首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray detectors based on straight-channel microchannel plates (MCPs) are a powerful diagnostic tool for two-dimensional, time-resolved imaging and time-resolved x-ray spectroscopy in the fields of laser-driven inertial confinement fusion and fast Z-pinch experiments. Understanding the behavior of microchannel plates as used in such detectors is critical to understanding the data obtained. The subject of this paper is a Monte Carlo computer code we have developed to simulate the electron cascade in a MCP under a static applied voltage. Also included in the simulation is elastic reflection of low-energy electrons from the channel wall, which is important at lower voltages. When model results were compared to measured MCP sensitivities, good agreement was found. Spatial resolution simulations of MCP-based detectors were also presented and found to agree with experimental measurements.  相似文献   

2.
We have developed an application of a one-dimensional micro-strip detector for capturing x-ray diffraction data in pulsed magnetic fields. This detector consists of a large array of 50 μm-wide Si strips with a full-frame read out at 20 kHz. Its use substantially improves data-collection efficiency and quality as compared to point detectors, because diffraction signals are recorded along an arc in reciprocal space in a time-resolved manner. By synchronizing with pulsed fields, the entire field dependence of a two-dimensional swath of reciprocal space may be determined using a small number of field pulses.  相似文献   

3.
A femtosecond pulsed laser system has been installed at the BL25SU soft x-ray beamline at SPring-8 for time-resolved pump-probe experiments with synchronization of the laser pulses to the circularly polarized x-ray pulses. There are four different apparatuses situated at the beamline; for photoemission spectroscopy, two-dimensional display photoelectron diffraction, x-ray magnetic circular dichroism (XMCD) with electromagnetic coils, and photoelectron emission microscopy (PEEM). All four can be used for time-resolved experiments, and preliminary investigations have been carried out using the PEEM apparatus to observe magnetization dynamics in combination with XMCD. In this article, we describe the details of the stroboscopic pump-probe XMCD-PEEM experiment, and present preliminary data. The repetition rate of the laser pulses is set using a pulse selector to match the single bunches of SPring-8's hybrid filling pattern, which consists of several single bunches and a continuous bunch train. Electrons ejected during the bunch train, which do not provide time-resolved signal, are eliminated by periodically reducing the channel plate voltage using a custom-built power supply. The pulsed laser is used to create 300 ps long magnetic field pulses, which cause magnetic excitations in micron-sized magnetic elements which contain magnetic vortex structures. The observed frequency of the motion is consistent with previously reported observations and simulations.  相似文献   

4.
Here, we report on a novel experimental apparatus for performing time-resolved soft x-ray absorption spectroscopy in the sub-ns time scale using non-hybrid multi-bunch mode synchrotron radiation. The present setup is based on a variable repetition rate Ti:sapphire laser (pump pulse) synchronized with the ~500 MHz x-ray synchrotron radiation bunches and on a detection system that discriminates and singles out the significant x-ray photon pulses by means of a custom made photon counting unit. The whole setup has been validated by measuring the time evolution of the L(3) absorption edge during the melting and the solidification of a Ge single crystal irradiated by an intense ultrafast laser pulse. These results pave the way for performing synchrotron time-resolved experiments in the sub-ns time domain with variable repetition rate exploiting the full flux of the synchrotron radiation.  相似文献   

5.
The application of the stroboscopic scanning electron microscope to gigahertz Gunn effect devices is discussed. Two modes of operation, the deflection mode and the bunching mode, are considered. In the bunching mode, using 1.5 ps beam pulses, two-dimensional voltage contrast in a Gunn effect device triggered at 1 GHz has been observed. A powerful technique for a device in pulsed operation is also presented. With this technique, the nonuniform domain propagation in the three-dimensional-structure Gunn device in pulsed operation has been clearly observed. The duty cycle of the pulsed operation has been 4x10(-3).  相似文献   

6.
纳秒激光等离子体光源的光谱测量技术   总被引:9,自引:8,他引:1  
提出了一种新的探测和测量激光等离子体软X射线源光谱强度的方法。此方法使用通道电子倍增器和定标过的硅光电二极管为探测器,前者是非标准探测器,后者为标准探测器。应用电荷灵敏前置放大器和峰值探测器测量探测器产生的电量,并以高分辨率的光谱仪为分光元件,在已知光栅效率、通道电子倍增器增益、硅光电二极管能量响应的条件下,给出了计算激光等离子体软X射线源在某一波长光谱强度的公式。  相似文献   

7.
An x-ray framing camera using a non-gain microchannel plate (MCP) is reported in this article. The advantage of the non-gain MCP is the less transit time spread. The non-gain MCP gated framing camera has four microstrip line cathodes with 6 mm in width. The time domain reflectometry curves of the four microstrip lines are measured, which show that the characteristic impedance of each microstrip line is about 17 Ω. While the photocathode is driven by the gating electrical pulse with width of 125 ps and amplitude of -1.48 kV with -400 V bias, the measured exposure time of this camera is about 72 ps.  相似文献   

