首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The higher sensitization for thermal annealing on TL mechanism in the region 550–600 °C for 80(TeO2)–5(TiO2)–(15 − x) (WO3)–(x) AnOm where AnOm = Nb2O5, Nd2O3, Er2O3 and x = 5 mol% has been measured. The behavior of trap centers and luminescence centers has been investigated for tellurite glasses doped with rare earth oxides irradiated at 0.5 up to 2 Gy and annealed at different temperatures in the range 350–700 °C. The behavior of the three types of tellurite glasses is analyzed regarding to their kinetic parameters and luminescence emission which enhance the claim of tellurite glasses for use as TLD material at therapeutic radiation doses.  相似文献   

2.
During a fluctuation electron microscopy (FEM) study of disordered carbons, we found that samples containing C60 exhibit a normalized variance peak at 7.1 nm−1 that appears to be a unique indicator of tight curvature in layered materials. This peak is associated with the characteristic in-plane carbon–carbon bond distance of ∼0.14 nm in graphene. Diffraction from this spacing is normally forbidden in planar graphene (and graphite), but becomes allowed when the layer structure is interrupted. Such interruptions arise at the edges of graphite fragments and also when 5-rings are incorporated into a layer. We show that the curvature induced by a high density of 5-rings, such as that in C60, can dominate the variance peak at 7.1 nm−1. FEM simulations reveal that the variance peak at ∼7.1 nm−1, which we label F1, is one of several fullerene-signature peaks, with others occurring at Q values of 10.6 nm−1 (F2) and 12.4 nm−1 (F3). We conclude that FEM is a sensitive method for detecting dilute quantities of highly curved pentagon-rich fullerenes, such as C60, when dispersed within disordered graphitic carbon.  相似文献   

3.
Polypyrrole (PPy)-nickel oxide (NiO) hybrid nanocomposite thin films have been prepared by spin coating method. The PPy–NiO hybrid nanocomposites were characterized for structural, morphological, optical and electrical analysis, and the results were compared with the pure PPy films. The structural and optoelectronic properties of PPy–NiO hybrid nanocomposites are quite different from those of pure PPy and NiO nanoparticles, which were attributed to the strong interaction between the PPy and NiO nanoparticles. The XRD pattern shows that broad peak of PPy becoming weaker on increasing the content of NiO nanoparticles in the PPy–NiO hybrid nanocomposites. Also the diffraction peaks of NiO nanoparticles in PPy–NiO (10–50 wt%) nanocomposites were found to shift to lower 2θ values. The morphological studies revealed that the transformation of granular morphology of PPy to the nanospheres and clusters in the PPy–NiO hybrid nanocomposites. FTIR spectra of PPy–NiO hybrid nanocomposites, revealed that the main absorption at 1204 cm−1 and 1559 cm−1 are affected by the presence of NiO nanoparticle in pure PPy and get shifted to 1216 cm−1 and 1570 cm−1 respectively indicates, insertion of NiO nanoparticles in the PPy–NiO hybrid nanocomposite. UV–vis absorption spectrum of PPy corresponding to λmax = 442 nm is blue shifted to λmax = 375 nm in the PPy–NiO hybrid nanocomposites, reveals strong interaction between PPy and NiO nanoparticles. The room temperature dc electrical conductivity is increased from 8.66 × 10−9 to 4.08 × 10−7 (Ω/cm)−1 as the content of NiO nanoparticles increased from 10 to 50 in wt% in the PPy–NiO hybrid nanocomposites.  相似文献   

4.
One single semiconductor distributed-feedback (DFB) laser is used to demonstrate the possibility of simultaneous measurements of CO and CO2 at elevated temperatures. Wavelength modulation spectroscopy with second-harmonic detection is used to improve the detection sensitivity and accuracy. The concentrations of CO and CO2 are determined from the WMS-1-normalized absorption-based WMS-2f signal peak heights of a proper line pair of CO and CO2 near 6357.814 cm−1 and 6357.312 cm−1, which are selected using some line-selection criterions for the target temperature range of 300–1000 K. The CO and CO2 concentrations measurements are within 2.86% and 2.69% of the expected values over the tested temperature range 300–1000 K. The minimum detectable concentrations of CO and CO2 at 1000 K are 250 ppm m and 280 ppm m respectively.  相似文献   

