首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
HXT5 expression is determined by growth rates in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
In the yeast Saccharomyces cerevisiae, hexose transporter (Hxt) proteins transport glucose across the plasma membrane. The Hxt proteins are encoded by a multigene family with 20 members, of which Hxt1-4p and Hxt6-7p are the major hexose transporters. The remaining Hxt proteins have other or unknown functions. In this study, expression of HXT5 under different experimental set-ups is determined. In glucose-grown batch cultures, HXT5 is expressed prior to glucose depletion. Independent of the carbon source used in batch cultures, HXT5 is expressed after 24 h of growth and during growth on ethanol or glycerol, which indicates that growth on glucose is not necessary for expression of HXT5. Increasing the temperature or osmolarity of the growth medium also induces expression of HXT5. In fed-batch cultures, expression of HXT5 is only observed at low glucose consumption rates, independent of the extracellular glucose concentration. The only common parameter in these experiments is that an increase of HXT5 expression is accompanied by a decrease of the growth rate of cells. To determine whether HXT5 expression is determined by the growth rate, cells were grown in a nitrogen-limited continuous culture, which enables modulation of only the growth rate of cells. Indeed, HXT5 is expressed only at low dilution rates. Therefore, our results indicate that expression of HXT5 is regulated by growth rates of cells, rather than by extracellular glucose concentrations, as is the case for the major HXTs. A possible function for Hxt5p and factors responsible for increased expression of HXT5 upon low growth rates is discussed.  相似文献   

2.
3.
We investigated the role of hexose transporters in a Saccharomyces cerevisiae strain derived from an industrial wine strain by carrying out a functional analysis of HXT genes 1-7 under enological conditions. A strain in which the sugar carrier genes HXT1-HXT7 were deleted was constructed and the HXT genes were expressed individually or in combination to evaluate their role under wine alcoholic fermentation conditions. No growth or fermentation was observed in winemaking conditions for the hxt1-7 delta strain. The low-affinity carriers Hxt1 and Hxt3 were the only carriers giving complete fermentation of sugars when expressed alone, indicating that these carriers play a predominant role in wine fermentation. However, these two carriers have different functions. The Hxt3 transporter is thought to play a major role, as it was the only carrier that gave an almost normal fermentation profile when produced alone. The hxt1 carrier was much less effective during the stationary phase and its role is thought to be restricted to the beginning of fermentation. The high-affinity carriers Hxt2, Hxt6 and/or Hxt7 were also required for normal fermentation. These high-affinity transporters have different functions: hxt2 is involved in growth initiation, whereas Hxt6 and/or Hxt7 are required at the end of alcoholic fermentation. This work shows that the successful alcoholic fermentation of wine involves at least four or five hexose carriers, playing different roles at various stages in the fermentation cycle.  相似文献   

4.
5.
6.
7.
Nutrients regulate the proliferation of many eukaryotic cells: in the absence of sufficient nutrients vegetatively growing cells will enter stationary (G0 like) phase; in the presence of sufficient nutrients non-proliferative cells will begin growth. Previously we have shown that glucose is the critical nutrient which stimulates a variety of growth-related events in the yeast Saccharomyces cerevisiae (Granot and Snyder, 1991). This paper describes six new aspects of the induction of cell growth events by nutrients in S. cerevisiae. First, all carbon sources tested, both fermentable and non-fermentable, induce growth-related events in stationary phase cells, suggesting that the carbon source is the critical nutrient which stimulates growth. Second, the continuous presence of glucose is not necessary for the induction of growth events, but rather a short ‘pulse’ of glucose followed by an incubation period in water will induce growth events. Third, growth stimulation by glucose occurs in the absence of the SNF3 high affinity glucose transporter. Fourth, growth stimulation occurs independent of carbon source phosphorylation and carbon source metabolism. Fifth, growth induction by carbon source does not require protein synthesis or extracellular calcium. Sixth, following stimulation by carbon source, the cells remain induced for more than 2 h after removal of the carbon source. We suggest a general model in which different carbon sources act as signals to induce the earliest growth events during or following its entry into the cell and that these growth events do not depend upon metabolism of the carbon source.  相似文献   

