首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
总结了大尺寸衍射光学元件离子束刻蚀技术的研究进展.针对自行研制的KZ-400离子束刻蚀装置,提出了组合石墨束阑结构和多位置分步刻蚀策略来提高离子束刻蚀深度的均匀性,目前在450 mm尺寸内的刻蚀深度均匀性最高可达±1%.建立了针对多层介质膜光栅的衍射强度一维空间分布在线检测系统以及用于透射衍射光学元件离子束刻蚀深度的等厚干涉在线检测系统,实现了对大尺寸衍射光学元件离子束刻蚀终点的定量、科学控制,提高了元件离子束刻蚀工艺的成功率.利用上述技术,成功研制出一系列尺寸的多层介质膜光栅、光束采样光栅、色分离光栅以及同步辐射光栅等多种衍射光学元件.  相似文献   

2.
窄光谱带宽X射线刻蚀多层膜光栅   总被引:1,自引:0,他引:1  
结合X射线荧光分析和同步辐射单色器对窄光谱带宽多层膜的需求,开展了窄光谱带宽刻蚀多层膜光栅的理论和实验研究.用平均密度法从理论上阐明将多层膜刻蚀成不同刻蚀比的多层膜光栅后,光谱分辨率将得到提高.用磁控溅射方法制备了W/C多层膜,并用常规的光刻工艺对其进行刻蚀,得到了刻蚀后的多层膜光栅.掠入射X射线衍射测量表明,刻蚀后多层膜的衍射峰位置向小角方向移动,多层膜光栅没有改变剩余多层膜的结构,而且带宽减小,光谱分辨率得到提高,说明实验采用的工艺方法和工艺路线可以满足制作窄光谱带宽刻蚀多层膜光栅的要求,为今后进一步研究实用化元件打下了基础.  相似文献   

3.
宽波段全息-离子束刻蚀光栅的设计及工艺   总被引:1,自引:0,他引:1  
设计和制作了一种在同一基底上具有多闪耀角的宽波段全息-离子束刻蚀光栅。提出了组合形成宽波段全息-离子束刻蚀光栅的分区设计方法,优化了3种闪耀角混合的宽波段全息光栅设计参数,并利用反应离子束刻蚀装置对该光刻胶掩模进行刻蚀图形转移,采用分段、分步离子束刻蚀技术开展了获得不同闪耀角的离子束刻蚀实验。最后在同一光栅基底上分区制作了位相相同,并具有9,18,29°3个不同闪耀角,口径为60mm×60mm,使用波段为200~900nm的宽波段全息光栅。衍射效率测试结果显示其在使用波段的最低衍射效率超过30%,最高衍射效率超过50%,实验结果与理论计算结果基本符合。与其它方式制作的宽波段光栅相比,采用宽波段全息-离子束刻蚀光栅不但工艺成熟,易于控制光栅槽形,而且光栅有效面积尺寸较大,便于批量复制。  相似文献   

4.
高衍射效率的凸面闪耀光栅是高光谱分辨率成像光谱仪的核心分光元件,其制作方法包括机械刻划法、电子束直写法、X射线光刻法、全息离子束刻蚀法等,其中全息离子束刻蚀法因为具备良好的各向异性,不受尺寸与曲面形状限制,杂散光低,完全没有鬼线,制造时间短等优点成为现今光栅制造领域常用方法之一。传统全息离子束刻蚀凸面光栅时基底的弯曲会导致槽形闪耀角的不一致性,并且在制作小闪耀角凸面光栅时基底表面会有部分区域无法被刻蚀和槽形曲面不连续的现象,而摆动刻蚀凸面闪耀光栅可以克服上述缺点。对全息离子束刻蚀方法制作凸面闪耀光栅多方面进行了综述。  相似文献   