5.
A pinhole orifice with a known conductance can be used as a secondary flow standard. Commercially available laser-drilled pinhole orifices with diameters ranging from 1.0 μm to 50 μm can have molecular-flow conductances ranging from about 0.1 μL/s to 200 μL/s for N2 at 23 °C. Gas flows of 10−11–10−6 mol/s can easily be produced by applying an upstream pressure in the range of 1–105 Pa. Accurate measurements of the orifice conductance as a function of pressure are required to use the pinhole orifice as a basis of a flowmeter. We use a constant-pressure flowmeter to make accurate measurements of the conductance of a 20 μm orifice as a function of pressure for gas flows of Ar and N2 into vacuum. We present results of these conductance measurements for an orifice with a nominal diameter of 20 μm. The N2 conductance of this orifice ranged from 30 μL/s to 60 μL/s over the range of pressures investigated, and was measured with an uncertainty of better than 0.2% (k = 2) for upstream pressures greater than 10 Pa.  相似文献   

6.
A series of Fe54±1Pt46±1 thin films have been sputter-deposited and annealed at various times and temperatures to facilitate the A1 to L10 polymorphic phase transformation. The annealing times span one minute to tens of minutes over temperatures of 300–800 °C. The films were characterized by X-ray and electron diffraction and atom probe tomography. This time–temperature regime provides ‘snap-shots’ into the compositional segregation evolution at the grain boundaries during the polymorphic phase transformation. The as-deposited A1 phase showed a preferential segregation of Pt to the grain boundaries. The reduction of Pt enrichment at the boundaries was observed for all L10 ordered films.  相似文献   

7.
Finite element analysis methods were developed and applied to gas piston–cylinder units (PCUs) of piston- and cylinder-floating configuration (2, 5, 10 and 20) cm2 nominal effective area, operated in gauge and absolute mode at pressures (0.06–7.5) MPa to determine their zero pressure and pressure-dependent effective areas, as well as pressure distortion coefficients (λ) with associated uncertainties. Real dimensional properties of the PCUs were used. λ were found to be independent of gas (ideal, N2, He) within the viscous flow model, but strongly dependent on the gap shape, operation mode and elastic properties. Results demonstrate good agreement for λ, with its uncertainty for different PCUs varying between (0.03 and 0.21) × 10−6 MPa−1 corresponding to maximum relative uncertainties in pressure of (0.07–0.34) × 10−6.  相似文献   

8.
This paper presents a flexure-based parallel manipulator (FPM) that delivers nanometric co-planar alignment and direct-force imprinting capabilities to automate an ultra-violet nanoimprint lithography (UV-NIL) process. The FPM is articulated from a novel 3-legged prismatic-prismatic-spherical (3PPS) parallel-kinematic configuration to deliver a θxθyZ motion. The developed FPM achieves a positioning and orientation resolution of ±10 nm and 0 . 05″ respectively, and a continuous output force of 150 N/Amp throughout a large workspace of 5°×5°×5 mm. Part I mainly focuses on a new theoretical model that is used to analyze the stiffness characteristics of the compliant joint modules that formed the FPM, and experimental evaluations of each compliant joint module. Part II presents the stiffness modeling of the FPM, the performance evaluations of the developed prototype, and the preliminary results of the UV-NIL process.  相似文献   

9.
We utilize p-Pb0.925Yb0.075Te:Te and n-Pb0.925Yb0.075Se0.2Te0.8 ingots in a standard solid-state microwave synthesis route to fabricate thermally evaporated thin films. The nanostructure and composition of the films were studied through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray spectroscopy (EDX). The Seebeck coefficient and electrical conductivity were measured at a temperature range of 298–523 K. The micro-thermoelectric devices were composed of 20 pairs and 10 pairs of p-Pb0.925Yb0.075Te:Te and n-Pb0.925Yb0.075Se0.2Te0.8 thin films on glass substrates, respectively. The dimensions of the thin films thermoelectric generators which comprised of 10-pair were 12 mm × 10 mm, whereas, 20-pair were 23 mm × 20 mm, respectively of legs connected through aluminum electrodes. The serial 20-pair pn thermocouples generated a maximum output open-circuit voltage of 275.3 mV and a maximum output power of 54.37 nW at a temperature difference of ΔT = 162 K; the values are 109.4 mV and 16.68 nW at ΔT = 162 K for the 10-pair thermocouples, respectively.  相似文献   

10.
A tunable multi-mode diode laser system based on correlation spectroscopy and wavelength modulation spectroscopy (TMDL–COSPEC–WMS) is designed and demonstrated for the concentration measurements of oxygen using A-band absorption lines of oxygen around 760 nm. The O2 concentrations are conversed from the relation between the normalized WMS-2f signal peak heights of the measurement and reference signals which selected based on high signal to noise ratio and correlation coefficient. The correlation and the fitted slope between the measured and actual O2 concentration are 0.9987 and of 1.025 ± 0.012 respectively over the tested range, which indicate the high linearity and accuracy of the system. A sensitivity of 350 ppm m is approved using 30 successive measurements with each measurement time taking ∼20 s during 30 min. A continuous measurement for oxygen in ambient air during approximately 200 min confirms the stability and the capability of the system.  相似文献   