8.
The SKS1 gene was originally identified as a multicopy suppressor of the growth defect of snf3 null mutations on low glucose concentrations. Snf3p is required for the rapid induction of HXT2 during growth on low substrate concentrations. Loss of Snf3p leads to a dramatic delay in expression of HXT2. Adaptation to low substrate concentrations does not occur in snf3 sks1 double null mutant strains, suggesting that SKS1 is required for the glucose-dependent expression of HXT2 in the absence of Snf3p activity. Over-expression of SKS1 leads to over-expression of Hxt2p, thus explaining the mechanism of suppression of the snf3 defect. SKS1 defines a novel, Snf3p-independent pathway for the expression of Hxt2p. Under certain growth conditions, over-expression of SKS1 itself leads to a growth defect which is diminished in snf3 hxt2 double mutants. This suggests that over-expression of Hxt2p at physiologically inappropriate times is detrimental to the cells. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
The transport of sugars across the plasma membrane is a critical step in the utilization of glucose and fructose by Saccharomyces cerevisiae during must fermentations. Variations in the molecular structure of hexose transporters and kinases may affect the ability of wine yeast strains to finish sugar fermentation, even under stressful wine conditions. In this context, we sequenced and compared genes encoding the hexose transporter Hxt3p and the kinases Hxk1p/Hxk2p of Saccharomyces strains and interspecies hybrids with different industrial usages and regional backgrounds. The Hxt3p primary structure varied in a small set of amino acids, which characterized robust yeast strains used for the production of sparkling wine or to restart stuck fermentations. In addition, interspecies hybrid strains, previously isolated at the end of spontaneous fermentations, revealed a common amino acid signature. The location and potential influence of the amino acids exchanges is discussed by means of a first modelled Hxt3p structure. In comparison, hexokinase genes were more conserved in different Saccharomyces strains and hybrids. Thus, molecular variants of the hexose carrier Hxt3p, but not of kinases, correlate with different fermentation performances of yeast. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
This study compares the effect of the growth phase on the phospholipid composition and the activity of several phospholipid biosynthetic enzymes in a wild-type yeast grown in fermentable (glucose) and non-fermentable (lactate) semi-synthetic and complete synthetic media. Several distinct differences as well as similarities were found. The cellular phosphatidylcholine: phosphatidylethanolamine (PC:PE) ratio was found to vary with the growth phase, with increases in PC levels at the expense of PE during the transition to stationary phase. The variation was most pronounced in semi-synthetic lactate medium, which is routinely used for the isolation of mitochondria, where the PC:PE ratio changed from 0.9 to 2.2 during this transition. Similar growth phase-dependent changes in PC and PE content were observed in isolated organelles such as mitochondria, mitochondria-associated membranes and microsomes. Phosphatidylinositol (PI) levels were much higher in cells grown on lactate compared to cells grown on glucose (20% vs. 5-10%). Irrespective of the medium, PI levels increased upon entering stationary phase. The activities of the phospholipid biosynthetic enzymes phosphatidylserine synthase and the phospholipid-N-methyltransferases were found to be maximal at the end of logarithmic growth and to decrease upon entering stationary phase in all media. Cells grown on lactate displayed a significantly higher phospholipid:protein ratio than cells grown on glucose. The results are discussed in terms of regulation of phospholipid biosynthesis and membrane biogenesis in response to growth phase and carbon source.  相似文献   

11.
The kinetic analysis of active sucrose-H+ uptake by Saccharomyces cerevisiae revealed the presence of two transport systems with high and low affinity for sucrose. The MAL2T permease has a low affinity (K(m) = 120 +/-20 mM) for sucrose, while the alpha-glucoside transporter encoded by the AGT1 gene is a high affinity sucrose-H+ symporter (K(m) = 7.9+/-0.8 mM) that increases the specific growth rate of cells growing on sucrose.  相似文献   