8.
We have developed a single-shot intensity-measurement system using a silicon positive-intrinsic-negative (PIN) photodiode for x-ray pulses from an x-ray free electron laser. A wide dynamic range (10(3)-10(11) photons/pulse) and long distance signal transmission (>100 m) were required for this measurement system. For this purpose, we developed charge-sensitive and shaping amplifiers, which can process charge pulses with a wide dynamic range and variable durations (ns-μs) and charge levels (pC-μC). Output signals from the amplifiers were transmitted to a data acquisition system through a long cable in the form of a differential signal. The x-ray pulse intensities were calculated from the peak values of the signals by a waveform fitting procedure. This system can measure 10(3)-10(9) photons/pulse of ~10 keV x-rays by direct irradiation of a silicon PIN photodiode, and from 10(7)-10(11) photons/pulse by detecting the x-rays scattered by a diamond film using the silicon PIN photodiode. This system gives a relative accuracy of ~10(-3) with a proper gain setting of the amplifiers for each measurement. Using this system, we succeeded in detecting weak light at the developmental phase of the light source, as well as intense light during lasing of the x-ray free electron laser.  相似文献   

9.
Silicon avalanche photodiodes were investigated in the single-photon mode with time gating. The dependences of the probability densities of dark- and signal-pulse generation on the gate-pulse duration were found to obey a normal distribution. The likelihood ratio was used to optimize the duration and repetition frequency of gate pulses and the constant reverse-bias voltage of the avalanche photodiode.  相似文献   

10.
We present details of a new bismuth germanate [Bi(4)Ge(3)O(12) (BGO)] scintillator array used to diagnose the transport and energy behavior of runaway electrons (REs) in DIII-D. BGO exhibits important properties for these compact detectors including high light yield which sufficiently excites photodiode detectors (8500 photons/MeV), high density and atomic numbers of constituent materials which maximizes sensitivity, and relative neutron blindness which minimizes complications in data interpretation. The detectors observe primarily hard x-ray radiation emitted in a forward beamed pattern by RE when they strike first wall materials or bulk ions and neutrals in the plasma, although we also address photoneutron signals. The arrangement of the array enables time resolved location of x-ray emission and associated asymmetries which help identify instabilities and confinement properties of RE. By shielding a subset of detectors with different thicknesses of lead, and with interpretative support of the code EGSNRC, we also measure RE energy, although due to the often distributed nature of RE strike points and the forward beamed character of emitted hard x-rays, we restrict interpretation as a lower bound for RE energy.  相似文献   

11.
A compact and transportable three channel quantum cascade laser system (TRIPLE Q) based on mid-infrared absorption spectroscopy has been developed for time-resolved plasma diagnostics. The TRIPLE Q spectrometer encompasses three independently controlled quantum cascade lasers (QCLs), which can be used for chemical sensing, particularly for gas phase analysis of plasmas. All three QCLs are operated in the intra-pulse mode with typical pulse lengths of the order of 150 ns. Using a multiplexed detection, a time resolution shorter than 1 μs can be achieved. Hence, the spectrometer is well suited to study kinetic processes of multiple infrared active compounds in reactive plasmas. A special data processing and analysis technique has been established to account for time jitter effects of the infrared emission of the QCLs. The performance of the TRIPLE Q system has been validated in pulsed direct current plasmas containing N(2)O/air and NO(2)/air.  相似文献   

12.
A laser-based, tabletop instrument is constructed to perform femtosecond soft x-ray transient absorption spectroscopy. Ultrashort soft x-ray pulses produced via high-order harmonic generation of the amplified output of a femtosecond Ti:sapphire laser system are used to probe atomic core-level transient absorptions in atoms and molecules. The results provide chemically specific, time-resolved dynamics with sub-50-fs time resolution. In this setup, high-order harmonics generated in a Ne-filled capillary waveguide are refocused by a gold-coated toroidal mirror into the sample gas cell, where the soft x-ray light intersects with an optical pump pulse. The transmitted high-order harmonics are spectrally dispersed with a homebuilt soft x-ray spectrometer, which consists of a gold-coated toroidal mirror, a uniform-line spaced plane grating, and a soft x-ray charge coupled device camera. The optical layout of the instrument, design of the soft x-ray spectrometer, and spatial and temporal characterizations of the high-order harmonics are described. Examples of static and time-resolved photoabsorption spectra collected on this apparatus are presented.  相似文献   

13.
It is shown that an increase in the power of a probing-pulse generator is a desirable way to further increase the efficiency of EMA flaw detectors. A generator with an increased power was developed. Such a generator can form radio pulses of a current with a peak value of up to 200 A at a developed voltage of at least 500 V in an EMA transducer. The new generator is mainly intended for stationary EMA flaw detectors. It can supply transducers of virtually any type.  相似文献   