11.
Interaction of hydrogen with metallic multi-layered thin films remains as a hot topic in recent days. Detailed knowledge on such chemically modulated systems is required if they are desired for application in hydrogen energy system as storage media. In this study, the deuterium concentration profile of Fe/V multi-layer was investigated by atom probe tomography (APT) at 60 and 30 K. It is firstly shown that deuterium-loaded sample can easily react with oxygen at the Pd capping layer on Fe/V and therefore, it is highly desired to avoid any oxygen exposure after D2 loading before APT analysis. The analysis temperature also has an impact on D concentration profile. The result taken at 60 K shows clear traces of surface segregation of D atoms towards analysis surface. The observed diffusion profile of D allows us to estimate an apparent diffusion coefficient D. The calculated D at 60 K is in the order of 10−17 cm2/s, deviating 6 orders of magnitude from an extrapolated value. This was interpreted with alloying, D-trapping at defects and effects of the large extension to which the extrapolation was done. A D concentration profile taken at 30 K shows no segregation anymore and a homogeneous distribution at cD=0.05(2) D/Me, which is in good accordance with that measured in the corresponding pressure–composition isotherm.  相似文献   

12.
A ZnO thin film-based gas sensor was fabricated using a SiO2/Si substrate with an integrated platinum comb-like electrode and heating element. The structural characteristics, morphology, and surface roughness of the as-grown ZnO nanostructure were investigated. The optical properties were examined by UV–vis spectrophotometry. The film revealed the presence of a c-axis oriented (0 0 2) phase of 20.8 nm grain size. The sensor response was tested for hydrogen concentrations of 50, 70, 100, 200, 400, and 500 ppm at operating temperatures ranging from 250 °C to 400 °C. The sensitivity toward 50 and 200 ppm of hydrogen at the optimum operating temperature of 350 °C were about 78% and 98%, respectively. The response was linear within the range of 50–200 ppm of hydrogen concentration. Our results demonstrated the potential application of ZnO nanostructure for fabricating cost-effective and high-performance gas sensors.  相似文献   

13.
This paper presents a flexure-based parallel manipulator (FPM) that delivers nanometric co-planar alignment and direct-force imprinting capabilities to automate an ultra-violet nanoimprint lithography (UV-NIL) process. The FPM is articulated from a 3-legged Prismatic-Prismatic-Spherical (3PPS) parallel-kinematic configuration to deliver a θxθyZ motion. The developed FPM achieves a positioning and orientation resolution of ±10 nm and 0.05″, respectively, and a continuous output force of 150 N/A throughout a large workspace of 5°×5°×5 mm. Part I mainly focuses on a new theoretical model that is used to analyze the stiffness characteristics of the compliant joint modules that formed the FPM, and experimental evaluations of each compliant joint module. Part II presents the stiffness modeling of the FPM, the performance evaluations of the developed prototype, and the preliminary results of the UV-NIL process.  相似文献   

14.
This paper presents the mathematical modelling and parametric optimization on flank wear and surface roughness based on response surface methodology and grey-based Taguchi method in finish hard turning of AISI 4340 steel (HRC 47 ± 1) using multilayer coated carbide (TiN/TiCN/Al2O3/TiN) insert under dry environment. The economical feasibility of utilizing multilayer TiN coated carbide insert has been described. Model adequacy has been checked using correlation coefficients. From main effect, it is evident that, cutting speed is the most significant factor for flank wear followed by depth of cut and feed. Again, feed is the most significant factor for surface roughness followed by cutting speed and depth of cut. The coefficient of determination (R2) is more than 75% for RSM models developed, which shows the high correlation exist between the experimental and predicted values. The experimental vs. predicted values of flank wear and surface roughness (Ra and Rz) are also found to be very close to each other implying significance of models developed. The improvement of grey relational grade from initial parameter combination (d2–f3–v4) to the optimal parameter combination (d1–f1–v3) is found to be 0.3093 using grey relational analysis coupled with Taguchi method for simultaneous optimization of responses. Flank wear (VBc) and surface roughness parameters (Ra and Rz) are decreased 1.9, 2.32 and 1.5 times respectively considering optimal parametric combinations for multi-responses. The calculated total machining cost per part is only Rs. 3.17 due to higher tool life (47 min at their optimal level) of multilayer TiN coated carbide insert. It brings to the reduction of downtime and increases the savings.  相似文献   

