首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为了在地面制造环境下实现大口径空间非球面反射镜的零重力面形加工,建立了基于重力卸载的高精度旋转检测工艺方法。首先对N次等间隔旋转法的基本原理进行了介绍,并结合一块Ф1 290mm ULE材料的非球面反射镜加工实例,分别给出了旋转法实施环节中的旋转角度和偏心误差控制方法,实际角度误差和偏心误差分别优于0.1°和0.1mm。然后,在低精度阶段采用了3次旋转法对检测结果进行处理,主镜面形精度快速收敛至0.029λ-RMS;同时由于应用旋转法而导致镜面上的对称性误差累积放大,进行了针对性去除,面形精度进一步收敛至0.023λ-RMS。最后,采用了6次旋转法对检测结果进行处理并指导光学加工,反射镜6个方向下的实测面形精度为0.012λ-RMS,去除重力变形误差后面形精度达到了0.010λ-RMS,该面形可以认为是卫星入轨后零重力空间环境下的反射镜面形。文中所述加工工艺方法不仅适用于米级口径,还适用于更大口径空间非球面反射镜零重力面形的高精度加工。  相似文献   

2.
Shack-Hartmann波前传感器检测大口径圆对称非球面反射镜   总被引:1,自引:0,他引:1  
针对大口径非球面反射镜在研磨阶段后期其面形与理想面形存在较大偏差,且表面粗糙度较大、反射率较低,采用轮廓仪和普通干涉仪检测无法满足测试要求等问题,提出采用动态范围大且精度高的Shack-Hartmann波前传感器来检测大口径非球面反射镜.研究分析了Shack-Hartmann波前传感器检测系统的原理及系统误差并编写了相应的数据处理软件.为了验证该方法的可行性,对已经加工完成的350 mm口径旋转对称双曲面面形进行了检测,测量得到的面形误差PV值、RMS值分别为0.388λ、0.043λ(λ=632.8 nm);与干涉测量的标准结果进行了对比,得到的面形偏差PV值、RMS值分别为0.014λ和0.001λ.对比结果表明,Shack-Hartmann波前传感器的测量结果正确可靠,从而验证了Shack-Hartmann波前传感器检测大口径非球面反射镜的可行性.  相似文献   

3.
矩形离轴非球面反射镜的数控加工   总被引:6,自引:6,他引:0  
针对离轴TMA结构空间相机中使用的两块离轴非球面反射镜的加工过程,提出了一种新型的矩形离轴非球面的最接近球面半径的求解及其优化方法,并且开发了基于计算机虚拟加工技术的CCOS工艺参数计算方法.被加工工件分别为165mm×100mm的矩形凸面离轴非球面和770mm×200mm的矩形轻量化凹面离轴非球面,设计精度分别为任意100mm,200mm子孔径面形精度优于0.025λRMS(λ=632.8nm).经检验,工件的加工精度满足了设计要求,分别达到了0.023λRMS和0.013λRMS.  相似文献   

4.
使用单点金刚石车床对晶体锗试验件进行车削制造非球面红外透镜,运用反馈调试的方法校正了加工生产中所产生的面形误差,并使用Bruke X3白光干涉仪和Form Talysurf PGI 1240机械触针式轮廓仪对所加工的试验件所能达到的表面面形精度进行测试,证实此方法可达到所要求的加工精度。  相似文献   

5.
一种中小口径非球面元件数控抛光技术   总被引:18,自引:9,他引:9  
基于自主设计研制的FSGJ-3型非球面数控加工中心,针对口径φ108 mm凸非球面透镜(曲率半径R=318 mm,k=-3),研究了非球面粗抛光工艺、精抛光工艺、抛光设备、磨料以及相关工艺参数,提出了规范的中小口径非球面加工的工艺方法和新型轮式抛光技术,实现了中小口径非球面元件的数控快速精密铣磨成型,且保证了光学零件具有较高的面形精度。抛光后元件面形精度达到0.306 λ(PV)、0.028λ(RMS) (λ=0.632 8μm)。满足了在光学系统中使用非球面零件,明显改善像质,提高光学特性,减少光学零件数目,从而简化系统结构,减小系统体积,减轻系统质量的目的。  相似文献   

6.
干涉测量在现有的光学元件面形检测方法中具有测量精度高的优势,应用相对广泛。但干涉仪元件的加工和装调误差会降低面形检测精度。提出一种利用夏克哈特曼波前传感器对实际干涉仪系统进行多点标定的方法,利用波前标定数据在光学设计软件ZEMAX中实现对虚拟干涉仪系统的修正,结合数字莫尔移相算法,消除实际干涉仪加工和装调误差的影响。选取平面镜和可变形镜作为待测镜分别进行面形测量实验,结果表明,标定和修正后的数字莫尔移相干涉仪系统检测精度提高,与Zygo干涉仪的检测结果相比,面形趋势保持一致且峰谷值(PV)值误差相差在0.07λ(λ=532 nm)以内。  相似文献   