12.
13.
We have cloned the gene HXK1 from the dimorphic yeast Yarrowia lipolytica that encodes the unique hexokinase of this yeast. The gene has an intron located 39 base pairs after the A of the first ATG. The putative protein contains a sequence of 40 amino acids which is absent from other known hexokinase sequences. Y. lipolytica strains devoid of hexokinase grew in glucose slower than wild-type. This growth was due to the existence of a glucokinase. The hexokinase from Y. lipolytica substituted effectively for hexokinase II from S. cerevisiae in catabolite repression of invertase. The hexokinases from Schizosaccharomyces pombe or Kluyveromyces lactis were much less effective in this role. The K(m) for glucose and fructose of hexokinase was 0.38 mM and 3.56 mM, respectively. The K(m) of glucokinase for glucose was 0.17 mM. While the hexokinase was strongly inhibited by trehalose-6-phosphate (K(i)=3.6 microM), glucokinase was not affected by this compound.  相似文献   

14.
Expression of HXT1, a gene encoding a Saccharomyces cerevisiae low-affinity glucose transporter, is regulated by glucose availability, being activated in the presence of glucose and inhibited when the levels of the sugar are scarce. In this study we show that 14-3-3 proteins are involved in the regulation of the expression of HXT1 by glucose. We also demonstrate that 14-3-3 proteins, in complex with Reg1, a regulatory subunit of Glc7 protein phosphatase, interact physically with Grr1 (a component of the SCF-Grr1 ubiquitination complex), a key player in the process of HXT1 induction by glucose. In addition, we show that the TOR kinase pathway participates actively in the induction of HXT1 expression by glucose. Inhibition of the TOR kinase pathway by rapamycin treatment abolishes HXT1 glucose induction. A possible involvement of PP2A protein phosphatase complex, through the Cdc55 B-subunit, in the glucose induction of HXT1 is also discussed.  相似文献   

15.
A programme for assessment of sporogenic ability has been applied to analysis of sporulation in a polyploid strain of Saccharomyces cerevisiae used in ale production. Final sporulation percentages in five single colony isolates were compared employing several agar media and the most sporogenic of these was selected for further study. Cultivation in liquid rather than agar media improved ascus production substantially. Analysis of effects on ascosporogenesis of temperature and of presporulation growth on various carbon sources led to identification of culture conditions for enhanced ascus formation. Sporulation at 21 instead of the usual 27°C gave significant increases in ascus yields. Substitution of glucose with acetate as the presporulation carbon source increased yields further; moreover, a marked induction of tetrads was noted. Data from comparison of effects on sporulation of fermentable versus non-fermentable carbon sources suggest increased tetrad production to depend closely on presporulation growth under conditions of complete carbon catabolite derepression. Although spore viabilities were typically low, as determined by tetrad analysis, the dramatic increases in sporulation obtained by manipulation of culture conditions permitted rapid isolation of an array of segregants. These included a- and α-maters for use in hybridisation and genetic characterisation .  相似文献   

16.
An interesting yeast strain was uncovered which showed an inverse flocculation pattern when cultivated in chemically defined and complex media. When inoculated in a defined medium with glucose as a sole carbon source, this strain immediately flocculated strongly and lost this ability before stationary phase was reached. In a complex malt medium containing glucose, this yeast strongly flocculated throughout the exponential and stationary growth phases. This inverse pattern may be ascribed to a switch in sensitivity of the yeast to flocculate in the presence of glucose as well as pH level, which may, in turn, influence the availability of calcium ions. In both media, matured cells produced protuberances or “wrinkles” upon flocculation as observed by electron and immunofluorescence microscopy. These protuberances may be involved in cell adhesion during the flocculation process.  相似文献   