5.
实验研究了HfO2薄膜特性以及掩模材料AZ1350以Ar为工作气体下的离子束的刻蚀特性.给出了离子能量、离子束流密度和离子束入射角等因素与刻蚀速率的关系曲线,用最小二乘法拟合了上述因素与刻蚀斜率的函数关系方程;分析了光刻胶和基片在刻蚀过程中随刻蚀深度的变化对图形转移精度的影响,用AFM的Tapping模式测量了刻蚀前后HfO2薄膜表面质量的变化.结果表明刻蚀速率与离子能量的平方根,及速流密度成正比,并随离子束入射角变化而变化;与刻蚀前相比,刻蚀工艺降低了因HfO2薄膜刻蚀深度的增加引起图形转移精度下降,因此提高刻蚀选择比是获得高分辨率图形的前提.研究结果已应用到了在HfO2/SiO2多层膜衍射光栅的制作中.  相似文献   

6.
研究了制备闪耀凹面光栅的离子束刻蚀工艺,提出了用“解析分区法”设计闪耀凹面光栅的衍射效率.该方法能通过确定离子束入射角,在实验前定量给出平行离子束刻蚀后光栅衍射效率的设计结果.经过理论设计计算出所需波长衍射效率较高的凹面闪耀光栅中心闪耀角,利用刻蚀模拟软件BLAZING计算出离子束刻蚀参数及光刻胶掩模参数;以计算结果为依据,利用全息-离子束刻蚀工艺制作出尺寸为45 mm×40 mm2,曲率半径为224 mm的凹面闪耀光栅,其中心闪耀角约为9.21°,峰值衍射效率为54.8%@300 nm,250 nm处衍射效率为50%,与“解析分区法”计算结果符合较好.实验结果表明,利用“解析分区法”进行凹面闪耀光栅衍射效率设计的方法简单易行,能够有效指导平行离子束刻蚀闪耀凹面光栅工艺,完成高衍射效率凹面闪耀光栅的制作.  相似文献   

7.
紫外全息闪耀光栅的制作   总被引:2,自引:2,他引:0  
通过理论计算研究了影响闪耀光栅衍射效率的因素,并利用离子束刻蚀模拟程序模拟刻蚀闪耀光栅来确定闪耀光栅的制作参数。以理论计算的闪耀光栅参数为依据,以刻蚀模拟程序为指导,基于全息-离子束刻蚀工艺制作了闪耀波长分别为250nm和330nm,光栅尺寸分别为85mm×85mm,60mm×60mm,线密度均为1200lp/mm的闪耀光栅。第一种光栅闪耀角为8.54°,非闪耀角为72°,其250nm波长自准直入射时的-1级衍射光衍射效率约为81%;第二种光栅闪耀角为11.68°,非闪耀角为74°,330nm波长自准直入射时的-1级衍射光衍射效率约为80%。实验结果表明,提出的方法可以在制作闪耀光栅的过程中实现对闪耀角的精确控制,获得的实验结果与理论计算结果符合较好。利用该方法能够在大尺寸基底上获得衍射效率75%的紫外闪耀光栅。  相似文献   

8.
针对强激光系统中常用的1 053nm激光器进行了偏振光栅结构的优化设计。利用严格耦合波理论分析了光栅偏振器的衍射特性及消光比,分析显示偏振光栅周期为600nm,占宽比为0.535~0.55,槽形深度为1 395nm~1 420nm时,可保证其在1 053nm波长下,透射率高于95%,消光比大于1 500。基于分析结果,利用全息光刻技术制作了高质量光刻胶光栅掩模,并采用倾斜转动的离子束刻蚀结合反应离子束刻蚀的方法对该光刻胶光栅掩模进行图形转移,制作了底部占宽比为0.54,槽形深度为1 400nm的光栅偏振器。实验测量显示其透射率为92.9%,消光比达到160。与其他制作光栅偏振器方法相比,采用单光刻胶光栅掩模结合倾斜转动的离子束刻蚀工艺,不但简化了制作工艺,而且具有激光损伤阈值高、成本低的优点。由于该技术可制作大面积光栅,特别利于在强激光系统中应用。  相似文献   

