) generally enhanced it, implicating metal ion reactions in OH generation as well. The dependence of ROH on NADPH concentration further implicates particle surface reactions in *OH formation. To our knowledge, these measurements provide the first quantitative estimate of ROH for a broad range of particle types.  相似文献   

16.
A Keggin polyoxometalate (POM, i.e., PW12O40(3-)) and its lacunary derivative are immobilized on an anionic exchange resin through electrostatic interaction at pH 4.6 in an aqueous dispersion. The resin-supported POM thus obtained catalyzes the efficient degradation of cationic dye pollutants in the presence of H2O2 under visible-light irradiation. To evaluate the photocatalytic system, degradation of a rhodamine B (RB) dye was investigated in detail using UV-visible spectroscopy, high performance liquid chromatography, and gas chromatography/mass spectrometry techniques to identify the intermediates and final products. Fluorescence lifetime measurements revealed the electron transfer from the visible-light-excited RB molecules to the POMs. Electron paramagnetic resonance measurements, investigation of the effects of *OH and *OOH scavengers on the photoreaction kinetics, and IR analysis indicated that de-ethylation of RB was due to *OOH radicals, but the decomposition of the conjugated xanthene structure was caused by the peroxo species formed by interaction of H2O2 with the lacunary POM loaded on the resin. A total organic carbon removal of ca. 22% was achieved, and the recycle experiment suggested excellent stability and reusability of the heterogeneous catalyst. On the basis of the experimental results, a photocatalytic mechanism is discussed.  相似文献   

17.
The impact of hydroxyl radical (*OH) on the molecular weight distribution of natural organic matter (NOM) was investigated. *OH was generated via the photolysis of hydrogen peroxide (H2O2) by ultraviolet (UV) radiation of 254 nm, also known as UV/ H2O2 advanced oxidation (AO). Additionally, the impact of combined membrane and UV/H2O2 treatment on the molecular weight distribution of NOM was studied. High performance size exclusion chromatography (HPSEC) was used to determine the apparent molecular weight (AMW) distribution of chromophoric NOM (CNOM). Prior to AO, 33% of the CNOM in the water had AMW greater than 1400 Da. Meanwhile, lower AMW CNOM made up smaller amounts of the CNOM, with CNOM of AMW less than 450 Da making up 5% of the total. Under the AO conditions typically applied in drinking water treatment applications, NOM was not mineralized but was partially oxidized resulting in significant reduction in aromaticity. *OH preferentially reacted with higher AMW CNOM and the fragmentation of high AMW CNOM led to the formation of smaller AMW CNOM. Ultrafiltration removed all CNOM greater than 1400 Da AMW and a large portion of other high AMW fractions. In the absence of high AMW CNOM, *OH reacted more readily with all AMW fractions leading to a reduction in concentration of most AMW fractions. Whereas *OH reacted nonspecifically with all AMW fractions, the reaction rate between *OH and CNOM was observed to be dependent on molecular size.  相似文献   

18.
A multivariate kinetic model of aqueous fipronil photodegradation was developed as a function of dissolved organic matter (DOM), bicarbonate, and nitrate at concentrations that bracketthose commonly observed in natural waters (ca. 0-10 mg/L). Several pathways were available for fipronil photodegradation in this system, including direct photolysis and indirect photooxidation by species produced during the illumination of natural waters (e.g., 3NOM*, 1O2*, *OH, *CO3(1-), *OOR, *OOH, e(aq)-, O2(*-)). Product studies indicated thatfipronil was quantitatively converted to fipronil desulfinyl, a product that is associated with direct photolysis alone. DOM was the only variable that affected fipronil degradation; it decreased the rate of fipronil photodegradation primarily through competitive light absorption (i.e., attenuation) and the quenching of fipronil*. The addition of sodium chloride (30 percent per thousand) resulted in a more rapid rate (approximately 20%) of fipronil loss in comparison to equivalent experiments performed without sodium chloride, implying that fipronil may be more photolabile in marine environments.  相似文献   

19.
This work examines the contribution of solution phase reactions, especially those involving a chain reaction mechanism, to the decomposition of hydrogen peroxide (H2O2) and organic compounds in the presence of dissolved iron and ferrihydrite. In solutions at pH 4, where Fe was introduced as dissolved Fe(III), both H2O2 and 14C-labeled formic acid decomposed at measurable rates that agreed reasonably well with those predicted by a kinetic model of the chain reaction mechanism, using published rate constants extrapolated to pH 4. The ratio of the formic acid and H2O2 decomposition rates, as well as the dramatic effect of tert-butyl alcohol on these rates, confirmed that a solution chain reaction mechanism involving *OH controlled the decomposition kinetics of both compounds. In the presence of ferrihydrite as the iron source, the ratio of the rate of formic acid decomposition to that of H2O2 decomposition was significantly lower than that observed in the presence of only dissolved Fe. Moreover, neither rate diminished drastically upon addition of tert-butyl alcohol, indicating that the solution phase chain reaction is not a dominant decomposition pathway of H2O2 and formic acid. Relative decomposition rates of formic acid and a second *OH probe, benzoic acid, were consistent with oxidation of these compounds by *OH. These observations can be reproduced by a kinetic model including (a) decomposition of H2O2 at the iron oxide surface, producing *OH with lower yield than the reaction sequence with dissolved Fe, and (b) low concentrations of dissolved Fe in the presence of ferrihydrite, preventing propagation of the solution phase chain reaction.  相似文献   

20.
SO2-O2-H2O表面催化反应机制的研究是环境科学中的一个重要课题.用格子模型研究了该反应的“干”机理.利用“部分模拟法”得到了三种情况下反应体系的动力学相图:1)无表面吸附物种的脱附;2)吸附态分子O2*或H2O*有一种可脱附;3)O2*和H2O*都可脱附.计算表明,在无脱附的情况下相图上的反应相是一个点;在有一个物种脱附的情况下反应相扩展到一个线性区域;在有两个物种脱附的情况下反应相进一步扩展,成为一个一定大小的面区域.该结果说明,反应物种的脱附对SO2-O2-H2O表面反应的持续进行具有关键性的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号