17.
Potassium uptake in Saccharomyces cerevisiae is mediated by at least two proteins, known as Trk1p and Trk2p. Direct involvement in cation movements has been demonstrated for Trk1p, which is the high affinity transporter. S. cerevisiae cells also show low affinity potassium uptake, perhaps mediated by Trk2p. Mutants lacking Trk1p, lose high affinity system, but when grown with moderate potassium concentrations, Trk2p seems to replace it. Mutants lacking both proteins are viable but require at least 10 mM K(+) in the medium to sustain growth. Here we report the cloning and characterization of a gene from Kluyveromyces lactis encoding a homologue of these two proteins. KlTrkp is a 1070 amino acid peptide that shows, overall, higher homology with Trk2p than with Trk1p, and its disruption gives rise to cells with deficient potassium transport and with an increased K(+) requirement for normal growth. Determination of kinetic parameters in the K. lactis wild-type and Kltrk1Delta strains, as well as in Sctrk1Delta Sctrk2Delta S. cerevisiae cells expressing KlTrk1, indicated that this is a low affinity component of a major potassium uptake system in K. lactis.  相似文献   

18.
A study of the effects on sporulation of temperature and of presporulation growth on several carbon sources has led to the identification of physiological conditions for a marked improvement of ascosporogenesis in lager yeast. Sporulation occurred only on incubation of both presporulation and sporulation cultures at 21°C. Experiments in which sporogenic abilities were monitored at various stages in the growth curve demonstrated maximum ascus production in sporulation medium inoculated with acetate-grown cells harvested from stationary rather than exponential phase. Increasing the potassium acetate concentration in sporulation medium gave further increases in total sporulation and a marked induction of tetrad production. Several differences in spore morphology were found between ale and lager strains studied and physiological requirements for optimal sporulation were compared.  相似文献   

19.
Phytase, an enzyme that catalyzes the hydrolysis of phytate, was purified from Klebsiella pneumoniae 9-3B. The isolate was preferentially selected in a medium which contains phytate as a sole carbon and phosphate source. Phytic acid was utilized for growth and consequently stimulated phytase production. Phytase production was detected throughout growth and the highest phytase production was observed at the onset of stationary phase. The purification scheme including ion exchange chromatography and gel filtration resulted in a 240 and 2077 fold purification of the enzyme with 2% and 15% recovery of the total activity for liberation of inorganic phosphate and inositol, respectively. The purified phytase was a monomeric protein with an estimated molecular weight of 45kDa based on size exclusion chromatography and SDS-PAGE analyses. The phytase has an optimum pH of 4.0 and optimum temperature of 50°C. The phytase activity was slightly stimulated by Ca(2+) and EDTA and inhibited by Zn(2+) and Fe(2+). The phytase exhibited broad substrate specificity and the K(m) value for phytate was 0.04mM. The enzyme completely hydrolyzed myo-inositol hexakisphosphate (phytate) to myo-inositol and inorganic phosphate. The properties of the enzyme prove that it is a good candidate for the hydrolysis of phytate for industrial applications.  相似文献   

20.
为提高1,3-丙二醇(PDO)产量,加快聚对苯二甲酸丙二醇酯(PTT)的产业化应用。考察了不同碳源对克雷伯氏菌合成PDO过程中碳流的影响和对关键酶DhaB的表达调控。结果表明,克雷伯氏菌不能直接利用葡萄糖合成PDO;以甘油为单一碳源时,PDO的产量仅为9 g/L,同时细胞生长受到一定抑制;而在甘油为底物的情况下,添加5 g/L的葡萄糖能够使菌体生物量提高66.7%、dhaB的转录上调20%、DhaB酶活提高64%,同时PDO产量提高1.5倍。上述结果表明混合碳源策略能够激活克雷伯氏菌PDO合成途径关键酶DhaB的表达,提高PDO的产量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号