15.
Here, we demonstrate that non-dipole allowed d–d excitations in NiO can be measured by electron energy loss spectroscopy (EELS) in transmission electron microscopes (TEM). Strong excitations from 3A2g ground states to 3T1g excited states are measured at 1.7 and 3 eV when transferred momentum are beyond 1.5 Å−1. We show that these d–d excitations can be collected with a nanometrical resolution in a dedicated scanning transmission electron microscope (STEM) by setting a good compromise between the convergence angle of the electron probe and the collected transferred momentum. This work opens new possibilities for the study of strongly correlated materials on a nanoscale.  相似文献   

16.
With a steady temperature increase under high vacuum (HV) in an environmental scanning electronic microscope, we observed charge-free characterization and fine secondary electron (SE) images in focus for insulating ceramics (alumina (Al2O3), aluminum nitride (AlN), pure magnesium silicate (Mg2SiO4)). The sample current Isc increased from −8.18×10−13 to 2.76×10−7 A for Al2O3 and −9.28×10−12 to 2.77×10−6 A for AlN with the temperature increased from 298 to 633 K. The surface conductance σ increased from 5.6×10−13 to 5.0×10−11/Ω for Al2O3 and 1.1×10−12 to 1.0×10−7/Ω for AlN with the temperature increased from 363 to 593 K. The SE image contrast obtained via heating approach in high vacuum with an Everhart–Thornley SE-detector was better than that via conventional approach of electron–ion neutralization in low vacuum (LV) with a gaseous SE-detector. The differences of compensation temperatures for charge effects indicate dielectric and thermal properties, and band structures of insulators. The charge compensation mechanisms of heating approach mainly relate to accelerated release of trapped electrons on insulating surface and to increase of electron emission yield by heating.  相似文献   

17.
The calibration and error compensation techniques for an Articulated Arm Coordinate Measuring Machine (AACMM) with two parallel rotational axes are proposed. An improved six-parameter D–H model is established. The reversal techniques are used to calibrate the parallelism errors, arm lengths and zero position of the AACMM. The effects of the bending and torsion deformations caused by the gravity of the arms are removed. The experiments prove that the calibration method is simple and the measurement expanded uncertainty (2uc2uc) of the developed AACMM with a measuring range of (∅200–∅1000 mm) × 250 mm is less than 10 μm after error compensation.  相似文献   

18.
Modern transmission electron microscopes (TEM) allow utilizing the spherical aberration coefficient as an additional free parameter for optimizing resolution and contrast. By tuning the spherical aberration coefficient of the objective lens, isolated nitrogen atom columns as well as the Si–N dumbbells within the six-membered ring were imaged in β-Si3N4 along [0 0 0 1] and [0 0 0 1¯] projections with a dumbbell spacing of 0.94 Å in white atom contrast. This has been obtained with negative or positive spherical aberration coefficient. We clarify contrast details in β-Si3N4 by means of extended image calculations. A simple procedure has been shown for pure phase imaging, which is restricted to linear imaging conditions.  相似文献   

19.
Molecular structure of monolayers formed at the interface between Au(1 1 1) surfaces and solutions containing n-alkanes has been studied by in situ scanning tunneling microscopy at room temperature. Increasing the CnH2n+2 length from n=10 up to 50 with even n numbers alternates rectangular and tilted arrangement of alkanes within the self-organized layers. This alternation is related to the dramatically lowered sliding force for molecules with a length close to mT (m-integer), where T is the period of commensurability between the CH2-CH2-CH2 period along alkyl chains and the interatomic distance along Au〈1 1 0〉 direction.  相似文献   

20.
The effects of iron ions on dielectric properties of lithium sodium phosphate glasses were studied by non-usual, fast and non-destructive microwave techniques. The dielectric constant (ε′), insertion loss (L) and microwave absorption spectra (microwave response) of the selected glass system xFe2O3·(1 − x)(50P2O5·25Li2O·25Na2O), being x = 0, 3, 6, … , 15 expressed in mol.%, were investigated. The dielectric constant of the samples was investigated at 9.00 GHz using the shorted-line method (SLM) giving the minimum value of ε′ = 2.10 ± 0.02 at room temperature, and increasing further with x, following a given law. It was observed a gradual increasing slope of ε′ in the temperature range of 25 ? t ? 330 °C, at the frequency of 9.00 GHz. Insertion loss (measured at 9.00 GHz) and measurements of microwave energy attenuation, at frequencies ranging from 8.00 to 12.00 GHz were also studied as a function of iron content in the glass samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号