7.
磁流变加工技术则具有高效率、高精度、低亚表面缺陷等优点,而非球面元件由于自身的优点得到广泛应用,实现非球面元件的磁流变加工技术具有重要的意义,因此,文章进行了非球面的磁流变抛光工艺软件设计,对非球面的磁流变加工算法进行了研究,同时对自研磁流变机床运动形式进行了分析,实现了非球面元件的自动装调定位系统设计,开展了对大口径的方形非球面元件的磁流变加工验证实验,非球面元件的透射波前误差得到了收敛,最终实现了面形精度PV为λ/3。验证了磁流变加工非球面元件的能力。  相似文献   

8.
为了高精度地检测长焦透镜的透射波前,提出了在Zygo干涉仪的平面光路中加入一个二元衍射元件提供参考波前的计算全息法(CGH)。介绍了计算全息法检测长焦透镜透射波前的理论,设计并研制了高精度计算全息板,并将其用于大口径长焦距透镜透射波前检测。理论分析和实际检测结果表明:该方法系统误差小,测量重复性精度优于0.004λ(2σRMS),与常规的菲索干涉法测量球面透镜透射波前得到的结果一致,从而验证了提出测量方法的可靠性。最后,详细分析了二元衍射元件的制造误差对透射波前检测的影响,得到测量误差(PV)小于λ/10。文中的结果表明提出的计算全息法可有效缩短光路,提高测量精度,对长焦透镜波前检测有重要的应用价值。  相似文献   

9.
高精度检测技术是促进光学加工技术发展的必备条件.ZYGO干涉仪检测光学表面面形代表着国际先进水平,常规检测精度取决于仪器配备的标准镜头(通常标准镜头精度为λ/10,最高精度可达λ/20),λ/20测量精度不能满足更高精度面形检测的需求.本文探讨了表面绝对检测技术及误差控制,通过用ZYGO干涉仪及两种精度等级的参考镜头对f/1.07的球面镜进行常规GPI干涉和双球面实时绝对检测比对,证明了表面绝对检测的有效性.实验及分析表明在超净实验室、高精度防振平台、高精密可旋转5维调整架及精密导轨的测量条件下,采用表面绝对测量技术,严格控制基准定位和共焦位置旋转角度定位,多次重复测量,λ/10标准镜头同样能够达到λ/30 PV的高精度检测目的.  相似文献   

10.
小型非球面轮廓测量仪的原理及应用   总被引:3,自引:3,他引:3  
介绍了自行研制的FLY-I非球面轮廓仪的设计以及测量软件数学模型,其实用精度为1~2 μm.光学元件的抛光精度取决于精磨精度,本实验室现有的LOH高精度铣磨机床经过对第1次精磨后的光学元件面形进行修正,2次精磨后其精磨精度可达到2 μm.研究了这一非球面轮廓仪以配合LOH铣磨机床,测量得到1次精磨后的面形误差数据,经过误差反馈进行2次精磨,以保证光学元件的精磨精度.通过多次实验以及数据处理、分析,证明自行设计、装调的非球面轮廓仪达到了设计的精度要求,可满足实验室,光学加工车间对小型非球面精磨阶段面形的检测要求,即精磨面形误差在2 μm以内,同时也可直接用于中低精度非球面光学元件的最终检测.  相似文献   

11.
一种大数值孔径小非球面检测用补偿器设计   总被引:2,自引:4,他引:2  
利用补偿器的补偿法是检测高精度非球面的一种非常重要的方法,它可以利用已广泛实用的Zygo等高精度的数字干涉仪,用补偿法的关键是补偿器的设计.本文介绍了补偿法检测非球面的原理,针对要检测一种大数值孔径小非球面模芯,设计了一种由4片薄球面透镜组成的补偿器,该补偿器由前后两部分组成,前面两片组成一个数值孔径很小的系统,主要用于产生适量的球差,后组两片组成一个数值孔径较大的系统,并与前面的一起满足被测非球面检测的需要.文中对制造、检测及装调等主要误差源引起误差进行了全面分析.用这种补偿器检测相应的非球面,检测精度可达0.05λ,可满足光盘物镜非球面模芯的检测需要.  相似文献   

12.
介绍一种新的非球面检测方法。用微机技术,对偏离球面很小的非球面作模拟非球面的干涉,获得理想的非球面干涉图。用模拟的理想干涉图作“样板”,使高次非球面的面形在激光球面干涉仪上进行精确测量成为可能。提供了四种类型小非球面度的高次或二次非球面干涉图。给出了几个在CQG一1型激光球面干涉仪上作出的测量结果。其测量精度约为0.5λ。  相似文献   

13.
介绍了基于点衍射干涉仪的环形子孔径拼接检测非球面的理论和方法,分析了其基本原理,相对传统非球面检测方法,这种方法可以有效避免高精度补偿器件的使用,它通过不同曲率半径的球面波前来匹配被测非球面的不同同心环带区域,然后通过拼接算法重构整个非球面表面。在对一非球面的仿真测试中,测量的PV值为λ/131,RMS值为λ/830(工作波长为632.8nm),试验表明:该算法是切实可行的,具有较高的精度。  相似文献   