9.
光纤激光诱导背面干法刻蚀制备二元衍射光学元件   总被引:1,自引:1,他引:0  
为了降低激光直接辐照透明介电材料的表面加工粗糙度和激光能量密度刻蚀阈值,提高微光学元件的产出率,介绍了一种用固体介质作吸收层,激光直接作用在透明光学材料上进行微纳加工的激光诱导背面干法刻蚀工艺。首先,选用95氧化铝陶瓷作固体材料辅助吸收层,应用中心波长为1 064 nm的掺镱光纤激光器,在3.2 mm厚的熔融石英玻璃表面刻蚀了亚微米尺度的二维周期性光栅结构。然后,对刻蚀参数进行拟合并探讨了激光能量密度对刻蚀参数的影响。最后,观察该二元光学元件的衍射花样图形并讨论其衍射特性。实验制备了槽深为4.2 μm,槽底均方根粗糙度小于40 nm,光栅常数为25 μm的二维微透射光栅,其刻蚀阈值低于7.66 J/cm2。结果表明,应用该工艺制备二维透射光栅,降低了激光刻蚀透明材料的密度阈值及加工结构的表面粗糙度。  相似文献   

10.
综述了近五年来为神光装置研制大口径熔石英采样光栅所取得的主要进展。提出了大尺寸采样光栅的化学机械抛光技术,将全息光刻-离子束刻蚀的430mm口径采样光栅的采样效率均匀性控制在均方根值低于5%,满足了采样光栅的设计要求。针对采样光栅的阈值特性,利用二次离子质谱技术,定量表征了采样光栅制备过程中引入的污染及其清洗效果,优化、发展了采样光栅的清洗方法。探索了基于氢氟酸和感应耦合等离子体刻蚀的熔石英基底处理技术,结合干湿法处理技术来去除熔石英光栅基底的亚表面损伤。为进一步提升采样光栅抗激光辐射损伤特性,提出将发展大尺寸熔石英采样光栅的氢氟酸处理方法及具有亚波长减反光栅结构的采样光栅的制备方法。  相似文献   

11.
闪耀全息光栅离子束刻蚀工艺模拟及实验验证   总被引:2,自引:1,他引:1  
依据特征曲线法推导了非晶体表面的离子束刻蚀模拟方程,结合全息光栅的刻蚀特点开发出离子束刻蚀模拟程序,并通过实验数据分析并优化了非晶体材料刻蚀速率与离子束入射角的关系方程,最后利用离子束刻蚀实验对所开发的离子束刻蚀模拟程序进行了实验验证.调节掩模与基底材料的刻蚀速率比为2∶1至1∶2,制作了线密度为1 200 1/mm,闪耀角为~8.6°,非闪耀角为34°~98°的4种闪耀光栅,与刻蚀模拟程序的结果进行对比,模拟误差<5%;控制离子束刻蚀时间为6~14 min,制作了线密度为1 200 1/mm,闪耀角为~8.6°,顶角平台横向尺寸为0~211 nm的6种光栅,与刻蚀模拟程序的模拟结果进行对比,模拟误差<1%.比较实验及离子束刻蚀模拟结果表明,离子束刻蚀模拟程序获得的模拟刻蚀轮廓曲线与实际刻蚀轮廓曲线的误差<5%;模拟刻蚀截止点与实际刻蚀截止点误差<1%.实验表明,提出的模拟方程可以准确地描述不同工艺过程和工艺参数对最终刻蚀结果的影响,进而可预知和控制离子束刻蚀过程.  相似文献   

12.
用于1 m Seya-Namioka单色仪的 1 200 lp/mm Laminar光栅   总被引:2,自引:2,他引:0  
针对国家同步辐射实验室燃烧与火焰实验站中1 m Seya-Namioka 单色仪对光栅的需求,采用全息离子束刻蚀工艺制作了1 200 lp/mm Laminar光栅。首先,通过光刻胶灰化技术调节光刻胶光栅掩模占空比,在理论设计的误差允许范围内,对此光栅掩模进行扫描离子束刻蚀;然后,将光栅图形转移到光栅基底中去除残余光刻胶;最后,采用离子束溅射法镀制厚约40 nm的金反射膜,采用热蒸发法镀制厚约60 nm的铝反射膜。用原子力显微镜分析光栅微结构,结果显示光栅槽深为40 nm,占空比为0.45。同步辐射在线波长扫描测试结果表明,镀铝光栅效率明显高于镀金光栅,获得的实验结果与理论计算结果基本符合。镀金光栅已替代进口光栅在线使用3 年,其寿命大大超过复制光栅,基本满足了燃烧实验站的实验研究需求。  相似文献   