14.
We describe the design and implementation of a high voltage pulse power supply (pulser) that supports the operation of a repetitively pulsed filtered vacuum arc plasma deposition facility in plasma immersion ion implantation and deposition (Mepiiid) mode. Negative pulses (micropulses) of up to 20 kV in magnitude and 20 A peak current are provided in gated pulse packets (macropulses) over a broad range of possible pulse width and duty cycle. Application of the system consisting of filtered vacuum arc and high voltage pulser is demonstrated by forming diamond-like carbon (DLC) thin films with and without substrate bias provided by the pulser. Significantly enhanced film∕substrate adhesion is observed when the pulser is used to induce interface mixing between the DLC film and the underlying Si substrate.  相似文献   

15.
介绍基于单片机MSP430F4152和数字电位器MCP41010的超声波热量表设计方案。采用超声波时差法原理,以MCP41010构成增益可调的超声波回波信号放大电路,利用MSP430F4152实现流体流量和温度差的测量,既测量精度,又降低了成本和功耗。  相似文献   

16.
Application of a fast electrical pulse in gated multichannel plate camera   总被引:1,自引:0,他引:1  
An eight-frame gated microchannel plate (MCP) camera and a gating electrical pulse are described in this article. The gating electrical pulse is obtained by first generating a high voltage fast step pulse using avalanche transistors in Marx bank configuration, and then shaping it using avalanche diodes. The high voltage fast step pulse is about 200 ps in fall time and 4 kV in amplitude. The gating pulse wave form with width of 160 ps and amplitude of 2.5 kV is achieved. Each frame photocathode coated with gold on the MCP is part of a 12 Omega transmission line with open circuit end driven by the gating electrical pulse. The camera is tested by illuminating its photocathode with ultraviolet laser pulses, 266 nm in wavelength, which shows exposure time as short as 120 ps.  相似文献   

17.
An ultra-high-precision clock system for long time delay has been developed for picosecond time-resolved x-ray diffraction measurements using synchrotron radiation (SR) pulses and synchronized femtosecond laser pulses. The time delay control between pump laser pulse and the probe SR pulse was achieved by combining an in-phase quadrature modulator and a synchronous counter. This method allowed us to change the delay time by a nearly infinite amount while maintaining the precision of +/-8.40 ps. Time-resolved diffraction measurements using the delay control system were demonstrated for precise measurement of an acoustic velocity in a single crystal of gallium arsenide.  相似文献   

18.
In this paper a detailed discussion is presented of the factors that affect the fluorescence lifetime imaging performance of a scanning microscope equipped with a single photon counting based, two‐ to eight‐channel, time‐gated detection system. In particular we discuss the sensitivity, lifetime resolution, acquisition speed, and the shortest lifetimes that can be measured. Detection systems equipped with four to eight time‐gates are significantly more sensitive than the two time‐gate system. Only minor sensitivity differences were found between systems with four or more time‐gates. Experiments confirm that the lifetime resolution is dominated by photon statistics. The time response of the detector determines the shortest lifetimes that can be resolved; about 25 ps for fast MCP‐PMTs and 300–400 ps for other detectors. The maximum count rate of fast MCP‐PMTs, however, is 10–100 times lower than that of fast PMTs. Therefore, the acquisition speed with MCP‐PMT based systems is limited. With a fast PMT operated close to its maximum count rate we were able to record a fluorescence lifetime image of a beating myocyte in less than one second.  相似文献   

19.
SIPM在脉冲光检测系统中的应用研究   总被引:1,自引:0,他引:1  
陈忠祥  武晓东  吴云良  王策  裴智果 《光学仪器》2014,36(6):476-480,485
为了实现硅光电倍增管(silicon photomultiplier,SIPM)对超出光子计数极限的微弱脉冲光信号的测量,建立了基于SIPM积分工作模式的脉冲光检测系统。测试了SIPM在同一光信号照射下,偏置电压与增益以及信噪比之间的关系,并测试了同一增益条件下,SIPM对不同光信号的响应特性。结果表明:SIPM在积分工作模式下,其增益可以达到104以上,并随着偏置电压的增加而指数增长;其信噪比也随着电压的增加而增加,在光强比较微弱的情况下,SIPM对光强是线性响应的。所设计的系统可以在一定程度上替代光电倍增管进行微弱脉冲光信号的测量。  相似文献   

20.
A new and improved method for continuous frequency calibration of the super-regenerative oscillator spectrum is described. The arrangement employs a Hewlett-Packard Model HP5345A reciprocal frequency counter capable of measuring the carrier frequency of rf pulses. The counter gate time is externally controlled via the quench pulses. High-resolution measurements are obtained through the use of the frequency-averaging mode provided by the counter. Three successive digits are displayed on a two-channel recorder using a digital-to-analog converter along with the lock-in output. This method provides automatic and continous high-accuracy frequency calibration of the spectrum which is independent of the rf level, quench frequency, and FM amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号