14.
为了解决大口径非球面反射镜材料去除效率与面形收敛效率之间的矛盾,提出了基于高低阶面形误差分离的组合加工技术。首先,分析了不同尺寸磨头对不同周期面形误差的控制能力。然后,比较了不同磨头的收敛效率与加工时间之间的关系。最后,根据大口径非球面反射镜加工过程中面形误差的特点,将大口径非球面反射镜的面形误差分离为低阶面形误差与高阶面形误差,使用不同加工方式分别对高、低阶面形误差驻留时间进行求解。通过多种加工方式组合加工的方法建立了具有针对性的加工策略,有效提高加工效率。结合工程实例,对一块口径为2.04m的非球面SiC反射镜进行了加工试验,单个组合加工周期内面形收敛效率达到61.2%。结果表明,高阶与低阶面形误差均得到较好的去除。材料去除效率与面形收敛效率均得到提高,达到了良好的效果,满足加工需求。  相似文献   

15.
使用红外干涉仪测量非球面面形   总被引:3,自引:3,他引:0  
提出用红外干涉仪在长波工作(λ=10.6μm)的优点检测非球面面形。首先,通过移相算法,使用泰曼型红外干涉仪测量出非球面与标准拟合球面之间的波像差;然后,根据非球面的矢高方程计算出非球面与标准拟合球面之间波像差的理论值,通过比较这两个值,计算出非球面的面形偏差。实验结果表明,使用红外干涉仪测量的非球面与标准拟合球面之间的波像差为8.64μm(PV),与理论波像差(8.11μm)比较接近,测得非球面面形偏差为1.20μm(PV)。为了验证这一方法的准确性,使用计算全息图(CGH)作为补偿镜在可见光干涉仪上测量了同一块非球面,两者测量结果比较吻合。结果表明,此方法有比较强的通用性,可以用于非球面在加工过程中的测试。  相似文献   

16.
干涉法实时测量浅度非球面技术   总被引:5,自引:2,他引:3  
提出了一种干涉实时检测非球面的新方法,该方法无需补偿器,CHG等辅助元件就能实现对浅度非球面的测量。对非球面度较小的非球面,直接利用标准球面镜作为参考表面,通过数字干涉仪可以测得全孔径位相分布,将所得的数据剔除参考球面波相对理论非球面的偏差,并运用最小二乘拟合求得机构定位误差,消去此误差,从而能够获得真实的面形信息。利用该方法对一口径为350mm的浅度双曲面进行了测量,通过数据分析和处理得到面形误差的PV值和RMS值分别为0.387λ 和 0.048λ ( =632.8nm)。并将该结果与零位补偿的检测结果相比较,两面形分布是一致的,其PV值和RMS值的偏差分别为0.033λ 和 0.006λ 。说明该技术对检测浅度非球面是切实可行的。  相似文献   

17.
A common path lateral-shearing interferometer with a minimum number of optical components has been developed. Because the interferometer is little affected by mechanical vibrations and air turbulence, it can be mounted on an ultraprecision lathe and can be used to measure the shapes of workpieces. A plane parallel glass plate is used to shear the wavefront under test in the interferometer. To analyze the interference fringes obtained by the interferometer precisely, a fringe-scanning method using a slight tilt of the glass plate is used. Zone plates that are computer-generated holograms are used to measure spherical and aspherical surfaces with the interferometer. A spherical and a parabolic concave mirror were measured with the interferometer. The spherical mirror was also measured by a Fizeau interferometer to compare the error with that measured by the lateral-shearing interferometer. The experimental results agreed well with those measured by the lateral-shearing interferometer.  相似文献   

18.
非球面镜片面形检测技术综述   总被引:1,自引:1,他引:1  
谢高容 《光学仪器》2007,29(2):87-90
非球面镜片的应用越来越广泛,面形误差是影响非球面质量的重要指标,所采用的面形检测方法非常重要。介绍了非球面镜片面形误差的各种检测方法,并对各种检测方法进行了比较。最后,对非球面镜片面形检测技术的发展趋势作出了预测。  相似文献   

19.
基于误差消除的逆向求解思想,将DFP多维变尺度法应用于超精密高次非球面镜测量数据的面形误差分析中。通过坐标变换,建立了包含误差的标准曲线的变形方程。结合非线性最小二乘法,对测量数据进行了曲线拟合以获取参数值和面形误差的PV值。用C++语言实现了该算法。实例计算表明,该算法具有快速收敛性和稳定性,能满足超精密加工的精度要求。  相似文献   

20.
A technique for controlling the surface errors of large optical elements by shearing interferometry is described. The theory of the shearing interferogram which relates its coordinates to the tuning parameters of the interferometer and the type of surface under test is given. The possibilities of the technique are demonstrated by the experimental results obtained with spherical and aspherical surfaces of 6m diameter elements  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号