13.
为了满足空间衍射成像系统对大口径、轻量化衍射元件的需求,设计制作了直径为400mm的聚酰亚胺(PI)薄膜菲涅尔衍射元件。通过紫外光刻、离子束刻蚀等微细加工方法在石英基底上制作衍射图形,然后将衍射图形复制到PI薄膜上得到菲涅尔衍射型薄膜元件。结合有限元法探究了薄膜复制过程中热应力的变化规律及降低热应力的方法,分析了影响薄膜衍射效率的因素及薄膜制作误差、温度变化对薄膜成像的影响,最终实现了大面积薄膜与基底的分离,并通过局部氧气等离子体轰击提高了薄膜衍射效率的均匀性。经测试,薄膜菲涅尔衍射元件的厚度约为20μm,在波长633nm处的实际衍射效率平均值为33.14%,达到了理论效率的81.83%,衍射效率的均方根值RMS=0.01。实验结果表明,通过紫外光刻、离子束刻蚀和薄膜复制的方法可以得到大口径、高衍射效率的薄膜菲涅尔衍射元件。  相似文献   

14.
高效平面全息衍射光栅的获取方法   总被引:17,自引:6,他引:11  
从全息衍射光栅的制作原理出发,介绍了全息光栅的主要制作方法,并与刻划光栅对比分析了全息衍射光栅的诸多优点。通过利用光栅设计的耦合波理论对全息衍射光栅槽型、槽深及槽间距等进行了优化设计,同时利用离子束刻蚀技术获得了高效率全息光栅。文中全面分析了制作高效率平面全息光栅的各项关键技术。  相似文献   

15.
陈鹏  罗露雯  盛斌  黄元申 《光学仪器》2016,38(4):308-312
提出了一种离子束刻蚀制备线性渐变滤光片(LVOF)的方法。离子束刻蚀过程中,通过在样片和离子束出射窗口之间加入开有三角形透射窗口的挡板以及样片水平方向多次来回运动完成楔形谐振腔层制备,配合离子束辅助反应电子束真空镀膜技术,完成线性渐变滤光片的制作。设计三组不同刻蚀次数的制作实验,制作出了工作波长为500~580 nm、线色散系数为1.03 nm·mm~(-1)的线性渐变滤光片。实验结果表明,通过调节样品台运动速率或者刻蚀次数,能够制备出具有预期楔角谐振腔层的线性渐变滤光片。  相似文献   

16.
Three dry etching techniques (Ar+ ion beam, O2+ ion beam, O2 radiofrequency electrodeless discharge) were compared with respect to preferential etching and damage to the ultrastructure of glutaraldehyde-fixed Epon-embedded frog skeletal muscle sections. SEM and TEM studies were performed on both unstained and stained (osmium tetroxide, uranyl acetate) sections. Etching effects were observed to differ for the various ion beam or plasma etching techniques. Whereas selective retention of electron dense structures (e.g. Z lines, nuclear heterochromatin) was observed for oxygen plasma etching, preferential etching of these components was observed using O2+ ion beam bombardment. Selectively etched Z lines and etch-resistant nucleoli were observed for both reactive (O2+) and inert (Ar+) ion beam sputtering after sufficiently high ion doses. The above suggest that selective etching under keV ion beam irradiation is related more to physical sputtering processes (momentum transfer) than to the chemical reactivity of the incident ion. Heavy metal post-fixation and staining had no qualitative effect on the nature of the selective etching phenomena. The above findings are significant in that they potentially influence both electron and ion microprobe measurements of etched biological specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号